
Published as a conference paper at ICLR 2018

PARAMETRIZED HIERARCHICAL PROCEDURES FOR
NEURAL PROGRAMMING

Roy Fox, Richard Shin, Sanjay Krishnan, Ken Goldberg, Dawn Song, and Ion Stoica
Department of Electrical Engineering and Computer Sciences
University of California, Berkeley
{royf,ricshin,sanjaykrishnan,goldberg,dawnsong,istoica}@berkeley.edu

ABSTRACT

Neural programs are highly accurate and structured policies that perform algorith-
mic tasks by controlling the behavior of a computation mechanism. Despite the
potential to increase the interpretability and the compositionality of the behavior of
artificial agents, it remains difficult to learn from demonstrations neural networks
that represent computer programs. The main challenges that set algorithmic do-
mains apart from other imitation learning domains are the need for high accuracy,
the involvement of specific structures of data, and the extremely limited observabil-
ity. To address these challenges, we propose to model programs as Parametrized
Hierarchical Procedures (PHPs). A PHP is a sequence of conditional operations,
using a program counter along with the observation to select between taking an
elementary action, invoking another PHP as a sub-procedure, and returning to
the caller. We develop an algorithm for training PHPs from a set of supervisor
demonstrations, only some of which are annotated with the internal call structure,
and apply it to efficient level-wise training of multi-level PHPs. We show in two
benchmarks, NanoCraft and long-hand addition, that PHPs can learn neural pro-
grams more accurately from smaller amounts of both annotated and unannotated
demonstrations.

1 INTRODUCTION

Representing the logic of a computer program with a parametrized model, such as a neural network,
is a central challenge in AI with applications including reinforcement learning, robotics, natural
language processing, and programming by example. A salient feature of recently-proposed approaches
for learning programs (Reed & De Freitas, 2016; Cai et al., 2017; Li et al., 2017) is their ability to
leverage the hierarchical structure of procedure invocations present in well-designed programs.

Explicitly exposing this hierarchical structure enables learning neural programs with empirically
superior generalization, compared to baseline methods that learn only from elementary computer
operations, but requires training data that does not consists only of low-level computer operations
but is annotated with the higher-level procedure calls (Reed & De Freitas, 2016; Cai et al., 2017).
Li et al. (2017) tackled the problem of learning hierarchical neural programs from a mixture of
annotated training data (hereafter called strong supervision) and unannotated training data where only
the elementary operations are given without their call-stack annotations (called weak supervision). In
this paper, we propose to learn hierarchical neural programs from a mixture of strongly supervised
and weakly supervised data via the Expectation–Gradient method and an explicit program counter, in
lieu of a high-dimensional real-valued state of a recurrent neural network.

Our approach is inspired by recent work in robot learning and control. In Imitation Learning (IL), an
agent learns to behave in its environment using supervisor demonstrations of the intended behavior.
However, existing approaches to IL are largely insufficient for addressing algorithmic domains, in
which the target policy is program-like in its accurate and structured manipulation of inputs and data
structures. An example of such a domain is long-hand addition, where the computer loops over the
digits to be added, from least to most significant, calculating the sum and carry. In more complicated
examples, the agent must correctly manipulate data structures to compute the right output.

1

Published as a conference paper at ICLR 2018

Three main challenges set algorithmic domains apart from other IL domains. First, the agent’s
policy must be highly accurate. Algorithmic behavior is characterized by a hard constraint of output
correctness, where any suboptimal actions are simply wrong and considered failures. In contrast, many
tasks in physical and simulated domains tolerate errors in the agent’s actions, as long as some goal
region in state-space is eventually reached, or some safety constraints are satisfied. A second challenge
is that algorithms often use specific data structures, which may require the algorithmic policies to
have a particular structure. A third challenge is that the environment in algorithmic domains, which
consists of the program input and the data structures, is almost completely unobservable directly by
the agent. They can only be scanned using some limited reading apparatus, such as the read/write
heads in a Turing Machine or the registers in a register machine.

Recently proposed methods can infer from demonstration data hierarchical control policies, where
high-level behaviors are composed of low-level manipulation primitives (Daniel et al., 2016; Fox et al.,
2017). In this paper, we take a similar approach to address the challenges of algorithmic domains, by
introducing Parametrized Hierarchical Procedures (PHPs), a structured model of algorithmic policies
inspired by the options framework (Sutton et al., 1999), as well as the procedural programming
paradigm. A PHP is a sequence of statements, such that each statement branches conditionally on the
observation, to either (1) perform an elementary operation, (2) invoke another PHP as a sub-procedure,
or (3) terminate and return control to the caller PHP. The index of each statement in the sequence
serves as a program counter to accurately remember which statement was last executed and which
one is next. The conditional branching in each statement is implemented by a neural network mapping
the program counter and the agent’s observation into the elementary operation, sub-procedure, or
termination to be executed. The PHP model is detailed in Section 4.1.

PHPs have the potential to address the challenges of algorithmic domains by strictly maintaining two
internal structures: a call stack containing the current branch of caller PHPs, and the current program
counter of each PHP in the stack. When a statement invokes a PHP as a sub-procedure, this PHP is
pushed into the call stack. When a statement terminates the current PHP, it is popped from the stack,
returning control to the calling PHP to execute its next statement (or, in the case of the root PHP,
ending the entire episode). The stack also keeps the program counter of each PHP, which starts at 0,
and is incremented each time a non-terminating statement is executed.

PHPs impose a constraining structure on the learned policies. The call stack arranges the policy
into a hierarchical structure, where a higher-level PHP can solve a task by invoking lower-level
PHPs that solve sub-tasks. Since call stacks and program counters are widely useful in computer
programs, they provide a strong inductive bias towards policy correctness in domains that conform
to these constraints, while also being computationally tractable to learn. To support a larger variety
of algorithmic domains, PHPs should be extended in future work to more expressive structures, for
example allowing procedures to take arguments.

We experiment with PHPs in two benchmarks, the NanoCraft domain introduced in Li et al. (2017),
and long-hand addition. We find that our algorithm is able to learn PHPs from a mixture of strongly
and weakly supervised demonstrations with better sample complexity than previous algorithms: it
achieves better test performance with fewer demonstrations.

In this paper we make three main contributions:

• We introduce the PHP model and show that it is easier to learn than the NPI model (Reed &
De Freitas, 2016).

• We propose an Expectation–Gradient algorithm for efficiently training PHPs from a mixture
of annotated and unannotated demonstrations (strong and weak supervision).

• We demonstrate efficient training of multi-level PHPs on NanoCraft (Li et al., 2017) and
long-hand addition (Reed & De Freitas, 2016), and achieve improved success rate.

2 RELATED WORK

2.1 NEURAL PROGRAMMING

Using input–output examples to specify a task has been a common setting for learning programs
with neural networks. Various architectures, such as the Neural Turing Machine (Graves et al.,

2

Published as a conference paper at ICLR 2018

Execution traces Task specification format

System Low-level
actions

Higher-level
structure

Input–output
pairs

Natural
language

Graves et al. (2014)

7 7 3 7Sukhbaatar et al. (2015)
Kaiser & Sutskever (2015)
Joulin & Mikolov (2015)
Neelakantan et al. (2016)
Andreas et al. (2016)

7 7 7 3

Andreas et al. (2017) 7 3 7 3

NPI (Reed & De Freitas, 2016) 3 3 3 7

Recursive NPI (Cai et al., 2017) 3 3 (recursive) 3 7

NPL (Li et al., 2017) 3 Mixed 3 7

PHP (this work) 3 Mixed 3 7

Table 1: Summary of related work in neural programming. Each column indicates what data is used
by the system. “Mixed”: only some of the training data is annotated with the higher-level structure.

2014), Stack RNNs (Joulin & Mikolov, 2015), the Neural GPU (Kaiser & Sutskever, 2015), and
End-to-End Memory Networks (Sukhbaatar et al., 2015), have been proposed for learning neural
programs from input–output examples, with components such as variable-sized memory and novel
addressing mechanisms facilitating the training process.

In contrast, our work considers the setting where, along with the input–output examples, execution
traces are available which describe the steps necessary to solve a given problem. The Neural
Programmer–Interpreter (NPI, Reed & De Freitas (2016)) learns hierarchical policies from execution
traces which not only indicate the low-level actions to perform, but also a structure over them specified
by higher-level abstractions. Cai et al. (2017) showed that learning from an execution trace with
recursive structure enables perfect generalization. Neural Program Lattices (Li et al., 2017) work
within the same setting as the NPI, but can learn from a dataset of execution traces where only a small
fraction contains information about the higher-level hierarchy.

In demonstrations where the hierarchical structure along the trace is missing, this latent space grows
exponentially in the trace length. Li et al. (2017) address this challenge via an approximation method
that selectively averages latent variables on different computation paths to reduce the complexity
of enumerating all paths. In contrast, we compute exact gradients using dynamic programming, by
considering a hierarchical structure that has small discrete latent variables in each time step.

Other works use neural networks as a tool for outputting programs written in a discrete programming
language, rather than having the neural network itself represent a program. Balog et al. (2017) learned
to generate programs for solving competition-style problems. Devlin et al. (2017) and Parisotto et al.
(2017) generate programs in a domain-specific language for manipulating strings in spreadsheets.

2.2 HIERARCHICAL CONTROL

Automatic discovery of hierarchical structure has been well-studied, and successful approaches
include action-sequence compression (Thrun & Schwartz, 1994), identifying important transitional
states (McGovern & Barto, 2001; Menache et al., 2002; Şimşek & Barto, 2004; Stolle, 2004;
Lakshminarayanan et al., 2016), learning from demonstrations (Bui et al., 2002; Krishnan et al.,
2015; Daniel et al., 2012; Krishnan et al., 2016), considering the set of initial states from which
the MDP can be solved (Konidaris & Barto, 2009; Konidaris et al., 2012), policy gradients (Levy
& Shimkin, 2011), information-theoretic considerations (Genewein et al., 2015; Fox et al., 2016;
Jonsson & Gómez, 2016; Florensa et al., 2017), active learning (Hamidi et al., 2015), and recently
value-function approximation (Bacon et al., 2017; Heess et al., 2016; Sharma et al., 2017).

3

Published as a conference paper at ICLR 2018

Our approach is inspired by the Discovery of Deep Options (DDO) algorithm of Fox et al. (2017).
Following the work of Daniel et al. (2016), who use Expectation–Maximization (EM) to train an
Abstract Hidden Markov Model (Bui et al., 2002), DDO parametrizes the model with neural networks
where complete maximization in the M-step is infeasible. Instead, DDO uses Expectation–Gradient
(EG) to take a single gradient step using the same forward–backward E-step as in the EM algorithm.
A variant of DDO for continuous action spaces (DDCO) has shown success in simulated and physical
robot control (Krishnan et al., 2017). This paper extends DDO by proposing an E-step that can infer
a call-stack of procedures and their program counters.

3 PROBLEM STATEMENT

Computation can be modeled as a deterministic dynamical system, where the computer is an agent
interacting with its environment, which consists of the program input and its data structures. Mathe-
matically, the environment is a Deterministic Partially Observable Markov Decision Process (DET-
POMDP (Bonet, 2009)), which consists of a state space S, an observation space O, an action space
A, the state-dependent observation otpstq, and the state transition st`1 “ fpst, atq. The initial
state s0 includes the program input, and is generated by some distribution p0ps0q. This notation is
general enough to model various computation processes. In a Turing Machine, for example, st is the
machine’s configuration, ot is the vector of tape symbols under the read/write heads, and at contains
writing and moving instructions for the heads.

In partially observable environments, the agent often benefits from maintaining memory mt of
past observations, which reveals temporarily hidden aspects of the current state. The agent has a
parametrized stochastic policy πθ, in some parametric family θ P Θ, where πθpmt, at|mt´1, otq is the
probability of updating the memory state frommt´1 tomt and taking action at, when the observation
is ot. The policy can be rolled out to induce the stochastic process ps0:T , o0:T ,m0:T´1, a0:T´1q, such
that upon observing oT the agent chooses to terminate the process. In a computation device, the
memory mt stands for its internal state, such as the Finite State Machine of a Turing Machine. We
can scale computer programs by adding data structures to their internal state, such as a call stack,
which we model in the next section as Parametrized Hierarchical Procedures.

In Imitation Learning (IL), the learner is provided with direct supervision of the correct actions to take.
The setting we use is Behavior Cloning (BC), where the supervisor rolls out its policy to generate
a batch of demonstrations before learning begins, and the agent’s policy is trained to minimize
a loss on its own selection of actions in demonstrated states, with respect to the demonstrated
actions. In strong supervision, a demonstration contains not only the sequence of observable variables
ξ “ po0:T , a0:T´1q, where a0:T´1 is the sequence of supervisor actions during the demonstration, but
also the sequence of the supervisor’s memory states ζ “ m0:T´1, which are ordinarily latent. This
allows the agent to directly imitate not just the actions, but also the memory updates of the supervisor,
for example by maximizing the log-likelihood of the policy given the demonstrations

arg max
θ

ÿ

i

logPpζi, ξi|θq “ arg max
θ

ÿ

i

Ti´1
ÿ

t“0

log πθpmi,t, ai,t|mi,t´1, oi,tq,

the latter being the negative cross-entropy loss with respect to the demonstrations.

In weak supervision, on the other hand, only the observable trajectories ξ are given as demonstrations.
This makes it difficult to maximize the likelihood Ppξ|θq “

ř

ζ Ppζ, ξ|θq, due to the large space of
possible memory trajectories ζ. We address this difficulty via the Expectation–Gradient algorithm
described in Section 4.2.

4 PARAMETRIZED HIERARCHICAL PROCEDURES

4.1 DEFINITION

4.1.1 HIERARCHICAL PROCEDURES

A finite set H of hierarchical procedures can be defined recursively as follows. Each hierarchical
procedure h P H is a sequence σ0

h, σ
1
h, . . . of statements. A statement στh “ pη

τ
h, ψ

τ
hq consists of an

4

Published as a conference paper at ICLR 2018

4 5

3 7

4 5

3 7

2

write 0

add1 0

add 0

add 0 add1 0

add 0

write 0

add1 0

add 0

add1 1

add 0

carry 0

add1 1

add 0

4 5

3 7

2

add1 0

add 0

WRITE OUT 2 MOVE CARRY LEFT

⌘0
add(o0) = add1

⌘0
add1(o0) = write

⌘0
write(o0) =

 0
write(o1) = 1

 0
add1(o1) = 0

⌘1
add1(o1) = carry

⌘0
carry(o1) =

s0 s1 s2

o0 o1

t = 0 t = 1

Figure 1: Execution of a Parametrized Hierarchical Procedure (PHP) on the long-hand addition
domain. The highest-level add procedure invokes a lower-level procedure add1 which further
invokes write. write takes the elementary action WRITE OUT 2, and returns to add1. add1
chooses not to return, incrementing its program counter to 1, and then invoking carry, which in
turn takes the elementary action MOVE CARRY LEFT.

operation statement ητh and a termination statement ψτh. The operation statement ητh : O Ñ AYH is
a conditional branching block that selects at step τ of procedure h, based on the external observation,
either an elementary action to execute or another hierarchical procedure to invoke. The termination
statement ψτh : O Ñ t0, 1u is a conditional termination indicator that decides, based on the external
observation, whether to terminate the procedure h after step τ . One of the procedures is the root of
the hierarchy.

The semantics of this definition are given by the following control policy. The agent’s mem-
ory maintains a stack rph1, τ1q, . . . , phn, τnqs of the active procedures and their program coun-
ters. Initially, this stack contains only the root procedure and the counter is 0. Upon observing
ot, the agent checks whether the top procedure should terminate, i.e. ψτnhn

potq “ 1. If the pro-
cedure hn terminates, it is popped from the stack, the next termination condition ψ

τn´1

hn´1
potq is

consulted, and so on. For the first procedure hi that does not terminate, we select the operation
ητi`1
hi

potq, after incrementing the program counter τi. If this operation is an invocation of pro-
cedure h1i`1, we push ph1i`1, 0q onto the stack, consult its operation statement η0h1i`1

potq, and so
on. Upon the first procedure h1n1 to select an elementary action at, we save the new memory state
mt “ rph1, τ1q, . . . , phi´1, τi´1q, phi, τi ` 1q, ph1i`1, 0q, . . . , ph

1
n1 , 0qs, and take the action at in the

environment.

The call stack and program counters act as memory for the agent, so that it can remember certain
hidden aspects of the state that were observed before. In principle, any finite memory structure can
be implemented with sufficiently many PHPs, by having a distinct procedure for each memory state.
However, PHPs leverage the call stack and program counters to allow exponentially many memory
states to be expressed with a relatively small set of PHPs.

We impose two practical limitations on the general definition of PHPs. Our training algorithm in
Section 4.2 does not support recursive procedures, i.e. cycles in the invocation graph. In addition, for
simplicity, we allow each procedure to either invoke other procedures or execute elementary actions,
not both. These two limitations are achieved by layering the procedures in levels, such that only
the lowest-level procedures can execute elementary actions, and each higher-level procedure can

5

Published as a conference paper at ICLR 2018

only invoke procedures in the level directly below it. This does not lose generality, since instead
of invoking a procedure or action at a certain level, we can wrap it in a one-level-higher surrogate
procedure that invokes it and terminates.

4.1.2 PARAMETRIZED HIERARCHICAL PROCEDURES

A Parametrized Hierarchical Procedure (PHP) is a representation of a hierarchical procedure by
differentiable parametrization. In this paper, we represent each PHP by two multi-layer perceptrons
(MLPs) with ReLU activations, one for the PHP’s operation statement and one for its termination
statement. The input is a concatenation of the observation o and the program counter τ , where τ is
provided to the MLPs as a real number. During training, we apply the soft-argmax activation function
to the output of each MLP to obtain stochastic statements ητhp¨|otq and ψτhp¨|otq. During testing, we
replace the soft-argmax with argmax, to obtain deterministic statements as above.

4.2 TRAINING ALGORITHM

4.2.1 EXPECTATION–GRADIENT METHOD

In weak supervision, only the observable trajectory ξ “ po0:T , a0:T´1q is available in a demonstration,
and the sequence of memory states ζ “ m0:T´1 is latent. This poses a challenge, since the space
of possible memory trajectories ζ grows exponentially in the length of the demonstration, which
at first seems to prohibit the computation of the log-likelihood gradient∇θ logPpξ|πθq, needed to
maximize the log-likelihood via gradient ascent.

We use the Expectation–Gradient (EG) method to overcome this challenge (Salakhutdinov et al.,
2003). This method has been previously used in dynamical settings to play Atari games (Fox et al.,
2017) and to control simulated and physical robots (Krishnan et al., 2017). The EG trick expresses
the gradient of the observable log-likelihood as the expected gradient of the full log-likelihood:

∇θ logPpξ|θq “
1

Ppξ|θq
∇θ Ppξ|θq “

ÿ

ζ

1

Ppξ|θq
∇θ Ppζ, ξ|θq

“
ÿ

ζ

Ppζ, ξ|θq

Ppξ|θq
∇θ logPpζ, ξ|θq “ Eζ|ξ,θr∇θ logPpζ, ξ|θqs,

where the first and third equations follow from two applications of the identity∇θx “ x∇θ log x. In
the E-step of the EG algorithm, we find the posterior distribution of ζ given the observed ξ and the
current parameter θ. In the G-step, we use this posterior to calculate and apply the exact gradient of
the observable log-likelihood.

4.2.2 TRAINING TWO-LEVEL PHPS

We start by assuming a shallow hierarchy, where the root PHP calls level-one PHPs that only perform
elementary operations. At any time t, the stack contains two PHPs, the root PHP and the PHP it
invoked to select the elementary action. The stack also contains the program counters of these two
PHPs, however we ignore the root counter to reduce complexity, and bring it back when we discuss
multi-level hierarchies in the next section.

Let us denote by ητhpat|otq and ψτhpbt|otq, respectively, the stochastic operation and termination
statements of procedure h P HY tKu, where K is the root PHP. Let pht, τtq be the top stack frame
when action at is selected. Then the full likelihood Ppζ, ξ|θq of the policy given an annotated
demonstration is a product of the terms that generate the demonstration, including ητtht

pat|otq for the
generation of each at, as well as ψτt´1

ht´1
p1|otqηKpht|otq whenever ht´1 terminates and ht is pushed

with τt “ 0, and ψτt´1

ht´1
p0|otq whenever ht´1 does not terminate (i.e. ht “ ht´1 and τt “ τt´1`1).

Crucially, the form of Ppζ, ξ|θq as a product implies that ∇θ logPpζ, ξ|θq decomposes into a sum of
policy-gradient terms such as∇θ log ητtht

pat|otq, and computing its expectation over Ppζ|ξ, θq only
requires the marginal posterior distributions over single-step latent variables

vtph, τq “ Ppht“h, τt“τ |ξ, θq

wtph, τq “ Ppht“h, τt“τ, τt`1“τ`1|ξ, θq.

6

Published as a conference paper at ICLR 2018

The marginal posteriors vt and wt can be found via a forward–backward algorithm, as described in
Appendix A, and used to compute the exact gradient

∇θ Ppξ|θq “
ÿ

hPH

T´1
ÿ

t“0

˜

vtph, 0q∇θ log ηKph|otq

`

t
ÿ

τ“0

˜

vtph, τq∇θ log ητhpat|otq

` wtph, τq∇θ logψτhp0|ot`1qq

` pvtph, τq ´ wtph, τqq∇θ logψτhp1|ot`1q

¸¸

.

4.2.3 TRAINING MULTI-LEVEL PHPS

A naive attempt to generalize the same approach to multi-level PHPs would result in an exponential
blow-up of the forward–backward state, which would need to include the entire stack. Instead, we
train each level separately, iterating over the PHP hierarchy from the lowest level to the highest. Let
us denote by d the number of levels in the hierarchy, with 0 being the root and d´1 the lowest level,
then we train level i in the hierarchy after we have trained levels i`1, . . . , d´1.

Two components are required to allow this separation. First, we need to use our trained levels
i`1, . . . , d´1 to abstract away from the elementary actions, and generate demonstrations where the
level-pi`1q PHPs are treated as the new elementary operations. In this way, we can view level-i
PHPs as the new lowest-level PHPs, whose operations are elementary in the demonstrations. This
is easy to do in strongly supervised demonstrations, since we have the complete stack, and we only
need to truncate the lowest d´i´1 levels. In weakly supervised demonstrations, on the other hand,
we need an algorithm for decoding the observable trajectories, and replacing the elementary actions
with higher-level operations. We present such an algorithm below.

The second component needed for level-wise training is approximate separation from higher levels
that have not been trained yet. When we train level i ą 1 via the EG algorithm in the previous section,
the “root PHP” would be at level i´1, had it corresponded to any real PHP. In all but the simplest
domains, we cannot expect a single PHP to perfectly match the behavior of the i-levels PHP hierarchy
(levels 0, . . . , i´1) that actually selected the level-i PHPs that generated the demonstrations. To
facilitate better separation from higher levels, we augment the “root PHP” used for training with an
LSTM that approximates the i-levels stack memory as ηLSTMK pht|o0, . . . , otq.

As mentioned above, abstraction from lower levels is achieved by rewriting weakly supervised
demonstrations to show level-pi`1q operations as elementary. After level i`1 is trained, the level-
pi`1q PHPs that generated the demonstrations are decoded using the trained parameters. We
considered three different decoding algorithms: (1) finding the most likely level-pi`1q PHP at each
time step, by taking the maximum over vt; (2) using a Viterbi-like algorithm to find the most likely
latent trajectory of level-pi`1q PHPs; (3) sampling from the posterior distribution Ppζ|ξ, θq over
latent trajectories. In our current experiments we used latent trajectories sampled from the posterior
distribution, given by

Ppζ|ξ, θq “ v0ph0, τ0q
T´2
ź

t“0

Ppht, τt, ht`1, τt`1|ξ, θq

vtpht, τtq
,

where the denominators can be computed via the same forward–backward algorithm used in the
previous section to compute vt and wt, as detailed in Appendix A.

5 EXPERIMENTS

We evaluate our proposed method on the two settings studied by Li et al. (2017): NanoCraft, which
involves an agent interacting in a grid world, and long-hand addition, which was also considered by
Reed & De Freitas (2016) and Cai et al. (2017).

7

Published as a conference paper at ICLR 2018

Figure 2: Sample complexity in the NanoCraft domain. The accuracy is the fraction of completely
correct test episodes, as a function of the number of demonstrations annotated with the supervisor’s
hierarchy. PHP-{16, 32, 64} shows our results for training PHPs from the indicated total number of
demonstrations. The results for NPL-{64, 128, 256} and NPI were provided by Li et al. (2017).

5.1 NANOCRAFT

Task description. The NanoCraft domain, introduced by Li et al. (2017), involves placing blocks
in a two-dimensional grid world. The goal of the task is to control an agent to build a rectangular
building of a particular height and width, at a specified location within the grid, by moving around
the grid and placing blocks in appropriate cells.

The state contains a 6ˆ 6 grid. In our version, each grid cell can either be empty or contain a block.
The state also includes the current location of the agent, as well as the building’s desired height,
width, and location, expressed as the offset from the agent’s initial location at the top left corner.
Initially, some of the blocks are already in place and must not be placed again.

The state-dependent observation otpstq reveals whether the grid cell at which the agent is located
contains a block or not, and four numbers for the building’s specifications. We provide each
observation to the MLPs as a 5-dimensional real-valued feature vector.

PHPs and elementary actions. The top-level PHP nanocraft executes (moves_r, moves_d,
builds_r, builds_d, builds_l, builds_u, return). moves_r calls move_r a number
of times equal to the building’s horizontal location, and similarly for moves_d w.r.t. move_d
and the vertical location; builds_r w.r.t. build_r and the building’s width; and so on for
builds_d, builds_l, and builds_u. At the lowest level, move_r takes the elementary action
MOVE_RIGHT and terminates, and similarly for move_d taking MOVE_DOWN. build_r executes
(MOVE_RIGHT, if cell full: return, else: PLACE_BLOCK, return), and simi-
larly for build_d, build_l, and build_u w.r.t. MOVE_DOWN, MOVE_LEFT, and MOVE_UP.

Experiment setup. We trained our model on datasets of 16, 32, and 64 demonstrations, of which
some are strongly supervised and the rest weakly supervised. We trained each level for 2000 iterations,
iteratively from the lowest level to the highest. The results are averaged over 5 trials with independent
datasets.

Results. Our results summarized in Figure 2 show that 32 strongly supervised demonstrations are
sufficient for achieving perfect performance at the task, and that 16 such demonstrations approach
the same success rate when used along with weakly supervised demonstrations, for a total of 16, 32,
or 64 demonstrations.

An interesting question is whether these performance gains are due to the simplicity of the PHP
model itself, the use of exact gradients in its optimization via the EG algorithm, or both. The PHP

8

Published as a conference paper at ICLR 2018

and NPL/NPI experiments with 64 strongly supervised demonstrations (Figure 2, blue curves at the
64 mark) directly compare the PHP model with the NPI model, since both algorithms use exact
gradients in this case.1 The accuracy is 1.0 for PHP; 0.724 for NPL/NPI, suggesting that the gains of
PHP are at least in part due to the PHP model inducing an optimization landscape in which a good
solution is easier to find. In the experiments with 16 strongly supervised demonstrations of a total 64
(blue curves at the 16 mark), the success rate is 0.969 for PHP; 0.502 for NPL. This 70% increase in
the gain of PHP over NPL may be evidence that exact gradients are better at training the model than
the approximate gradients of NPL, although the choice of an optimization method is conflated here
with the choice of a model.

5.2 LONG-HAND ADDITION

Task description. The long-hand addition task was also considered by Reed & De Freitas (2016),
Li et al. (2017), and Cai et al. (2017). In this task, our goal is to add two numbers represented in
decimal, by starting at the rightmost column (least significant digit) and repeatedly summing each
column to write the resulting digit and a carry if needed. The state consists of 4 tapes, as in a Turing
Machine, corresponding to the first number, the second number, the carries, and the output. The state
also includes the positions of 4 read/write heads, one for each tape. Initially, each of the first two
tapes contains the K digits of a number to be added, all other cells contain the empty symbol, and the
heads point to the least significant digits.

The state-dependent observation otpstq reveals the value of the digits (or empty symbols) pointed to
by the pointers. The four values are provided to the MLPs in one-hot encoding, i.e., the input vector
has 11ˆ 4 dimensions with exactly one 1-valued entry in each of the four group.

PHPs and elementary actions. The top-level PHP add repeatedly calls add1 to add each column
of digits. add1 calls write, carry, and lshift in order to compute the sum of the column,
write the carry in the next column, and move the pointers to the next column. If the sum for a column
is less than 10, then add1 does not call carry.

There are two kinds of elementary actions: one which moves a specified pointer in a specified
direction (e.g. MOVE CARRY LEFT), and one which writes a specified digit to a specified tape
(e.g. WRITE OUT 2). ηwrite, ηcarry, and ηlshift output the probability distribution over possible
action and argument combinations as the product of 3 multinomial distributions, each with 2, 4, and
10 possibilities respectively.

Experiment setup. Following Li et al. (2017), we trained our model on execution traces for
inputs of each length 1 to 10. We used 16 traces for each input length, for a total of 160 traces.2
We experimented with providing 1, 2, 3, 5, and 10 strongly supervised traces, with the remainder
containing only the elementary actions.

For training our model, we performed a search over two hyperparameters:

• Weight on loss from strongly supervised traces: When the number of weakly supervised
demonstrations overwhelms the number of strongly supervised traces, the model can learn
a hierarchy which does not match the supervisor. By appropriately scaling up the loss
contribution from the strongly supervised traces, we can ensure that the model learns to
follow the hierarchy specified in them.
• Use of τ in ψ: The termination condition ψτhpbt|otq contains a dependence on τ , the number

of steps that the current procedure h has executed. However, sometimes the underlying
definition for ψ does not contain any dependence on τ : ψ1

hpb|oq “ ψ2
hpb|oq “ ¨ ¨ ¨ . In such

a case, the MLP for ψh may learn a spurious dependency on τ , and generalize poorly to
values of τ seen during test time. Therefore, we searched over whether to use τ for ψ at
each level of the hierarchy.

Results. Our results are summarized in Table 2. Previous work by Li et al. (2017) learns a model
which can generalize perfectly to input lengths of 500 but not 1000. In our experiments with the same

1Li et al. (2017) used batch size 1, whereas we used full batches and made no attempt to optimize batch size.
2The dataset was generated randomly, but constrained to contain at least 1 example of each column of digits.

9

Published as a conference paper at ICLR 2018

Accuracy for input length

Model Strongly supervised / total traces 500 1000

NPI (Reed & De Freitas, 2016)3 160 / 160 <100% <100%
NPL (Li et al., 2017)3 10 / 160 100% <100%
PHP 3 / 160 100% 100%

Table 2: Empirical results for the long-hand addition task. All models were trained with 16 traces per
input length between 1 and 10, for a total of 160 traces, some of which strongly supervised.

sample complexity, EG can train PHPs which generalize to length-1000 inputs with 100% empirical
test accuracy.

Moreover, we successfully learn models with as few as 3 strongly supervised demonstrations,
compared to the 10 used by Li et al. (2017). However, we found that when the number of strongly
supervised demonstrations was smaller than 10, early stopping of the training of the top-level policy
was needed to learn a correct model. To obtain our reported results, we evaluated different snapshots
of the model generated dur reporteding training.

6 DISCUSSION

In this paper we introduced the Parametrized Hierarchical Procedures (PHP) model for hierarchical
representation of neural programs. We proposed an Expectation–Gradient algorithm for training
PHPs from a mixture of strongly and weakly supervised demonstrations of an algorithmic behavior,
showed how to perform level-wise training of multi-level PHPs, and demonstrated the benefits of our
approach on two benchmarks.

PHPs alleviate the sample complexity required to train policies with unstructured memory architec-
tures, such as LSTMs, by imposing the structure of a call stack augmented with program counters.
This structure may be limiting in that it requires the agent to also rely on observable information that
could otherwise be memorized, such as the building specifications in the NanoCraft domain. The
benchmarks used so far in the field of neural programming are simple enough and observable enough
to be solvable by PHPs, however we note that more complicated and less observable domains may
require more expressive memory structures, such as passing arguments to sub-procedures. Future
work will explore such structures, as well as new benchmarks to further challenge the community.

Our results suggest that adding weakly supervised demonstrations to the training set can improve
performance at the task, but only when the strongly supervised demonstrations already get decent
performance. Weak supervision could attract the optimization process to a different hierarchical
structure than intended by the supervisor, and in such cases we found it necessary to limit the number
of weakly supervised demonstrations, or weight them less than demonstrations annotated with the
intended hierarchy.

An open question is whether the attractors strengthened by weak supervision are alternative but usable
hierarchical structures, that are as accurate and interpretable as the supervisor’s. Future work will
explore the quality of solutions obtained by training from only weakly supervised demonstrations.

ACKNOWLEDGEMENTS

This research is supported in part by DHS Award HSHQDC-16-3-00083, NSF CISE Expeditions
Award CCF-1139158 Berkeley DeepDrive, NSF Grant No. TWC-1409915, DARPA Grant No.
FA8750-17-2-0091, NSF NRI Award 1734633, and gifts from Alibaba, Amazon Web Services, Ant
Financial, CapitalOne, Ericsson, GE, Google, Huawei, Intel, IBM, Microsoft, Scotiabank, Splunk,
VMware, Siemens, Cisco, Autodesk, Toyota Research, Samsung, Knapp, and Loccioni Inc.

Any opinions, findings, and conclusions or recommendations expressed in this material are those of
the authors and do not necessarily reflect the views of the above organizations.

3Results provided by Li et al. (2017).

10

Published as a conference paper at ICLR 2018

REFERENCES

Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and Dan Klein. Learning to compose neural
networks for question answering. In NAACL-HLT, 2016.

Jacob Andreas, Dan Klein, and Sergey Levine. Modular multitask reinforcement learning with policy
sketches. In ICML, 2017.

Pierre-Luc Bacon, Jean Harb, and Doina Precup. The option-critic architecture. In AAAI, 2017.

Matej Balog, Alexander L Gaunt, Marc Brockschmidt, Sebastian Nowozin, and Daniel Tarlow.
DeepCoder: Learning to write programs. In ICLR, 2017.

Blai Bonet. Deterministic POMDPs revisited. In UAI, 2009.

Hung Hai Bui, Svetha Venkatesh, and Geoff West. Policy recognition in the Abstract Hidden Markov
Model. JAIR, 2002.

Jonathon Cai, Richard Shin, and Dawn Song. Making neural programming architectures generalize
via recursion. In ICLR, 2017.

Christian Daniel, Gerhard Neumann, and Jan Peters. Hierarchical relative entropy policy search. In
AISTATS, 2012.

Christian Daniel, Herke Van Hoof, Jan Peters, and Gerhard Neumann. Probabilistic inference for
determining options in reinforcement learning. Machine Learning, 2016.

Jacob Devlin, Jonathan Uesato, Surya Bhupatiraju, Rishabh Singh, Abdel-rahman Mohamed, and
Pushmeet Kohli. RobustFill: Neural program learning under noisy I/O. In ICML, 2017.

Carlos Florensa, Yan Duan, and Pieter Abbeel. Stochastic neural networks for hierarchical reinforce-
ment learning. In ICLR, 2017.

Roy Fox, Michal Moshkovitz, and Naftali Tishby. Principled option learning in Markov Decision
Processes. In EWRL, 2016.

Roy Fox, Sanjay Krishnan, Ion Stoica, and Ken Goldberg. Multi-level discovery of deep options.
arXiv preprint arXiv:1703.08294, 2017.

Tim Genewein, Felix Leibfried, Jordi Grau-Moya, and Daniel Alexander Braun. Bounded rationality,
abstraction, and hierarchical decision-making: An information-theoretic optimality principle. Front.
Robot. AI, 2015.

Alex Graves, Greg Wayne, and Ivo Danihelka. Neural Turing Machines. arXiv preprint
arXiv:1410.5401, 2014.

Mandana Hamidi, Prasad Tadepalli, Robby Goetschalckx, and Alan Fern. Active imitation learning
of hierarchical policies. In IJCAI, 2015.

Nicolas Heess, Greg Wayne, Yuval Tassa, Timothy Lillicrap, Martin Riedmiller, and David Silver.
Learning and transfer of modulated locomotor controllers. arXiv preprint arXiv:1610.05182, 2016.

Anders Jonsson and Vicenç Gómez. Hierarchical Linearly-solvable Markov Decision Problems. In
ICAPS, 2016.

Armand Joulin and Tomas Mikolov. Inferring algorithmic patterns with stack-augmented recurrent
nets. In NIPS, 2015.

Łukasz Kaiser and Ilya Sutskever. Neural GPUs learn algorithms. arXiv preprint arXiv:1511.08228,
2015.

George Konidaris and Andrew G Barto. Skill discovery in continuous reinforcement learning domains
using skill chaining. In NIPS, 2009.

11

Published as a conference paper at ICLR 2018

George Konidaris, Scott Kuindersma, Roderic Grupen, and Andrew Barto. Robot learning from
demonstration by constructing skill trees. IJRR, 2012.

Sanjay Krishnan, Animesh Garg, Sachin Patil, Colin Lea, Gregory Hager, Pieter Abbeel, and Ken
Goldberg. Transition State Clustering: Unsupervised surgical trajectory segmentation for robot
learning. In ISRR, 2015.

Sanjay Krishnan, Animesh Garg, Richard Liaw, Brijen Thananjeyan, Lauren Miller, Florian T
Pokorny, and Ken Goldberg. SWIRL: A Sequential Windowed Inverse Reinforcement Learning
algorithm for robot tasks with delayed rewards. In WAFR, 2016.

Sanjay Krishnan, Roy Fox, Ion Stoica, and Ken Goldberg. DDCO: Discovery of Deep Continuous
Options for robot learning from demonstrations. In CoRL, 2017.

Aravind S Lakshminarayanan, Ramnandan Krishnamurthy, Peeyush Kumar, and Balaraman Ravin-
dran. Option discovery in hierarchical reinforcement learning using spatio-temporal clustering.
arXiv preprint arXiv:1605.05359, 2016.

Kfir Y Levy and Nahum Shimkin. Unified inter and intra options learning using policy gradient
methods. In EWRL, 2011.

Chengtao Li, Daniel Tarlow, Alexander L Gaunt, Marc Brockschmidt, and Nate Kushman. Neural
Program Lattices. In ICLR, 2017.

Amy McGovern and Andrew G Barto. Automatic discovery of subgoals in reinforcement learning
using diverse density. In ICML, 2001.

Ishai Menache, Shie Mannor, and Nahum Shimkin. Q-Cut –— dynamic discovery of sub-goals in
reinforcement learning. In ECML, 2002.

Arvind Neelakantan, Quoc V Le, and Ilya Sutskever. Neural programmer: Inducing latent programs
with gradient descent. In ICLR, 2016.

Emilio Parisotto, Abdel-rahman Mohamed, Rishabh Singh, Lihong Li, Dengyong Zhou, and Pushmeet
Kohli. Neuro-symbolic program synthesis. In ICLR, 2017.

Scott Reed and Nando De Freitas. Neural Programmer-Interpreters. In ICLR, 2016.

Ruslan Salakhutdinov, Sam T Roweis, and Zoubin Ghahramani. Optimization with EM and
Expectation-Conjugate-Gradient. In ICML, 2003.

Sahil Sharma, Aravind S Lakshminarayanan, and Balaraman Ravindran. Learning to repeat: Fine
grained action repetition for deep reinforcement learning. In ICLR, 2017.

Özgür Şimşek and Andrew G Barto. Using relative novelty to identify useful temporal abstractions
in reinforcement learning. In ICML, 2004.

Martin Stolle. Automated Discovery of Options in Reinforcement Learning. PhD thesis, McGill
University, 2004.

Sainbayar Sukhbaatar, Jason Weston, Rob Fergus, et al. End-to-end memory networks. In NIPS,
2015.

Richard S Sutton, Doina Precup, and Satinder Singh. Between MDPs and Semi-MDPs: A framework
for temporal abstraction in reinforcement learning. Artificial intelligence, 1999.

Sebastian Thrun and Anton Schwartz. Finding structure in reinforcement learning. In NIPS, 1994.

12

Published as a conference paper at ICLR 2018

APPENDIX

A EXPECTATION–GRADIENT METHOD FOR PHPS

In weak supervision, only the observable trajectory ξ “ po0:T , a0:T´1q is available in a demonstration,
and the sequence of memory states ζ “ m0:T´1 is latent. This poses a challenge, since the space
of possible memory trajectories ζ grows exponentially in the length of the demonstration, which
at first seems to prohibit the computation of the log-likelihood gradient∇θ logPpξ|πθq, needed to
maximize the log-likelihood via gradient ascent.

Our key insight is that the log-likelihood gradient can be computed precisely and efficiently using
an instance of the Expectation–Gradient (EG) method (Salakhutdinov et al., 2003), which we detail
below:

∇θ logPpξ|θq “
1

Ppξ|θq
∇θ Ppξ|θq “

ÿ

ζ

1

Ppξ|θq
∇θ Ppζ, ξ|θq

“
ÿ

ζ

Ppζ, ξ|θq

Ppξ|θq
∇θ logPpζ, ξ|θq “ Eζ|ξ,θr∇θ logPpζ, ξ|θqs, (1)

where the first and third equations follow from the identity∇θx “ x∇θ log x.

We start by assuming two-level PHPs, so that at any time t the stack contains the root PHP and the
PHP it invoked to select the elementary action. The stack also contains the program counters of these
two PHPs, however we ignore the root counter to reduce complexity, and bring it back when we
discuss multi-level hierarchies in Section 4.2.3 (and below).

Let us denote by ητhpat|otq and ψτhpbt|otq, respectively, the stochastic operation and termination
statements of procedure h P HY tKu, where K is the root PHP. Let pht, τtq be the top stack frame
when action at is selected. Then the full likelihood Ppζ, ξ|θq of the policy given an annotated
demonstration is

Ppζ, ξ|θq 9 ηKph0|o0qδτ0“0

T´1
ź

t“0

ητtht
pat|otq

T´1
ź

t“1

Ppht, τt|ht´1, τt´1, otqψ
τT´1

hT´1
p1|oT q,

where from the right-hand side we omitted the constant causal dynamics factor

Ppo0:T | dopa0:T´1qq “

T
ź

t“0

Ppot|o0:t´1, a0:t´1q,

and with

Ppht, τt|ht´1, τt´1, otq “

#

ψ
τt´1

ht´1
p1|otqηKpht|otq if τt “ 0

ψ
τt´1

ht´1
p0|otqδht“ht´1

if τt “ τt´1 ` 1.

This formulation of the likelihood has the extremely useful property that∇θ logPpζ, ξ|θq decomposes
into a sum of gradients. To find the expected gradient, as in (1), we do not need to represent the entire
posterior distribution Ppζ|ξ, θq, which would be intractable. Instead, we only need the marginal
posteriors that correspond to the various terms, namely

vtph, τq “ Ppht“h, τt“τ |ξ, θq

wtph, τq “ Ppht“h, τt“τ, τt`1“τ`1|ξ, θq.

13

Published as a conference paper at ICLR 2018

With these, the EG trick gives us the gradient of the observable demonstration

∇θ Ppξ|θq “
ÿ

hPH

T´1
ÿ

t“0

˜

vtph, 0q∇θ log ηKph|otq

`

t
ÿ

τ“0

˜

vtph, τq∇θ log ητhpat|otq

` wtph, τq∇θ logψτhp0|ot`1qq

` pvtph, τq ´ wtph, τqq∇θ logψτhp1|ot`1q

¸¸

. (2)

To allow the G-step (2), we take an E-step that calculates the marginal posteriors v and w with a
forward–backward pass. We first compute the likelihood of a trajectory prefix

φtph, τq 9 Ppo0:t, a0:t, ht“h, τt“τq,

up to the causal dynamics factor, via the forward recursion given by

φ0ph, 0q “ ηKph|o0q,

and for 0 ď t ă T ´ 1

φt`1ph
1, 0q “

˜

ÿ

hPH,0ďτďt
φtph, τqη

τ
hpat|otqψ

τ
hp1|ot`1q

¸

ηKph
1|ot`1q

φt`1ph, τ`1q “ φtph, τqη
τ
hpat|otqψ

τ
hp0|ot`1qq.

We similarly compute the likelihood of a trajectory suffix

ωtph, τq 9 Ppat:T´1, ot`1:T |o0:t, ht“h, τt“τq,

via the backward recursion given by

ωT´1ph, τq “ ητhpaT´1|oT´1qψ
τ
hp1|oT q,

and for 0 ď t ă T ´ 1

ωtph, τq “ ητhpat|otq

˜

ψτhp1|ot`1q
ÿ

h1PH
ηKph

1|ot`1qωt`1ph
1, 0q ` ψτhp0|ot`1qqωt`1ph, τ`1q

¸

.

For efficiency considerations, note that this forward–backward graph has pt` 1qk nodes in layer t,
where k “ |H|, but only pt`1qkpk`1q edges to the next layer, rather than the naive pt`1qpt`2qk2.

We can calculate our target likelihood using any 0 ď t ă T , by taking

Ppξ|θq “
ÿ

hPH,0ďτďt
Ppξ, ht“h, τt“τq 9

ÿ

hPH,0ďτďt
φtph, τqωtph, τq,

so most efficient is to use t “ 0

Ppξ|θq “
ÿ

hPH
Ppξ, h0“h, τ0“0q 9

ÿ

hPH
φ0ph, 0qω0ph, 0q.

Finally, the marginal posteriors are given by

vtph, τq “
1

Ppξ|θq
φtph, τqωtpτ, hq

wT´1ph, τq “ 0,

and for 0 ď t ă T ´ 1

wtph, τq “
1

Ppξ|θq
φtph, τqη

τ
hpat|otqψ

τ
hp0|ot`1qqωt`1ph, τ`1q.

14

Published as a conference paper at ICLR 2018

As mentioned in Section 4.2.3, level-wise training of multi-level PHPs requires abstraction from lower
levels and separation from higher levels. The former is achieved by rewriting weakly supervised
demonstrations to show level-i operations as elementary, for the purpose of training the next-higher
level i´ 1.

After level i is trained, the level-i PHPs that generated the demonstrations are decoded using the
trained parameters. In our current experiments we used latent trajectories sampled from the posterior
distribution, given by

Ppζ|ξ, θq “ v0ph0, τ0q
T´2
ź

t“0

Ppht, τt, ht`1, τt`1|ξ, θq

vtpht, τtq
,

where for each step 0 ď t ă T ´ 1

Ppht, τt, ht`1, 0|ξ, θq “
1

Ppξ|θq
φtpht, τtqη

τt
ht
pat|otqψ

τt
ht
pot`1qηKpht`1|ot`1qωt`1pht`1, 0q

Ppht, τt, ht`1, τt ` 1|ξ, θq “ δht`1“htwtpht, τtq.

15

	Introduction
	Related Work
	Neural Programming
	Hierarchical Control

	Problem Statement
	Parametrized Hierarchical Procedures
	Definition
	Hierarchical Procedures
	Parametrized Hierarchical Procedures

	Training Algorithm
	Expectation–Gradient Method
	Training Two-Level PHPs
	Training Multi-Level PHPs

	Experiments
	NanoCraft
	Long-Hand Addition

	Discussion
	Expectation–Gradient Method for PHPs

