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Unbiased next-generation sequencing (NGS) approaches enable comprehensive pathogen detection in the clinical mi-
crobiology laboratory and have numerous applications for public health surveillance, outbreak investigation, and the
diagnosis of infectious diseases. However, practical deployment of the technology is hindered by the bioinformatics
challenge of analyzing results accurately and in a clinically relevant timeframe. Here we describe SURPI (‘‘sequence-based
ultrarapid pathogen identification’’), a computational pipeline for pathogen identification from complex metagenomic
NGS data generated from clinical samples, and demonstrate use of the pipeline in the analysis of 237 clinical samples
comprising more than 1.1 billion sequences. Deployable on both cloud-based and standalone servers, SURPI leverages two
state-of-the-art aligners for accelerated analyses, SNAP and RAPSearch, which are as accurate as existing bioinformatics
tools but orders of magnitude faster in performance. In fast mode, SURPI detects viruses and bacteria by scanning data sets
of 7–500 million reads in 11 min to 5 h, while in comprehensive mode, all known microorganisms are identified, followed by de
novo assembly and protein homology searches for divergent viruses in 50 min to 16 h. SURPI has also directly contributed
to real-time microbial diagnosis in acutely ill patients, underscoring its potential key role in the development of unbiased
NGS-based clinical assays in infectious diseases that demand rapid turnaround times.

[Supplemental material is available for this article.]

There is great interest in the use of unbiased next-generation se-

quencing (NGS) technology for comprehensive detection of

pathogens from clinical samples (Dunne et al. 2012; Wylie et al.

2012; Chiu 2013; Firth and Lipkin 2013). Conventional diagnostic

testing for pathogens is narrow in scope and fails to detect the

etiologic agent in a significant percentage of cases (Barnes et al.

1998; Louie et al. 2005; van Gageldonk-Lafeber et al. 2005; Bloch

and Glaser 2007; Denno et al. 2012). Failure to accurately diagnose

and treat infection in a timely fashion contributes to continued

transmission and increased mortality in hospitalized patients

(Kollef et al. 2008). Ongoing discovery of novel pathogens, such as

Bas-Congo rhabdovirus (Grard et al. 2012) and MERS (Middle East

Respiratory Syndrome) coronavirus (Zaki et al. 2012), also un-

derscores the need for rapid, broad-spectrum diagnostic assays that

are able to recognize these emerging agents.
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Unbiased NGS holds the promise of identifying all potential

pathogens in a single assay without a priori knowledge of the tar-

get. Given sufficiently long read lengths, multiple hits to the mi-

crobial genome, and a well-annotated reference database, nearly

all microorganisms can be uniquely identified on the basis of their

specific nucleic acid sequence. Thus, NGS has widespread micro-

biological applications, including infectious disease diagnosis in

clinical laboratories (Dunne et al. 2012), pathogen discovery in

acute and chronic illnesses of unknown origin (Chiu 2013), and

outbreak investigation on a global level (Firth and Lipkin 2013).

However, the latest NGS laboratory workflows incur minimum

turnaround times exceeding 8 h from clinical sample to sequence

(Quail et al. 2012). Thus, it is critical that subsequent computa-

tional analyses of NGS data be performed within a timeframe

suitable for actionable responses in clinical medicine and public

health (i.e., minutes to hours). Such pipelines must also retain

sensitivity, accuracy, and throughput in detecting a broad range of

clinically relevant pathogenic microorganisms.

Computational analysis of metagenomic NGS data for path-

ogen identification remains challenging for several reasons. First,

alignment/classification algorithms must contend with massive

amounts of sequence data. Recent advances in NGS technologies

have resulted in instruments that are capable of producing >100

gigabases (Gb) of reads in a day (Loman et al. 2012). Reference

databases of host and pathogen sequences range in size from 2 Gb

for viruses to 3.1 Gb for the human genome to 42 Gb for all nu-

cleotide sequences in the National Center for Biotechnology In-

formation (NCBI) nucleotide (nt) collection (NCBI nt DB) as of

January 2013. Second, only a small fraction of short NGS reads in

clinical metagenomic data typically correspond to pathogens (a

‘‘needle-in-a-haystack’’ problem) (Kostic et al. 2012; Wylie et al.

2012; Yu et al. 2012), and such sparse reads often do not overlap

sufficiently to permit de novo assembly into longer contiguous

sequences (contigs) (Kostic et al. 2011). Thus, individual reads,

typically only 100–300 nucleotides (nt) in length, must be classi-

fied to a high degree of accuracy. Finally, novel microorganisms

with divergent genomes, particularly viruses, are not adequately

represented in existing reference databases and often can only be

identified on the basis of remote amino acid homology (Xu et al.

2011; Grard et al. 2012).

To address these challenges, the most widely used approach is

computational subtraction of reads corresponding to the host (e.g.,

human), followed by alignment to reference databases that contain

sequences from candidate pathogens (MacConaill and Meyerson

2008; Greninger et al. 2010; Kostic et al. 2011; Zhao et al. 2013).

Traditionally, the BLAST algorithm (Altschul et al. 1990) is used for

classification of human and nonhuman reads at the nucleotide level

(BLASTn), followed by low-stringency protein alignments using

a translated nucleotide query (BLASTx) for detection of divergent

sequences from novel pathogens (Delwart 2007; Briese et al. 2009;

Xu et al. 2011; Grard et al. 2012; Chiu 2013). However, BLAST is too

slow for routine analysis of NGS metagenomics data (Niu et al.

2011), and end-to-end processing times, even on multicore com-

putational servers, can take several days to weeks. Analysis pipelines

that use faster, albeit less sensitive, algorithms upfront for host

computational subtraction, such as PathSeq (Kostic et al. 2011), still

rely on traditional BLAST approaches for final pathogen de-

termination. In addition, whereas PathSeq works well for tissue

samples in which the vast majority of reads are host-derived and

thus subject to subtraction, the pipeline becomes computationally

prohibitive when analyzing complex clinical metagenomic samples

open to the environment, such as respiratory secretions or stool (Fig.

1B; Supplemental Table S1). Other published pipelines are focused

solely on limited detection of specific types of microorganisms, are

unable to identify highly divergent novel pathogens, and/or utilize

computationally taxing algorithms such as BLAST (Bhaduri et al.

2012; Borozan et al. 2012; Dimon et al. 2013; Naeem et al. 2013;

Wang et al. 2013; Zhao et al. 2013). Furthermore, there is hitherto

scarce reported data on the real-life performance of these pipelines

for pathogen identification in clinical samples.

Here we describe SURPI (‘‘sequence-based ultrarapid patho-

gen identification’’), a cloud-compatible bioinformatics analysis

pipeline that provides extensive classification of reads against viral

and bacterial databases in fast mode and against the entire NCBI nt

DB in comprehensive mode (Fig. 1A). Novel pathogens are also

identified in comprehensive mode by amino acid alignment to viral

and/or NCBI nr protein databases. Notably, SURPI generates results

in a clinically actionable timeframe of minutes to hours by

leveraging two alignment tools, SNAP (Fig. 1C; Zaharia et al. 2011)

and RAPSearch (Fig. 1D; Zhao et al. 2012), which have computa-

tional times that are orders of magnitude faster than other avail-

able algorithms. Here we evaluate the performance of these tools

for pathogen detection using both in silico-generated and clinical

data and describe use of the SURPI pipeline in the analysis of 15

independent NGS data sets consisting of 157 clinical samples

multiplexed across 47 barcodes and including over 1.1 billion

reads. These data sets encompass a variety of clinical infections,

detected pathogens, sample types, and depths of coverage. We also

demonstrate use of the pipeline for detection of emerging novel

outbreak viruses and for clinical diagnosis of a case of unknown

fever in a returning traveler.

Results

Accuracy of SURPI aligners (SNAP and RAPSearch) using
in silico data

The accuracy of SURPI was evaluated by benchmarking its nucle-

otide alignment tool, SNAP, against BLASTn and two other aligners

commonly used for human genome mapping, BWA (Li and Durbin

2009) and Bowtie 2 (BT2) (Fig. 2A–E; Langmead and Salzberg 2012).

In addition, SURPI’s protein similarity search tool, RAPSearch (Zhao

et al. 2012), was directly compared to BLASTx (Fig. 2F; Altschul et al.

1990). A query data set of 100 base pair (bp) reads was randomly

generated in silico from human, bacterial, and viral reference da-

tabases. The data set consisted of 1 million human reads, 250,000

bacterial reads, 25,000 viral reads, and 1000 reads each from four

known viruses (norovirus, ebolavirus, human immunodeficiency

virus [HIV-1], and influenza A), and three divergent ‘‘novel’’ viruses

whose genomes had been removed a priori from the reference

database (Supplemental Table S2): Bas-Congo rhabdovirus (BASV)

(Grard et al. 2012), titi monkey adenovirus (TMAdV) (Chen et al.

2011), and bat influenza H17N10 (Tong et al. 2012). Receiver op-

erating characteristic (ROC) curves (Akobeng 2007) were generated

to assess the sensitivity and specificity of each aligner in classifying

human, bacterial, or viral reads. All nucleotide aligners shared

>99.5% optimal sensitivity and specificity for human sequence

identification (Fig. 2A), with SNAP exhibiting the highest speci-

ficity (>99.8%) and comparable sensitivity to BLASTn (99.9%

versus 100%). For bacterial detection (Fig. 2B), SNAP was more

accurate than BWA and BT2, and exhibited reduced sensitivity

(99.5%) albeit superior specificity (98.5%) relative to BLASTn

(100% and 97.9%), as was also the trend for viral detection (Fig.

2C). The accuracy of all four tools in identifying sequences from
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known viruses was comparable (Fig. 2D), but SNAP and BLASTn

were superior to BWA and BT2, in identifying reads from divergent

viruses using low-stringency parameters (Fig. 2E). Nevertheless,

the overall poor performance of all four nucleotide aligners in

detecting divergent viral reads (<20% sensitivity) underscored the

need for translated nucleotide alignment algorithms such as

RAPSearch and BLASTx (Briese et al. 2009; Xu et al. 2011; Grard

et al. 2012; Swei et al. 2013). By ROC curve analysis, these two

algorithms performed similarly in the detection of sequences from

divergent viral genomes (Fig. 2F).

Speed of SURPI aligners (SNAP and RAPSearch) using
in silico data

The computational speed of SNAP relative to BLASTn, BT2, and

BWA in aligning NGS reads to the human hg19 database (human

DB) was evaluated using progressively larger in silico query data

sets of 1.25 million, 25 million, 125 million, and 1.25 billion reads

(Fig. 3A; Supplemental Tables S2, S3). BLASTn alignments were

associated with prohibitively long run times, consuming >19 h to

analyze only 1.25 million reads, with proportionally longer esti-

mated times for the larger data sets. Although all three remaining

aligners performed comparably well with the 1.25 million read

data set, SNAP scaled significantly better with larger data sets and

was 23�873 faster than BWA and BT2.

Next, we investigated the feasibility of using the SNAP algo-

rithm to align reads to all sequences in the 42 Gb NCBI nt DB.

Computational subtraction of human host sequences followed

by SNAP alignment to the entire NCBI nt DB was accomplished in

under 1 h for 1.25 million and <40 h for 1.25 billion reads (Fig.

3B,C). Overall timing metrics for SURPI, whether using a cloud

server or local server, were comparable (Fig. 3B), likely due to the

use of high-performance, low-latency solid-state drives (SSDs) for

the cloud (Supplemental Methods). We also benchmarked the

Figure 1. The SURPI pipeline for pathogen detection. (A) A schematic overview of the SURPI pipeline. Raw NGS reads are preprocessed by removal of
adapter, low-quality, and low-complexity sequences, followed by computational subtraction of human reads using SNAP. In fast mode, viruses and
bacteria are identified by SNAP alignment to viral and bacterial nucleotide databases. In comprehensive mode, reads are aligned using SNAP to all
nucleotide sequences in the NCBI nt collection, enabling identification of bacteria, fungi, parasites, and viruses. For pathogen discovery of divergent
microorganisms, unmatched reads and contigs generated from de novo assembly are then aligned to a viral protein database or all protein sequences in
the NCBI nr collection using RAPSearch. SURPI reports include a list of all classified reads with taxonomic assignments, a summary table of read counts, and
both viral and bacterial genomic coverage maps. (B) Relative proportion of NGS reads classified as human, bacterial, viral, or other in different clinical
sample types. (C ) The SNAP nucleotide aligner (Zaharia et al. 2011). SNAP aligns reads by generating a hash table of sequences of length ‘‘s’’ from the
reference database and then comparing the hash index with ‘‘n’’ seeds of length ‘‘s’’ generated from the query sequence, producing a match based on the
edit distance ‘‘d.’’ (D) The RAPSearch protein similarity search tool (Zhao et al. 2012). RAPSearch aligns translated nucleotide queries to a protein database
using a compressed amino acid alphabet at the level of chemical similarity for greatly increased processing speed.

Rapid NGS pipeline for pathogen identification
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Figure 2. SURPI aligners (SNAP and RAPSearch) are comparable to other tested aligners for detection of human, bacterial, and viral reads from in silico-
generated query data sets. ROC curves were generated to evaluate the ability of four nucleotide aligners (SNAP, BWA, BT2, and BLASTn) to correctly
detect in silico-generated NGS reads when mapped against the human DB (A), bacterial DB (B), or viral nucleotide DB (C ). The accuracy of detection was
assessed using Youden’s index and the F1 score. Sensitivity or the true positive rate (TPR) (y-axis) is plotted against 1-specificity or the false positive rate
(FPR) (x-axis). (D) Detection of reads corresponding to four viral genomes [norovirus, Zaire ebolavirus, influenza A(H1N1)pdm09, and HIV-1] by nu-
cleotide alignment. (E) Detection of reads corresponding to three divergent viruses (TMAdV, BASV, and bat influenza H17N10, a novel influenza strain) by
nucleotide alignment. (F) Detection of reads corresponding to three divergent viruses (TMAdV, BASV, and bat influenza H17N10) by translated nucleotide
(protein) alignment using the RAPSearch and BLASTx aligners. The sequences of these viruses were removed from the nucleotide and protein viral
reference databases prior to alignment. The lower shaded panels are magnifications of the corresponding shaded boxed regions in the upper panels.

Naccache et al.
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speed of RAPSearch relative to BLASTx in aligning translated

query reads to a viral protein database (viral protein DB). RAPSearch

was found to be 5�103 faster than BLASTx across all query data sets

(Fig. 3C).

Accuracy of the SURPI aligners (SNAP and RAPsearch) using
clinical sample data

To evaluate the ‘‘real-life’’ performance of SNAP relative to BLASTn,

BT2, and BWA, and of RAPSearch relative to BLASTx, ROC curves

for viral detection were generated from three computationally

challenging NGS data sets (Fig. 4A–C; Supplemental Table S3). The

query sets corresponded to (1) a complex metagenomic stool

sample pool (Yu et al. 2012) harboring a respiratory syncytial virus

(RSV) strain with ;10% genomic sequence divergence, (2) a nasal

swab sample pool from patients infected with 2009 pandemic in-

fluenza H1N1 [influenza A(H1N1)pdm09] and sequenced using

short 65-bp reads (Greninger et al. 2010), and (3) a serum sample

from a patient with hantavirus pulmonary syndrome from Sin

Nombre virus (SNV) infection (Nunez

et al. 2014) and sequenced using longer

250-bp reads. Both SNAP and BLASTn

exhibited superior sensitivity than BWA

and BT2 in detection of reads corre-

sponding to these three viruses. Across all

three data sets, 100% specificity was

retained using an expectation value

(E-value) cutoff of 1 3 10�15 for BLASTn

and an edit distance of 12 for SNAP. At that

threshold cutoff, the sensitivities of SNAP

and BLASTn for detection of each virus

were similar (84.3%/85.1% for RSV, 99.6%/

98.7% for influenza A(H1N1)pdm09, and

93.8%/99.7% for hantavirus). Among the

15 true hantavirus reads not detected by

SNAP and accounting for the reduced

93.8% sensitivity, 10 were found to be

chimeric reads, while five were reads with

internal regions of low-quality data. Crop-

ping the long 250-bp reads in the hanta-

virus data set to 75 bp improved sensitivity

from 93.8% to 98.1% due to increased de-

tection of these previously undetected

reads without affecting specificity (Fig. 4C).

By ROC curve analysis, RAPSearch had

comparable accuracy to BLASTx across all

three clinical data sets (Fig. 4A–C, bottom

panels).

The combined in silico and clinical

data on SNAP and RAPSearch perfor-

mance (Figs. 2–4) guided (1) the choice of

an edit distance ‘‘d’’ of 12 as the most

appropriate empirical cutoff for SNAP

alignment (Fig. 1C), (2) read cropping

prior to SNAP alignment to a length of

75 bp to maximize sensitivity for chime-

ric reads or reads with error-prone 39 ends

from Illumina sequencing and to allow

use of a fixed edit distance threshold (Fig.

4C; Supplemental Results; Supplemental

Fig. S1), and (3) the serial coupling of the

SNAP and RAPSearch algorithms to maximize speed without sac-

rificing breadth of detection.

Accurate detection of pathogens from clinical samples using
SURPI

SURPI was used to accurately classify viral pathogens down to the

species and even strain level in various clinical metagenomic

NGS data sets (Fig. 5A–G; Supplemental Results; Supplemental

Tables S4, S5), automatically generating summary tables (Sup-

plemental Tables S6–S21) and coverage maps (Supplemental Fig.

S2) corresponding to the actual virus present in the sample.

Plasma samples spiked with human immunodeficiency virus

(HIV-1) at titers ranging from 102 to 104 copies/mL were identi-

fied and mapped to the correct strain (Fig. 5A), showing a linear

correlation between number of aligned reads and viral titer, while

sapovirus (SaV) and a divergent human parechovirus 1 (HPeV1)

shed in children with diarrhea and provisionally named HPeV-1

isolate MX1 were correctly identified (Fig. 5B), as was human

herpesvirus 3 (HHV3) in cerebrospinal fluid (CSF) from a patient

Figure 3. SURPI aligners (SNAP and RAPSearch) are significantly faster than other tested aligners and
scale better with larger data sets. Timing performance was benchmarked on a single computational
server using in silico query data sets of increasing size. The breaks (zigzag lines) represent computational
times that are off-scale. Some of the computational times were estimated (asterisks). (A) Performance
time for alignment of reads to the human DB. (B) Performance time for SNAP alignment of reads to the
entire 42-Gb NCBI nt DB. The z-axis denotes the approximate number of remaining reads following
computational subtraction against the human DB. SNAP performance times were benchmarked sep-
arately on local and cloud servers. (C ) Performance times for translated nucleotide alignment to the viral
protein DB using RAPSearch and BLASTx.

Rapid NGS pipeline for pathogen identification
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with encephalitis (Fig. 5D), and hepatitis C virus subtype 1b

(HCV-1b) from a patient with transfusion-transmitted hepatitis

(Fig. 5E). SURPI also successfully identified human papillomavi-

rus 18 (HPV-18) in sequences from an infected prostate cancer

cell line used in the literature as a benchmarking standard (Fig.

5C), and produced nearly identical contigs to those generated by

three other computational pipelines (Kostic et al. 2011; Bhaduri

et al. 2012; Naeem et al. 2013). In comprehensive mode, in-

corporating both nucleotide alignments to the NCBI nt DB and

viral protein similarity searches, SURPI was able to detect essen-

tially 100% of viral reads corresponding to a given species (Fig.

5A–E). In contrast, due to lack of a protein similarity search step,

SURPI in fast mode showed noticeably less coverage for more

divergent viruses such as the HPeV-1 isolate MX1 in diarrheal

stool (Fig. 5B), which shared <80% nucleotide identity with its

closest related genome in the reference database (Supplemental

Table S4). In addition to sequences from known pathogens,

bacteriophage sequences derived from commensal bacteria and/

or reagent and laboratory contamination were common and

detected in nearly all clinical NGS data sets.

In comprehensive mode, SURPI was also able to identify

highly divergent novel viruses whose sequences had been re-

moved a priori from the reference database (Fig. 5F,G; Supple-

mental Table S4). The genome of TMAdV, an adenovirus causing

a fulminant pneumonia outbreak in a titi monkey colony in

California with cross-species infection of a human researcher

Figure 4. SURPI aligners (SNAP and RAPSearch) are comparable to other tested aligners for detection of viral reads in clinical NGS data sets. ROC curves
were generated to evaluate the ability of nucleotide and translated nucleotide (protein) aligners to detect reads corresponding to three target viruses: (A)
respiratory syncytial virus (RSV) from stool; (B) influenza A(H1N1)pdm09 from a nasal swab; and (C ) Sin Nombre hantavirus from serum. Sensitivity or the
true positive rate (TPR) (y-axis) is plotted against 1-specificity or the false positive rate (FPR) (x-axis). For each aligner, reads assigned to the correct viral
genus were used for generating the ROC curve. The shaded panels are magnifications of the corresponding shaded regions in the upper panels (A–C,
nucleotide alignment) or overlapping larger panel (C, translated nucleotide alignment).

Naccache et al.
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Figure 5. The SURPI pipeline correctly identifies viral species in clinical NGS data sets. Data sets corresponding to clinical samples or sample pools
harboring target viral pathogens were analyzed using SURPI. Pie charts show detected viruses derived from the output summary tables. Target viruses are
color-coded in yellow or orange; other viruses are color-coded ranked by their relative abundance in shades of blue, followed by shades of purple.
Coverage maps of the ‘‘best hit’’ viral genome in fast mode (red) and comprehensive mode (pink, overlaid by red) display automated SURPI output corre-
sponding to the detected target viral genome (blue text). The read coverage (y-axis, log scale) and de novo assembled contigs (black lines) are plotted as
a function of nucleotide position along the genome (x-axis). Percent coverage achieved using SURPI in fast mode (‘‘FAST ’’), in comprehensive mode
(‘‘COMPREHENSIVE ’’), and by de novo assembly (‘‘ASSEMBLY ’’), as well as the actual coverage from all reads in the data set (‘‘ALL’’) are shown. (A) Coverage
plots of HIV-1 spiked at titers of 102�104 copies/mL. The number of mapped reads and percent coverage are plotted against the viral copy number (inset).
Coverage plots of SaV and HPeV-1 (B), HPV-18 (C ), HHV-3 (D), and HCV-1b (E). (F) Coverage plot mapping SURPI-classified genus-level Mastadenovirus reads
(red/pink) to the SAdV-18 genome, or Mastadenovirus reads (red/pink) and all specific TMAdV reads (gray) to the TMAdV genome. (G) Coverage plots
mapping SURPI-classified family-level Rhabdoviridae reads (pink) or all specific BASV reads (gray) to the BASV genome.

Genome Research 7
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(Chen et al. 2011), shares <50% amino acid identity with its

closest known relative, simian adenovirus 18 (SAdV-18). Never-

theless, SURPI, in either fast or comprehensive mode, successfully

identified adenovirus sequences in lung samples from moribund

titi monkeys with TMAdV pneumonia, and mapped these reads

to the genome of SAdV-18 (Fig. 5F). In comprehensive mode, cov-

erage of 41% of the TMAdV genome was achieved. For the hem-

orrhagic fever-associated BASV rhabdovirus (Grard et al. 2012),

sharing <34% amino acid identity to its closest relative, SURPI

failed to detect any rhabdovirus reads at the nucleotide level in

fast mode, whereas in comprehensive mode, reads classified as

Rhabdoviridae were detected on the basis of protein homology

using RAPSearch (Fig. 5G). As laboratory contamination by ro-

tavirus was noted in the previously published NGS data set (Grard

et al. 2012), a subsequent NGS data set was generated from the

same serum aliquot. This data set was devoid of rotaviral se-

quences, and because of longer reads and higher coverage of BASV

(Supplemental Tables S4–S5), enabled de novo assembly of 100%

of the viral genome (Fig. 5G, lower panel). Notably, a two-tiered

de novo assembly approach involving the use of both de Bruijn

(Simpson et al. 2009) and overlap-layout-consensus (OLC) (Sommer

et al. 2007) methods produced longer and higher quality assem-

Figure 6. The SURPI pipeline correctly identifies bacterial and parasitic species in clinical NGS data sets. Three NGS data sets corresponding to clinical
samples or sample pools and found to harbor target pathogenic bacteria or parasites were analyzed using SURPI in comprehensive mode. Pie charts
represent the breakdown of SURPI-classified pathogen reads by family. (A) Serum from an individual with acute hemorrhagic fever in the Democratic
Republic of the Congo (DRC), Africa, was analyzed by unbiased NGS. NGS reads identified as Plasmodium by SURPI are mapped to the 14 chromosomes of
Plasmodium falciparum clone 3D7, including multiple hits to telomeric ends by reads corresponding to the var gene (Gardner et al. 2002). (B) Serum from
a patient who died from a critical febrile illness in Tanzania, Africa (Crump et al. 2013) was analyzed using NGS. SURPI generates a coverage map
corresponding to the ‘‘best hit’’ bacterial genome, Haemophilus influenzae. (C ) SURPI was used to classify the diversity of bacterial species in 22 clinical
samples, 11 from colorectal tumors and 11 from normal tissue (Castellarin et al. 2012). For the top 10 bacterial species, the fold-increase in the average
normalized abundance between normal and diseased tissue is plotted in rank order from most to least abundant.

Naccache et al.
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blies than the use of de Bruijn algorithms alone (Supplemental

Methods; Supplemental Table S22).

Detection of pathogens by SURPI was not restricted to vi-

ruses. SURPI was able to identify NGS reads spanning all 14

chromosomes from the malarial parasite Plasmodium falciparum

in a hemorrhagic fever patient from Gabon, Africa (Fig. 6A;

Gardner et al. 2002). The bacterial pathogen Haemophilus influ-

enzae was found in serum from a patient enrolled in a febrile ill-

ness cohort from Tanzania, Africa (Fig. 6B; Crump et al. 2013). In

addition, SURPI was used to analyze publicly available data from

a study that detected an increase in bacterial reads aligning to

Fusobacterium nucleatum in association with colorectal tumors

(Castellarin et al. 2012). As in the previous study, an overabundance

of aligned reads corresponding to Fusobacteirum nucleatum was

identified, with a 29-fold increase in tumor versus control samples

(Fig. 6C).

Speed of SURPI and feasibility for real-time clinical analysis

To benchmark end-to-end processing times for SURPI across

a range of clinical diseases and samples, we analyzed NGS meta-

genomic data corresponding to 15 data sets ranging from 6.7 to

509 million reads in size (Fig. 7A; Supplemental Fig. S3). In fast

mode, processing times ranged from 11 min to nearly 5 h and

were linearly proportional to the number of reads (R2 = 0.9742)

(Fig. 7A, inset) , while in comprehensive mode, SURPI took 59 min

to 16 h (R2 = 0.4473) (Fig. 7A, inset). Overall, SURPI in fast mode

was ;5.33 faster than in comprehensive mode, running at 18,700

versus 3500 reads/sec, respectively, but a greater proportion of

reads were classified by SURPI in comprehensive mode (Supple-

mental Fig. S3).

Unbiased NGS and SURPI analyses were applied in a clinical

setting to analyze an acute serum sample from a 20-yr-old female

patient presenting with 3 d of fever to 101.5°C, myalgias, and

headache (Fig. 7B). The patient had just returned from hiking in

Figure 7. Speed of SURPI and feasibility for real-time clinical analysis. (A) Timing performance for SURPI in fast mode (red) and comprehensive mode
(blue) was benchmarked on a single computational server across 12 NGS data sets representing a variety of infectious diseases and sample types.
Processing end-to-end-times are plotted against the number of reads (inset), along with regression trend lines corresponding to SURPI processing in fast
and comprehensive modes. (B) A serum sample from a returning traveler with an acute febrile illness was analyzed using NGS, resulting in SURPI detection
of human herpesvirus 7 (HHV-7) infection (inset, coverage plot) in a clinically relevant 48-h timeframe.
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a region of Australia endemic for the mosquito-borne Ross River

and Barmah Forest alphaviruses (Knope et al. 2013). Within a 48-h

sample-to-answer turnaround time and 13 min SURPI analysis

time, sequences spanning the genome of human herpesvirus 7

(HHV-7) were detected. As no other pathogens were identified

in patient sera and acute antibody IgG/IgM titers for HHV-7 were

negative, the NGS results and subsequent confirmatory PCR sup-

ported a diagnosis of primary HHV-7 infection (Ward et al. 2002).

The patient recovered spontaneously without any complications.

Discussion
Rapid improvements in NGS technology and widespread avail-

ability have sparked increased demand in clinical and public

health settings. The MiSeqDX instrument has recently become the

first next-generation sequencer approved by the FDA (Collins and

Hamburg 2013), opening the door for routine implementation of

NGS-based assays in the clinical laboratory. The speed of SURPI

makes the pipeline well-suited for real-time clinical applications

such as infectious disease diagnosis and outbreak response. In fast

mode, end-to-end processing times for 7�50 million reads are

;10�30 min and reliably proportional to the size of the NGS data

set (Fig. 7A), while in comprehensive mode, all potential pathogens

(viruses, bacteria, fungi, and parasites) as well as novel emerging

viruses with high sequence divergence can be identified in ;1�5 h.

SURPI also includes an option to use the entire NCBI nonredundant

protein collection (NCBI nr DB) for the protein alignment step (Fig.

1; Supplemental Fig. S4). In addition, SURPI can efficiently handle

NGS data generated from complex metagenomic samples such as

stool and respiratory secretions, which are exposed to the envi-

ronment and contain a large proportion of non-host sequences. For

example, PathSeq (Kostic et al. 2011) takes >7 d to identify all

pathogens in a 150-million-read stool data set, whereas SURPI in

comprehensive mode only uses 16 h of processing time (Supple-

mental Results; Supplemental Table S1). The pipeline also has the

capacity to incorporate new reference databases as needed and

permits potential quantitative or semiquantitative assessments of

pathogen titer by retention of duplicate reads during SNAP analysis

(Fig. 5A). Finally, SURPI combines de Bruijin and OLC de novo as-

sembly methods in a two-tiered approach to generate longer contigs

for identification of divergent viral sequences (Supplemental Table

S22).

To our knowledge, SURPI is the only NGS pipeline for path-

ogen identification to be extensively tested across multiple clinical

sample types representing a variety of infectious diseases (Figs. 5–

7). SURPI runs as a single Linux script and configuration file and is

available via direct download or as a self-deployable cloud com-

puting instance. In particular, the speed and throughput of the

pipeline make it highly convenient and cost-effective when run on

a cloud server (Supplemental Table S1). In addition to maintaining

the software, we are currently implementing further improve-

ments to SURPI including development of a user-friendly graphical

interface. SURPI analysis is also being incorporated as part of an

ongoing effort to validate unbiased NGS assays for pathogen di-

agnosis in a CLIA (Clinical Laboratory Improvement Amend-

ments)-certified laboratory. This will require constructing accurate,

well-annotated reference databases and validating thresholds for

the number and distribution of reads mapping to the genome to

determine whether low-level detection of a known pathogen is

clinically significant.

There is heightened awareness of the threat from both

emerging and re-emerging infectious diseases and the need for

enhanced surveillance to avert pandemics (Morse et al. 2012). In

this study, SURPI accurately detected viral pathogens of realized or

potential outbreak importance in clinical NGS data sets, including

influenza A(H1N1)pdm09, TMAdV, BASV, and Sin Nombre han-

tavirus. At the same time, there is an urgent need for the imple-

mentation of rapid, highly multiplexed assays for infectious dis-

ease diagnosis in the microbiology laboratory. SURPI was used here

to prospectively identify, in <13 min of NGS analysis time, HHV-7

infection in a returning traveler with fever. Although the negative

acute IgG/IgM serologies are suggestive, we were unable to de-

finitively establish whether this case represented primary infection

or reactivation of HHV-7, given that convalescent sera was not

available. However, NGS data from the same run was also analyzed

using SURPI for actionable diagnosis of neuroleptospirosis in an

immunocompromised child with a life-threatening meningoen-

cephalitis, which dramatically impacted his treatment and resul-

ted in a clinically favorable outcome (Wilson et al. 2014). Although

many technical and regulatory challenges remain (Dunne et al.

2012; Gargis et al. 2012), bioinformatics analysis is no longer the

weak link when deploying NGS as a clinical diagnostic tool for

infectious diseases.

Methods

Clinical NGS data sets
Details regarding clinical samples, approved research protocols for
sample collection, and NGS library construction are provided in
the Supplemental Methods.

Hardware

Minimum hardware requirements for running SURPI include
a multicore server running Ubuntu 12.04 (preferred) with at least
60 GB of RAM. SURPI and its software dependencies require ;1 GB
of disk space. Reference data requires ;1 TB of disk space. During
SURPI runtime, up to 103 the size of the input FASTQ file may be
needed as additional temporary storage. The specific hardware
used here for SURPI testing and benchmarking are provided in the
Supplemental Methods.

Custom modifications to the SNAP nucleotide aligner

SNAP is a new, hash-based nucleotide aligner developed for map-
ping of NGS data to reference genomes across a wide range of read
lengths (50–10,000 bp) (Zaharia et al. 2011). Available at http://
snap.cs.berkeley.edu, SNAP runs 10–1003 faster than existing
tools while maintaining comparable or higher accuracy (Fig. 1C).
The aligner partially derives its speed from loading the entire
indexed reference database into RAM. Since SNAP was originally
designed only for human genome (hg19) mapping, we generated
a custom build tailored for alignment to different reference data-
bases containing thousands of similar and/or overlapping se-
quences, such as bacterial RefSeq (Pruitt et al. 2007). This modified
SNAP build (v0.15) included options to improve alignment speed
and efficiency by stopping at the first hit (‘‘-f’’ parameter) and
retaining hits that mapped to multiple locations (‘‘-x’’ parameter).
All of the SNAP alignments used by SURPI incorporate these two
additional parameters.

Reference databases

A description of how the reference databases used by SURPI were
generated is given in the Supplemental Methods.
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ROC curve analysis of in silico-generated query data sets

ROC curve analysis (Zweig and Campbell 1993) was used to eval-
uate the ability of the various nucleotide aligners (SNAP, BWA, BT2,
and BLASTn) to correctly classify a given set of in silico NGS reads
when mapped against the human DB, bacterial DB, or viral nu-
cleotide DB (Fig. 2A–E). Similarly, ROC curve analysis was used to
compare RAPSearch and BLASTx performance when mapping
translated nucleotide reads to the viral protein DB (Fig. 2F). Details
on the construction of the in silico query nucleotide data sets and
range of parameters used for the ROC curve analysis (Supplemental
Fig. S4) are provided in the Supplemental Methods. The gold
standard criterion used for a correctly classified read to any given
database was that the in silico read had originated from that da-
tabase. To generate the ROC curves, the true positive rate [TPR =

TP/(TP + FN)], or sensitivity, was plotted against the false positive
rate [FPR = FP/(FP + TN)], or 1-specificity. Youden’s index and the F1

score (harmonic mean) were applied as independent criteria to
select an optimal cutoff point of diagnostic accuracy for the ROC
curve (Akobeng 2007). In all instances, the cutoff point identified
by Youden’s index and the F1 score were identical.

Speed benchmarking for aligners

Details of speed benchmarking for the various alignment algo-
rithms are provided in the Supplemental Methods.

ROC curve analysis of clinical query data sets

The ROC curve analysis used NGS data sets corresponding to a stool
sample from a child in Mexico with diarrhea (Yu et al. 2012), a nasal
swab sample from a patient with acute respiratory illness (Greninger
et al. 2010), and a serum sample from a patient in California with
hantavirus pulmonary syndrome (Nunez et al. 2014), harboring
RSV, influenza A(H1N1)pdm2009, and Sin Nombre virus, re-
spectively (Supplemental Methods). Seven million unique pre-
processed reads were selected from each data set, and human and
bacterial reads were removed prior to ROC curve analysis by SNAP
alignment to the human DB and bacterial DB, respectively, using
an edit distance of 12. The gold standard criterion for a correct viral
classification was BLASTn alignment against the target viral ge-
nome (obtained by Sanger sequencing) at an E-value cutoff of 10�8.

SURPI pipeline

The SURPI pipeline is comprised of a series of shell, Python, and
Perl scripts in Linux and incorporates several open-source tools,
including the SNAP and RAPSearch aligners. SURPI has a set of
fixed external software and database dependencies (Supplemental
Fig. S5) and user-defined custom parameters (Supplemental
Methods). The pipeline accepts a raw FASTQ file as input and
recognizes the presence of multiple barcodes used for indexing.
Paired-end reads are handled by concatenating the files corre-
sponding to the individual reads and their mate pairs into a single
file for streamlined analysis. The preprocessing step consists of
(1) trimming low-quality and adapter sequences using cutadapt
(Martin 2011), retaining reads of trimmed length >50 bp, (2) re-
moving low-complexity sequences using the DUST algorithm in
PRINSEQ (Schmieder and Edwards 2011), and (3) normalizing read
lengths for SNAP alignment by cropping reads of length >75 to 75
bp. In fast mode, SNAP alignments are first performed against the
human DB followed by separate alignments of the human back-
ground-subtracted reads to bacterial and viral nucleotide DBs,
whereas in comprehensive mode, the initial SNAP alignment against
the human database is followed by sequential alignments to 29

indexed nt subdatabases. Following SNAP alignment, matched
reads are taxonomically classified by lookup of matched
GI/accession numbers from the NCBI taxonomy database. The
taxonomic classification is then appended to the SAM (se-
quence alignment/map) file outputted by SNAP.

In comprehensive mode, the SURPI pipeline continues to the de
novo assembly step, which uses an empiric approach that is opti-
mized for NGS metagenomics data (Supplemental Material). Dupli-
cates at the level of cropped reads are first removed using Genome-
Tools (gt) SEQUNIQ (Gremme et al. 2013). The corresponding full-
length reads are then de-multiplexed by barcode and analyzed using
the Message Passing Interface (MPI)-based parallel version of the
AbySS de novo assembler (AbYSS 1.3.5 release) (Simpson et al. 2009).
Increased robustness of the de Brujin graph-based assembly is ob-
tained by running AbySS multiple times at a kmer size of 34, using
both the entire data set and individually partitioned sets of 100,000
reads as input. Output contig sequences of length greater than or
equal to the read length are then combined into a single file and
further analyzed using the OLC de novo assembler Minimo (Minimo
v1.6 release) (Treangen et al. 2011) at default parameters. Contigs are
retained if they are >1.753 the length of the original reads. Finally,
the full-length unmatched reads, along with the final assembled
contigs, are subjected to a protein homology search against the viral
protein DB using RAPSearch at an E-value cutoff of 10�1. A user-de-
fined option also allows for a protein homology search against the
NCBI nr DB. Retrieved taxonomic information and sequences in
FASTA format are appended to the RAPSearch output.

To generate coverage maps, reads classified by SURPI as viral
or bacterial are automatically mapped to the most likely reference
genome present as follows. For each discrete viral or bacterial ge-
nus, assigned NGS reads are directly mapped to all nucleotide ref-
erence sequences corresponding to that genus at the species, strain,
or substrain level using BLASTn at an E-value cutoff of 10�20. For
each genus, a coverage map of the reference sequence with the
highest percent coverage is generated, with priority given to ref-
erence sequences in the following order: (1) complete genomes; (2)
complete sequences; or (3) partial sequences/individual genes.

Detection of clinically relevant pathogens using SURPI

The output of the SURPI pipeline includes a list of all classified
reads annotated with their taxonomic assignment; a summary
table of read counts stratified by family, genus, species, and ac-
cession number (Supplemental Methods); and a series of coverage
maps for detected microbial genomes (Supplemental Fig. S2).
Coverage maps shown in Figure 5 were edited using Microsoft
Excel, as were pie charts derived from the summary tables (Sup-
plemental Tables S6–S21). Sequences corresponding to bacterio-
phages were grouped together in a single category.

Speed benchmarking for SURPI

End-to-end processing times for the SURPI pipeline (Fig. 7; Sup-
plemental Table S1) were measured using the elapsed wall-clock
time and included the following individually timed steps: (1)
preprocessing; (2) computational subtraction against the human
DB; (3) SNAP alignment to the bacterial DB (fast mode); (4) SNAP
alignment to the viral nucleotide DB (fast mode); (5) SNAP align-
ment to the complete NCBI nt DB (comprehensive mode); (6) de
novo contig assembly (comprehensive mode); (7) RAPSearch viral
protein homology search using translated nucleotide queries
(comprehensive mode); and (8) overhead time, including file conver-
sion, sequence retrieval, determination of read counts, and genera-
tion of summary tables and coverage maps. Processing time trend
lines and regression R2 values were generated using Microsoft Excel.
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Data access
The genome sequence of the human parechovirus 1 (HPeV-1)
strain described in this study has been deposited in GenBank
(http://www.ncbi.nlm.nih.gov/genbank/) as HPeV-1 isolate MX1
(KJ152442). NGS data used for SURPI analysis with potentially
identifiable human sequences removed have been submitted to
the NCBI Sequence Read Archive (SRA; http://www.ncbi.nlm.
nih.gov/sra) under accession number SRP035368. The SURPI
software and corresponding Amazon Elastic Compute Cloud (EC2)
Amazon Machine Image (AMI) are freely accessible at http://
chiulab.ucsf.edu/surpi. The source code for SURPI v1.0 is also
available as Supplemental Material.
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