Deep Dive into Stateful Stream Processing in Structured Streaming Part 3

Stateful processing is one of the most challenging aspects of distributed, fault-tolerant stream processing. The DataFrame APIs in Structured Streaming make it easy for the developer to express their stateful logic, either implicitly (streaming aggregations) or explicitly (mapGroupsWithState). However, there are a number of moving parts under the hood which makes all the magic possible. In this talk, I will dive deep into different stateful operations (streaming aggregations, deduplication and joins) and how they work under the hood in the Structured Streaming engine.

« back
About Tathagata Das

Tathagata Das is an Apache Spark committer and a member of the PMC. He's the lead developer behind Spark Streaming and currently develops Structured Streaming. Previously, he was a grad student in the UC Berkeley at AMPLab, where he conducted research about data-center frameworks and networks with Scott Shenker and Ion Stoica.