MLflow Model Registry

One collaborative hub for all machine learning models

MLflow Model Registry is a collaborative hub where teams can share ML models, work together from experimentation to online testing and production, integrate with approval and governance workflows, and monitor ML deployments and their performance.

メリット

ONE COLLABORATIVE HUB

Facilitate the sharing of expertise and knowledge about building and deploying machine learning models by making models more discoverable, and providing collaborative features to jointly improve on common ML tasks.

FLEXIBLE CI/CD PIPELINES

Stay in control of machine learning models by either automatically transitioning a model into production based on predefined conditions, or manually controlling and validating lifecycle stage changes for your models from the experimentation phase to testing and production.

VISIBILITY AND GOVERNANCE

Large enterprises often have thousands of ML models in the experimentation, testing, and production phases at any point in time. The MLflow Model Registry provides full visibility and enables governance of each by keeping track of model history and managing who can approve changes.

機能

Central Repository: Register MLflow models with the MLflow Model Registry. A registered model has a unique name, version, stage, and other metadata.

Model Versioning: Automatically keep track of versions for registered models when updated.

モデルステージ: モデルのライフサイクルを表す「ステージング」や「本番」などのあらかじめ設定されたステージやカスタムステージが各モデルバージョンに割り当てられます。

モデルステージの移行:新しい登録イベントまたは変更を、ユーザー、変更、およびコメントといった追加のメタデータを自動的に記録するアクティビティとして記録します。

CI/CD ワークフローの統合:CI/CD パイプラインの一部として、ステージの移行、要求、レビュー、および変更を記録し、制御およびガバナンスを改善します。

Model Serving: Quickly serve machine learning models as RESTful APIs for online testing, dashboard updates, etc. on Databricks

無料お試し・その他のご相談を承っております


クイックスタートガイドへ