Bridging the Gap Between Datasets and DataFrames

Download Slides

Apple leverages Apache Spark for processing large datasets to power key components of Apple’s production services. The majority of users rely on Spark SQL to benefit from state-of-the-art optimizations in Catalyst and Tungsten. As there are multiple APIs to interact with Spark SQL, users have to make a wise decision which one to pick. While DataFrames and SQL are widely used, they lack type safety so that the analysis errors will not be detected during the compile time such as invalid column names or types. Also, the ability to apply the same functional constructions as on RDDs is missing in DataFrames. Datasets expose a type-safe API and support for user-defined closures at the cost of performance.

This talk will explain cases when Spark SQL cannot optimize typed Datasets as much as it can optimize DataFrames. We will also present an effort to use bytecode analysis to convert user-defined closures into native Catalyst expressions. This helps Spark to avoid the expensive conversion between the internal format and JVM objects as well as to leverage more Catalyst optimizations. A consequence, we can bridge the gap in performance between Datasets and DataFrames, so that users do not have to sacrifice the benefits of Datasets for performance reasons.


Essayer Databricks
See More Spark + AI Summit in San Francisco 2019 Videos

« back
About Anton Okolnychyi

Anton is a Spark contributor and a Software Engineer at Apple. He has been dealing with the internals of Spark for the last 3 years. At Apple, Anton is working on an elastic, on-demand, secure, and fully managed Spark as a service. Prior to joining Apple, he optimized and extended a proprietary Spark distribution at SAP. Anton holds a Master's degree in Computer Science from RWTH Aachen University.

About DB Tsai

DB Tsai is an Apache Spark PMC / Committer and an open source and big data engineer at Apple. He implemented several algorithms including linear models with Elastici-Net (L1/L2) regularization using LBFGS/OWL-QN optimizers in Apache Spark. Prior to joining Apple, DB worked on Personalized Recommendation ML Algorithms at Netflix. DB was a Ph.D. candidate in Applied Physics at Stanford University. He holds a Master's degree in Electrical Engineering from Stanford.