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Welcome to the R Developer’s Guide to Databricks, designed to assist R users and the system administrators 

who support them. For R users, our goals are twofold: first, to help you feel at home and make it clear how to 

do everything you normally do on Databricks. Second, to level up your skills and scale the work you’re doing 

with the power of the platform. For admins, we aim to provide best practice recommendations for secure and 

cost-effective infrastructure management, while still being mindful of the preferences of many R users.

The content of the guide is organized systematically. We’ll begin with the fundamental concepts and 

architecture of the Databricks Data Intelligence Platform, then bring those concepts to life by running R 

code in the Databricks workspace. Having gotten your hands dirty, we then go deep into how to set up your 

development environment — for the code editor in Databricks or IDEs like RStudio and VS Code, including a 

section on package management. At this point, you’ll be properly oriented to Databricks and ready to learn 

how to scale your R code through Apache Spark™ and Databricks Workflows. This guide concludes with an 

Advanced Topics section, with details on Shiny.

It isn’t our intention to replace Databricks documentation or rewrite the definitive book on R and Spark, so we’ll 

reference existing resources wherever possible.  

If you’re looking for answers to specific questions, check the FAQ or search the pages. If your questions aren’t 

answered, please raise an issue in GitHub.

Introduction 
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https://therinspark.com/


Databricks 
Fundamentals

Databricks is on a mission to democratize access to data and AI. We accomplish this through a strategy 

of developing open source technology alongside a world-class commercial data platform. This began with 

Apache Spark, the in-memory cluster computing engine born in the Hadoop big data era. Apache Spark 

is unifying in that it can process data at petabyte scale, with APIs in SQL, Python, R and Scala. It supports 

machine learning on large datasets with Spark, near real-time streaming data pipelines and graph analytics. 

Spark is fast, scalable, flexible and open source. 

Another pillar of the Databricks Data Intelligence Platform is Delta Lake, an open source storage framework 

that unifies the data warehousing and data lake worlds — Databricks pioneered the term “data lakehouse,” 

which is a portmanteau of these two terms. Delta Lake achieves unification by bringing capabilities that 

were traditionally only available in data warehouses to data lakes (e.g., ACID transactions). For the first 

time, structured data can now be managed alongside unstructured data with the same data quality and 

performance guarantees. Delta Lake is scalable too — it works extremely well with Apache Spark, so it reads 

and writes petabytes of data for breakfast.

MLflow is the third major open source project in the Databricks ecosystem, designed to help manage the 

entire machine learning model lifecycle. From model experimentation and selection to deployment and 

serving, MLflow helps individual data scientists stay organized while providing the essential governance 

framework for enterprise AI. Any arbitrary model can be managed in MLflow, and in this guide we’ll explain how 

to make the most of R models with MLflow.

The final fundamental technology of Databricks is Unity Catalog, which is now also open source. Unity Catalog 

is currently the only open catalog for data and AI, unifying the governance model for tables, arbitrary files, 

functions and machine learning models. It aids teams and organizations in classifying and discovering data 

and AI assets and is an essential component to the emerging category of data intelligence. Check out the 

historic moment that Databricks co-founder and CTO Matei Zaharia open-sourced Unity Catalog onstage at 

Data & AI Summit 2024!
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https://spark.apache.org/
https://en.wikipedia.org/wiki/Computer_cluster
https://en.wikipedia.org/wiki/Apache_Hadoop
https://delta.io/
https://www.databricks.com/glossary/data-warehouse
https://www.databricks.com/discover/data-lakes
https://www.cidrdb.org/cidr2021/papers/cidr2021_paper17.pdf
https://www.mlflow.org
https://www.unitycatalog.io/
https://docs.databricks.com/en/udf/unity-catalog.html
https://docs.databricks.com/en/machine-learning/manage-model-lifecycle/index.html
https://www.youtube.com/watch?v=EKlxztQZYrw&pp=ygUZb3BlbiBzb3VyY2UgdW5pdHkgY2F0YWxvZw%3D%3D


Each of the aforementioned technologies expand access to data and AI while simultaneously unifying 

the underlying open ecosystem. Apache Spark is the processing engine, Delta Lake the storage layer, MLflow 

helps get models into production and Unity Catalog governs across it all. The whole of these is greater than the 

sum of their parts, ensuring the right people get access to the right data and AI assets regardless of type or 

scale. This is what the Databricks Data Intelligence Platform is — open at its core, but far easier for admins to 

secure and data practitioners to use than if an organization attempted to do it themselves.

We’ve covered the basics so far, but if you want to learn more about data intelligence, start with the 

Databricks documentation. Now let’s turn our attention to how you interact with the Databricks Platform.

Databricks Data Intelligence Platform
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https://docs.databricks.com/en/introduction/index.html


Workspace developer experience
Log in to the Databricks workspace from a web browser, which is the place to access all of the features and 

capabilities of the Databricks Platform. 

In the workspace you’ll find the workspace file system, where files and notebooks are managed. Folders in 

the workspace file system can be linked to version control systems like GitHub, allowing you to check out 

branches or commit code back to remote repositories. The workspace file system is intended for files 

associated with a repository; we’ll talk about where to save files more generally later in this guide.
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https://docs.databricks.com/en/workspace/index.html
https://docs.databricks.com/en/files/workspace.html
https://docs.databricks.com/en/repos/index.html


When you want to develop and run some code, several types of all-purpose compute are available. These are 

accessed by opening the Compute page from the left nav in the workspace, or directly from an open file  

or notebook. With the exception of serverless compute (which does not currently support R), you can install 

nearly any R package, custom or otherwise, on Databricks (see Package Management). If you’re just running R 

code, then single node is the right choice. Think of single node as one virtual machine — a large desktop or 

workstation — where you get to choose the amount of RAM and CPU as needed. If you need to process larger 

amounts of data or do some sophisticated parallelized computations, Apache Spark clusters are the right 

choice. When you need to do some deep learning or generative AI, then GPU-enabled compute is the right 

choice. If you’d like to read more about the compute options or need some help making a decision, take a look 

at the compute configuration and computation management documentation.

Files and notebooks attached to all-purpose compute are able to read and write data in Unity Catalog 

(assuming you have permissions to do so). To explore Unity Catalog, open the Catalog page from the left nav or 

browse directly from the editor. Unity Catalog volumes are for storing any files (not tables) that aren’t part of 

a code repository. A volume should be the long-term home for most RDS files, CSVs, video or image data, etc. 

Production-grade machine learning models are registered in Unity Catalog, though getting this to work with R 

models can be tricky. Your Unity Catalog admins may have also set up Lakehouse Federation, enabling you to 

access other databases more easily from Databricks.  

Don’t forget about automation. Databricks Workflows is excellent for orchestrating and automating tasks, 

and it works well with R. Workflows can be scheduled to run on a regular basis or triggered ad hoc, which 

is especially useful if you have a long-running task to execute but don’t want to tie up your active R session. 

Running code on Databricks Workflows is also cheaper by default compared to all-purpose compute, making it 

a good way to maximize value. We believe this so strongly that we’ve included an entire section on the topic.
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https://docs.databricks.com/en/compute/index.html
https://docs.databricks.com/en/notebooks/notebook-ui.html#compute-resources-for-notebooks
https://docs.databricks.com/en/notebooks/notebook-ui.html#compute-resources-for-notebooks
https://docs.databricks.com/en/compute/configure.html#single-node-or-multi-node-compute
https://docs.databricks.com/en/getting-started/concepts.html#computation-management
https://docs.databricks.com/en/catalog-explorer/index.html
https://docs.databricks.com/en/notebooks/notebooks-code.html#browse-data
https://docs.databricks.com/en/sql/language-manual/sql-ref-volumes.html
https://docs.databricks.com/en/query-federation/index.html
https://docs.databricks.com/en/workflows/index.html
https://docs.google.com/document/d/1rrwe54ZNqFEf4-F8gAxjhp6d46o48oHhDxVX9EfIGAo/edit#heading=h.50z8ky9oc26h


Using Databricks with IDEs
The main difference between using the workspace directly and using IDEs is the need to use APIs to 

remotely interact with Databricks. In both cases you’ll connect and run code on Databricks compute 

resources, access data in Unity Catalog and automate with Databricks Workflows.

Note: Hosted RStudio on Databricks is deprecated, so we don’t recommend building your architecture 

around it. In addition, this feature requires disabling auto-termination, forcing organizations to choose 

between leaving resources on continuously or finding ways to back up their users’ work. For more 

details, see Guidance for working with IDEs.
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https://docs.databricks.com/en/sparkr/rstudio.html


There’s a rich set of R and Databricks dev tools to interact with Databricks interactively or programmatically 

from IDEs. For processing data with Apache Spark, you can choose to use Databricks Connect through 

sparklyr or the Databricks ODBC driver through the odbc R package. There are also two R packages from 

Databricks Labs — brickster and the R SDK — that wrap the Databricks REST API in R. These packages 

provide utilities for programmatically interacting with Databricks (e.g., creating and running workflows). For 

projects that may need to operate in multiple workspaces (e.g., in a CI/CD process), Databricks Asset Bundles 

works with the Databricks CLI to simplify code deployment. 

One notable change from the workspace developer experience diagram is the inclusion of Databricks SQL 

(DB SQL) warehouses. To understand SQL warehouses, it can be helpful to oversimplify and think of Databricks 

as “just another database.” In the same way that you install and configure an ODBC driver for SQL Server or 

Oracle, then run queries using the odbc and DBI R packages, so too can you install the Databricks ODBC driver 

and run queries against a DB SQL warehouse. In RStudio, the connections pane will display tables in Databricks, 

allowing you to browse data in Unity Catalog. The ODBC driver can connect to DB SQL or all-purpose compute, 

but we recommend using DB SQL for better performance and lower cost.

Later in this guide we take a deeper look at these dev tools, their capabilities and when to use which ones.  

For now, know that these are the means to have interactive development sessions with Databricks from  

your R console. 
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https://docs.databricks.com/en/dev-tools/databricks-connect/index.html
https://spark.posit.co/deployment/databricks-connect.html
https://docs.databricks.com/en/integrations/odbc/index.html
https://odbc.r-dbi.org/reference/databricks.html
https://github.com/databrickslabs/brickster
https://github.com/databrickslabs/databricks-sdk-r
https://docs.databricks.com/en/dev-tools/bundles/index.html
https://docs.google.com/document/d/1rrwe54ZNqFEf4-F8gAxjhp6d46o48oHhDxVX9EfIGAo/edit#bookmark=id.onhqrp5bohau
https://docs.databricks.com/en/compute/sql-warehouse/index.html
https://docs.databricks.com/en/compute/sql-warehouse/index.html
https://odbc.r-dbi.org/
https://dbi.r-dbi.org/


Hello Databricks: A worked example
At this point you should have a basic understanding of Databricks fundamentals and entry points to work with 

the Databricks Platform. It’s time to make these ideas more concrete and get your hands on the keyboard.

The following tutorial uses R to create an interactive visualization for planning a trip to National Parks in the 

U.S. Combine data from the National Parks Service API with weather forecasts from Open-Meteo.com to help 

make your decision. 

Along the way, you’ll learn how to use Databricks Notebooks, the workspace file system and Unity Catalog 

tables and volumes. By the end, you’ll have an automated Databricks workflow to check the latest conditions  

in the parks.
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https://www.nps.gov/subjects/developer/api-documentation.htm
https://open-meteo.com/en/docs


HOW TO IMPORT THE NATIONAL PARKS EXPLORER CODE

The source files for this tutorial can be found at https://github.com/RafiKurlansik/r-usr-guide. We recommend 

importing the Git repository using Git folders.

If for some reason you can’t use Git folders, then simply import the notebook and create a new file 

called get_weather_data.R and copy-paste the function into it.
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https://github.com/RafiKurlansik/r-usr-guide
https://docs.databricks.com/en/repos/git-operations-with-repos.html#clone-a-repo-connected-to-a-remote-git-repository
https://docs.databricks.com/en/notebooks/notebook-export-import.html#import-a-notebook
https://docs.databricks.com/en/files/workspace-basics.html#create-a-new-file
https://github.com/RafiKurlansik/r-usr-guide/blob/main/get_weather_data.R


AT TACH THE TUTORIAL NOTEBOOK TO PERSONAL COMPUTE

By default, all users should be able to create a small Personal Compute resource. After creating it, you 

can attach the R User Guide - Hello National Parks Explorer Notebook and start running code. Even if you 

have permissions to create other compute resources, the tutorial has been designed to work with Personal 

Compute so we recommend sticking with it.

WHAT IF I  PREFER USING IDES?

If you’re interested in a tutorial for using Databricks with an IDE, we recommend this one put together by the 

developers of sparklyr for Databricks Connect. We still highly encourage you to run through the tutorial in 

the workspace because it will make the concepts in this section much clearer and help you become a better 

Databricks developer.

Note: R is not supported on standard or serverless compute as of July 2024.
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https://www.databricks.com/blog/reduce-overhead-and-get-straight-work-personal-compute-databricks
https://docs.databricks.com/en/notebooks/notebook-ui.html#attach-a-notebook-to-a-cluster
https://docs.databricks.com/en/notebooks/run-notebook.html
https://spark.posit.co/deployment/databricks-connect.html
https://spark.posit.co/
https://docs.databricks.com/en/dev-tools/databricks-connect/index.html


The ingredients for a productive and joyful development environment include all of the quality-of-life features 

for writing code, as well as access to the right data and sufficient computing power to process it.  

Choosing an editor
From a code authoring perspective, working with an IDE or the Databricks editor is largely a matter of 

preference. If you love RStudio, Positron or VS Code, you’ll probably want to stick with them. On the other 

hand, if you prefer the convenience of a tight integration with the broader Databricks Data Intelligence 

Platform, or want access to all of its features, then the Databricks editor is the best choice.  

R users generally expect the polish of RStudio, and as the table below illustrates, the code editor  

in Databricks delivers a comparable set of features.

Setting 
Up Your 
Development 
Environment
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Feature IDEs Databricks editor with R

Code development 
and debugging

AI assistant / Ghost text Yes Yes

Syntax / Error highlighting Yes Yes

Code autocompletion Yes Yes

Debugger Yes No

Interactive console Yes Yes

Environment explorer Yes No

Quarto/R Markdown support Yes Limited

Visualization and data 
exploration

Integrated plot viewer Yes Yes

Data / Variable explorer Yes Yes

Collaboration and 
project management

Version control integration Yes Yes

Project import/export Yes Yes

Real-time co-editing and commenting No* Yes

Experiment tracking No Yes

Security and resource 
management

Scalability Limited by local 
hardware (CPU, RAM)*

Dynamic, scalable cloud 
resources

Setup and maintenance Manual Automated

Security User responsible** Built-in cloud security and 
compliance features

*In the case of Posit Workbench, which offers co-editing and can be deployed on scalable infrastructure, the experience is more 
similar to Databricks. **Posit Workbench provides built-in security and compliance via SSO, console auditing, access logs and 
credential management.

If you haven’t already done so, go ahead and read the workspace developer experience section and complete 

the National Parks Explorer tutorial. It’ll give you a concrete sense of what it’s like to work with R on Databricks.
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https://docs.databricks.com/en/notebooks/notebooks-code.html#get-coding-help-from-databricks-assistant
https://www.databricks.com/blog/2023/01/30/introducing-upgrades-databricks-notebooks-new-editor-python-formatting-and-more#:~:text=Syntax%20highlighting,-Having%20properly%20highlighted%20code%20makes
https://docs.databricks.com/en/notebooks/notebook-editor.html#autocomplete
https://docs.databricks.com/en/notebooks/debugger.html#use-the-databricks-interactive-debugger
https://docs.databricks.com/en/admin/clusters/web-terminal.html
https://docs.databricks.com/en/visualizations/visualization-types.html
https://docs.databricks.com/en/notebooks/notebooks-code.html#variable-explorer
https://docs.databricks.com/en/repos/index.html
https://docs.databricks.com/en/dev-tools/bundles/index.html
https://docs.databricks.com/en/notebooks/notebooks-collaborate.html
https://docs.databricks.com/en/mlflow/runs.html#view-runs
https://posit.co/blog/real-time-collaborative-editing-on-rstudio-cloud/
https://docs.posit.co/ide/server-pro/getting_started/installation/kubernetes_installation.html


Guidance for working with IDEs
If you prefer IDEs, it’s important to understand which integrations with Databricks are available today and how 

they affect development and reproducibility.

UNDERSTANDING REMOTE EXECUTION

New users often get tripped up and think that by default, setting up a connection to Databricks means that all 

of their code is now running on bigger, faster hardware. As mentioned previously, using IDEs with Databricks 

always entails a remote connection to the platform that is facilitated through some API or protocol. 

In other words, code always executes locally unless invoking REST APIs or Apache Spark Connect. This  

means that Databricks can only offer more compute power if you use those APIs. If this sounds confusing, 

think of connections to Databricks like database connections — you send your query to the database, and the 

database returns results back to you. The nuances of how this affects development depends on which API or 

toolkit you’re using to communicate with Databricks. These will be discussed in the toolkit section, but for now, 

just remember the key principle. 

Figure: Tools like Databricks Asset Bundles allow users to interact with Databricks from IDEs via remote execution
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INTERACTIVE VS.  BATCH EXECUTION

When working from an IDE, there are two modes by which you can execute code on Databricks: interactive 

and batch. Interactive execution is what most R users are familiar with — running a line of code from a cell in 

Quarto/R Markdown to the console and seeing the results instantly. Batch means the entire file you’re editing 

is executed, similar to “Run all” in a notebook. Regardless of which you prefer, the tools available to R users for 

remote execution support both modes.

REPRODUCIBILIT Y

Working from an IDE also has implications for reproducible code. As a managed service, Databricks offers 

preconfigured software environments called runtimes, each with specific versions of R and many popular R 

packages. If you’re working from a notebook, it’s simple to reproduce your results when moving to automation 

or deploying to production. Simply choose the same runtime version and your code will behave exactly the 

same as it did when you were first writing it.  

When working from an IDE, however, you’re now responsible for ensuring compatibility between the local 

version of R, any packages and the runtime that will be used in automation or production. For example,  

if you’re using the ODBC package with dbplyr and want to automate some scripts using Databricks Workflows, 

you’ll need to install and configure the ODBC driver along with any other R packages as part of the setup for 

your script. 

The release notes for each runtime contain the details you need to align local and remote environments, but 

if you want a more programmatic approach then tools like renv, the brickster package and the Databricks 

R SDK can be useful to help bridge this gap. Regardless of approach, when setting up your development 

environment we recommend being mindful of what your production environment looks like, then working 

backwards to align the two.

For more on this topic, see R development toolkit and Getting to production.
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https://docs.databricks.com/en/compute/index.html#databricks-runtime
https://dbplyr.tidyverse.org/
https://docs.databricks.com/en/release-notes/runtime/14.3lts.html#system-environment
https://rstudio.github.io/renv/articles/renv.html
https://github.com/databrickslabs/brickster


POSIT WORKBENCH 

Developed by Posit PBC, Posit Workbench is a professional data science platform for R and Python developers. 

Posit partnered closely with Databricks to enhance Posit Workbench, and it’s our recommended enterprise 

solution for working with RStudio and Databricks. Let’s briefly discuss the biggest enhancements.

First, a new OAuth integration eliminates the need for users to manage personal access tokens. Users sign 

in to their Databricks workspace from the Posit Workbench UI, and their credentials are passed through to 

RStudio and VS Code sessions. 

Not only is this far more secure than managing personal access tokens yourself, all of the R development 

toolkit packages come preconfigured and authenticated — you can start using them as soon as you sign in 

and launch a session. You can see these features and more in this live demo by Garrett Grolemund: Predicting 

Lending Rates with Databricks, tidymodels, and Posit Team.

Figure: Signing in to a Databricks 
workspace with Posit Workbench 
using managed credentials
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https://posit.co/products/enterprise/workbench/
https://posit.co/solutions/databricks/
https://docs.posit.co/ide/server-pro/user/posit-workbench/guide/databricks.html
https://docs.databricks.com/en/dev-tools/auth/pat.html
https://www.youtube.com/watch?v=qIzKJKcmh-s&list=PL9HYL-VRX0oR-3AgWbXtlfdr29626EjRJ&index=8
https://www.youtube.com/watch?v=qIzKJKcmh-s&list=PL9HYL-VRX0oR-3AgWbXtlfdr29626EjRJ&index=8


In addition, RStudio has a new Databricks pane that lets users browse and manage compute options in their 

workspace and then connect from the UI.

We believe users and administrators will love these features. To try it out, Posit offers a free trial.

Figure: Browsing and 
connecting to remote 
compute resources 
from the RStudio IDE 
with Posit Workbench

18T H E  R  D E V E L O P E R ’ S  G U I D E  T O  D A T A B R I C K S

https://spark.posit.co/deployment/databricks-connect.html#posit-workenchs-databricks-pane
https://posit.co/workbench-free-trial/


OTHER IDES

When working with open source versions of RStudio, the Databricks pane isn’t available, but the connections 

pane will still display tables in Unity Catalog when you make a connection with ODBC, Databricks Connect or 

the brickster package. 

The Databricks extension for VS Code is supported by Databricks and includes functionality for running 

code interactively or batch, connecting to compute, OAuth and more. In fact, the Databricks pane in Posit 

Workbench was largely inspired by the VS Code extension. The extension works well with Posit Workbench–

managed credentials and is available on OpenVSX and the VS Code Marketplace.

Positron is the latest data science–specific IDE developed by Posit. While still in public beta, it can be 

configured to use the Databricks extension for VS Code.
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https://spark.posit.co/deployment/databricks-connect.html#rstudios-connection-pane
https://spark.posit.co/deployment/databricks-connect.html#rstudios-connection-pane
https://docs.databricks.com/en/dev-tools/vscode-ext/index.html
https://docs.posit.co/ide/server-pro/user/vs-code/guide/recommended-settings-and-extensions.html#databricks
https://open-vsx.org/
https://marketplace.visualstudio.com/items?itemName=databricks.databricks
https://github.com/posit-dev/positron


Compute resources and data access
If you aren’t sure how much compute you need, or you’re an admin who wants to ensure access to data in 

Unity Catalog for your R users, this section will set you on the right path.

SELECTING THE RIGHT COMPUTE FOR THE JOB

A constraint of working on a laptop or single VM in the cloud is that the compute is inflexible — you’re stuck 

with the RAM and CPU available on your machine, and it can be difficult or impossible to swap for something 

more powerful. As discussed in the fundamentals section, Databricks completely eliminates these constraints 

by making it simple to configure and launch more powerful resources with a few clicks. Sometimes the variety 

of compute choices can be overwhelming, so let’s summarize the use case for each.

When it comes to processing capacity and cost, these are general rules of thumb to follow. In reality, the cost 

will depend on the exact task and the nature of the data you’re working with. The compute configuration and 

computation management documentation have more details.  

Use case Processing capacity Cost 

Single node Working locally in R on small or medium-sized datasets <50 GB $-$$

Apache Spark cluster Big data processing, parallelizing arbitrary R code TBs $-$$$

GPUs Deep learning, generative AI High GBs to TBs $$$

Serverless* Big data processing TBs $-$$$

*Serverless is not currently available with R.
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ENSURING ACCESS TO UNIT Y CATALOG

Not all configurations of compute resources on Databricks provide Unity Catalog access from R. To keep things 

simple, remember the following:

	■ Dedicated compute provides access to Unity Catalog from R in general. By default, dedicated compute 

is assigned to a single user, but a group of R users can be granted access to share the resource. Note 

that there are limitations.

	■ Standard compute provides access to Unity Catalog from R via Databricks Connect or ODBC.  These 

are typically remote connections to Databricks from an IDE or Shiny app, and in these cases multiple R 

users can share standard compute resources.

Assign cluster to group

Figure: In the assign to group mode, users only need to be a member of the group the cluster is assigned to; their 
permissions will be downscoped to match the group

21T H E  R  D E V E L O P E R ’ S  G U I D E  T O  D A T A B R I C K S

https://docs.databricks.com/en/compute/access-mode-limitations.html#fine-grained-access-control-limitations-for-unity-catalog-single-user-access-mode
https://docs.databricks.com/en/dev-tools/databricks-connect/index.html


Note for administrators: We highly recommend using compute policies to set up guardrails for 

resource creation. Policies can be assigned to groups of R users, enabling them to create Unity 

Catalog–compatible compute for themselves while still controlling cost. This blog walks you through 

what a sensible policy might look like for data science teams, and it can be easily modified to include 

what R users need to share resources and access Unity Catalog.

R development toolkit
These tools are generally used for programmatically interacting with Databricks from an IDE, but they work 

within the Databricks workspace too. Before we review them, let’s discuss authentication and the differences 

between officially supported tools and Databricks Labs projects.

AUTHENTICATION

To access Databricks remotely, you’ll need credentials in the form of an API token. Almost all of the official dev 

tools for Databricks support OAuth to establish a secure connection to your Databricks workspace. OAuth 

works by prompting you to sign in, then storing a short-lived token on your machine. While you work, the 

OAuth client will continually refresh your credentials behind the scenes. If you stop working, the credential 

expires and you’ll be prompted to sign in again the next time you use one of the dev tools.  

We highly recommend using OAuth instead of personal access tokens (PATs), which are generally long-

lived and easier to discover on your machine if you’re hacked. If you do use PATs, always use environment 

variables instead of putting credentials in code or plain text. Here’s a simple way to set the proper 

environment variables in RStudio with the usethis package.

1 usethis::edit_r_environ()
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Then, in your .renviron file, set the following variables.

Save the file, restart R, and you’re ready to authenticate with the Databricks REST APIs through the various dev 

tools. To read more about authentication with Databricks, read the official documentation.

OFFICIALLY SUPPORTED TOOLS VS.  DATABRICKS LABS PROJECTS

Officially supported tools are maintained by the Databricks Engineering team and are eligible for technical 

support. These include Databricks Connect, the ODBC driver, CLI and Databricks Asset Bundles. Databricks 

Labs projects are created and maintained by field engineers at Databricks to solve real customer challenges. 

Labs projects must meet certain standards for testing and maintenance, ensuring you don’t wind up using 

software that is buggy or abandoned. Databricks Labs projects are not officially supported or part of any SLA, 

but we encourage you to use Databricks Labs projects and share feedback through GitHub.

With these distinctions in mind, let’s discuss the dev tools themselves.

1 
2

DATABRICKS_HOST = https://my-workspace.cloud.databricks.com 
DATABRICKS_TOKEN = dapif9189unasdfuaod8f7o1f3n1l
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https://docs.databricks.com/en/dev-tools/auth/index.html#databricks-client-unified-authentication
https://github.com/databrickslabs
https://github.com/databrickslabs


DATABRICKS CONNECT AND THE odbc  PACK AGE

Starting with version 2.0, Databricks Connect allows you to access an Apache Spark cluster on Databricks 

remotely through a lightweight client library using the Spark Connect protocol. It supports a subset of Spark 

APIs, including DataFrames, SQL, machine learning and UDFs (user-defined functions). Databricks Connect 

is ideal for interactively exploring and transforming large datasets directly from your laptop, or creating 

interactive Spark-powered Shiny apps that operate independently from the Spark cluster.

You can learn more about the integration between Spark Connect and the sparklyr R package from the 

Databricks blog. The docs for sparklyr include details on how to use Databricks Connect, a tutorial and help 

for troubleshooting issues you might encounter. See this example of a Shiny app that uses sparklyr with 

Databricks Connect.  
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As mentioned in the Databricks Fundamentals section, the Databricks ODBC driver is a great choice for users 

that favor dbplyr or DBI and have experience working with database connections in R. As with Databricks 

Connect, the ODBC driver is a great way to give your Shiny app (or Quarto doc) a super-scalable and efficient 

back-end execution engine. Posit has added a special databricks() function to the odbc package, making it 

simple to create a connection to DB SQL warehouses or all-purpose compute. 

This guide will help you get set up from RStudio Desktop or Posit Workbench. Posit Workbench customers  

can install the latest Databricks drivers and leverage Workbench-managed user credentials out of the box.  

We don’t recommend using the Databricks JDBC driver with R due to comparatively poor performance and 

the risk of needing to spend time tinkering with rJava. 

Both Databricks Connect and ODBC drivers allow R users to interactively work with data in Databricks. 

Due to their ability to leverage standard compute from a remote R session, they represent a more 

cost-effective solution for large teams of R users or mixed R and Python users. However, both Databricks 

Connect and ODBC support only a subset of Spark APIs. Meaning, R code that doesn’t use sparklyr or the 

ODBC driver will execute on the same hardware as the active R session. (In the preceding figures, this would be 

the local machine, cloud VM or Posit Workbench.)
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DATABRICKS CLI  AND DATABRICKS ASSET BUNDLES

The Databricks CLI offers a comprehensive interface to the Databricks REST API and is essential for bash 

scripting automation. It’s easy to install and get started, though if you aren’t familiar with working from the 

terminal it can take a little getting used to. 

The CLI works seamlessly with Databricks Asset Bundles (DABs), a capability which allows users to describe 

their Databricks projects in YAML format, manage deployments and run them in batch mode within a 

Databricks workspace. These YAML projects can be checked into version control and templated, helping 

R users follow software engineering best practices. To get an idea of what DABs look like with R, see the 

automation chapter of this guide.

R users might not need DABs or the CLI for simple projects. For larger or business-critical projects, they offer 

a lot of value and we highly recommend learning how to use them. Deploying workflows with their various 

configurations during testing and continuous integration/continuous deployment (CI/CD) processes is painful 

without DABs and the CLI. Therefore, if you know you’re going to take a project to production eventually, 

it’s best to kick it off using DABs.

If working with YAML is new to you, we recommend reviewing the following resources:

	■ Introduction to DABs at Data & AI Summit

	■ Self-guided, clickable demo

	■ Dustin Vannoy’s introduction to DABs and advanced patterns 
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https://docs.databricks.com/en/dev-tools/cli/index.html
https://docs.databricks.com/en/dev-tools/cli/tutorial.html
https://docs.databricks.com/en/dev-tools/bundles/index.html
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brickster
brickster is the R package built for R developers 

by an R developer. It wraps Databricks REST APIs 

that are of greatest interest to R users such as 

Databricks Workflows, file system operations and 

cluster management. In addition, it includes a rich 

set of utility functions and integrations with  

RStudio to streamline development and generally 

increase fidelity between your IDE and Databricks. 

It’s well documented with vignettes for job 

automation and cluster management,  

and examples for each function. Whether you’re 

a rookie or a power user, if you’re working with 

Databricks from an IDE, you owe it to yourself  

to give brickster a test drive.  

Let’s spend some time reviewing the unique and 

immersive features in brickster.

Authentication
brickster supports the standard mechanisms for authenticating to a Databricks workspace and makes 

OAuth the default. This makes it simple to get started — after installing the package, use any of the  

functions and you’ll be prompted to sign in to Databricks. See this article for more details on getting 

connected with brickster.
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https://github.com/databrickslabs/brickster
https://databrickslabs.github.io/brickster/articles/managing-jobs.html
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Workspace browser
A logical place to start a session with brickster is to connect to your Databricks workspace with the  

open_workspace() function. This will display relevant workspace objects in the RStudio Connections Pane: 

Unity Catalog, file system, compute.

Among other things, this is very helpful for:

	■ Finding a table

	■ Getting a cluster ID

	■ Getting an MLflow Experiment or registered model ID

To close the connection, use close_workspace().
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REPL
For the most immersive developer experience, check out the db_repl() function in brickster. It creates a 

local REPL (read-eval-print loop) where every command executes remotely on Databricks in the language of 

your choice.   

There are some limitations with db_repl(), namely that results aren’t streamed back from Databricks 

compute, so installing packages or long-running computations won’t show any progress. 
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DATABRICKS R SDK

The databricks R package is a wrapper around the Databricks REST API, and it’s part of the larger ecosystem 

of Databricks SDKs that look the same, authenticate the same and work the same across Go, Python and Java. 

It provides an R interface for CRUD operations with various Databricks objects like folders, files and notebooks 

in the workspace, compute resources and workflows. The package has some nice features, like managing 

polling during long-running operations and pagination of large results.

Authentication is best handled by using Databricks CLI configuration profiles. If you’re working in Posit 

Workbench, authentication is managed for you when you sign in to your Databricks workspace.

If not using the CLI to authenticate, you can set the DATABRICKS_HOST and DATABRICKS_TOKEN environment 

variable in a .Renviron file.

Once you’ve set the host and token, install directly from GitHub via the remotes package and load it into your 

R session.

To work with any of the services in Databricks using the R SDK, the first step is to create  

a DatabricksClient()object.

1 
2
3

# Sample .Renviron file configured to authentication with the databricks package
DATABRICKS_HOST=https://my-workspace.cloud.databricks.com
auth_type=databricks-cli

1 
2
3

# Install and load R SDK
remotes::install_github("databrickslabs/databricks-sdk-r")
library(databricks)

1 client <- DatabricksClient()
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The client picks up credentials stored as environment variables or in Databricks CLI profiles, making it a 

prerequisite to using any of the other functions in the R SDK. To use it, you simply pass it as an argument to the 

function you’d like to call.

In this example we use the client to call jobsList(), returning a DataFrame of details for every single workflow 

accessible to us in the Databricks workspace. In general, the R SDK will return API responses as DataFrames, 

with some of the columns being nested DataFrames themselves (see settings and tags in this example).

We recommend using the R SDK if you need complete API coverage, but the typical R user might find 

brickster easier to use and better suited to their development needs.
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Package 
Management

Databricks supports a variety of options for installing and managing new, old and custom R packages. We’ll 

begin by providing examples of the basic approaches, then progress into more advanced options.

Installing packages
At the most basic level, R package installations can be notebook-scoped or cluster-scoped. Cluster-scoped 

packages are part of the cluster configuration itself, becoming installed automatically upon restart and 

available to anyone who uses the cluster. Notebook-scoped packages are installed via install.packages() 

and are only available to users of the notebook. This allows for multiple versions of the same package to be 

used on the same cluster through multiple notebooks.  

Regardless of which method you choose, packages will be available on each worker of the cluster. This is 

important when you want to perform user-defined functions (UDFs) with SparkR or sparklyr.

OLDER PACK AGE VERSIONS

The system environment for Databricks Runtime includes many popular R packages. These are typically the 

latest stable versions, but sometimes installing the latest version of a package can break your code. If you 

need to install an older version of a package, you have two options: the devtools package or a snapshot from 

Posit Public Package Manager.

From a notebook, you can use the devtools package.

1 
2

devtools::install_version("dplyr", version = "0.7.4", repos = "https://packagemanager.posit.co/
cran/__linux__/jammy/latest")
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To install an older package at the cluster scope, use a snapshot from Posit Public Package Manager (PPM). 

Posit archives CRAN (Comprehensive R Archive Network) packages on a regular basis, so packages pulled from 

a specific date will contain the version available at that time. You can access snapshots from the setup page 

in PPM. For version 0.7.4 of dplyr, you’d have to go back to the snapshot from 2017 and set that URL as the 

repository in the cluster UI:
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https://packagemanager.posit.co/client/#/repos/cran/setup
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CUSTOM PACK AGES

To install a custom package on Databricks, first build your package from the command line locally or using 

RStudio. Next, use the Databricks CLI to upload the file to a Unity Catalog volume:

Once you have the tar.gz file in a volume, you can install the package using install.packages().

If the package source is located on GitHub or other version control systems, the remotes package will install 

directly from the repository:

1 databricks fs cp /my_dir/custom_package.tar.gz /Volumes/my_dir

1 install.packages("/Volumes/my_dir/custom_package.tar.gz", type = "source", repos = NULL)

1 remotes::install_github("tidyverse/dplyr")
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https://kbroman.org/pkg_primer/pages/build.html
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SYSTEM DEPENDENCIES

Sometimes when installing a package, you might get an error message in your notebook or in the cluster UI 

that looks similar to this:

This is usually due to missing dependencies, which you can try to remedy by passing an additional argument 

to install.packages().

If you still see the non-zero exit status error, then you’re probably missing an OS-level  

(Ubuntu) dependency.  

For example, some visualization packages depend on GDAL, which isn’t bundled as part of Databricks Runtime. 

When installing packages that use GDAL, like sf, you may see the non-zero exit status error along with a 

message like gdal-config not found or not executable.  

In these cases, take the following steps.

1.	 Identify the system-level dependency by checking the stack trace 

2.	 Look up how to install the dependency in Ubuntu  

3.	 Use the web terminal to install the dependencies and troubleshoot the R package installation.  If you 

can’t use the web terminal, use %sh cells in Databricks Notebooks.

This will take some trial and error, but once you’ve figured out the right commands to install the R package with 

system dependencies, put the commands in an init script and add it to your compute configuration. This will 

ensure the package is installed properly on startup. Alternatively, you can run the commands in %sh cells.

1 Warning in i.p(...) : installation of package <package_name> had non-zero exit status

1 install.packages('packagename', dependencies = TRUE)
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“ . . . you will be fastest if you avoid doing the work in the first place.” 
— Dirk Eddelbuettel

You may have noticed that installing packages on the Databricks Platform can take a while. It could take 

minutes — or hours in extreme cases — to install the suite of packages your project requires. This is especially 

tedious if you need to do this every time a job runs, or each morning when your compute gets restarted. 

WHAT IS SLOWING YOU DOWN?

The default behavior of install.packages() is to download package binaries for your operating system, 

if available. If binaries are unavailable, R will instead download the package source files from CRAN in 

packageName.tar.gz format. Binaries can be installed into your library directly, while source files need to 

be compiled first. By default Databricks installs packages from CRAN, which does not provide precompiled 

binaries for Linux. Given that Databricks compute uses Linux and is ephemeral by default with no persistent 

storage, packages must be recompiled and installed upon restart, leading to longer installation times than 

Windows or Mac users may be accustomed to.

Posit Public Package Manager saves the day here, containing Linux binaries for all packages on CRAN. 

There’s a helpful wizard to get started. With this knowledge you can make installing R packages in Databricks 

significantly faster. As an added benefit, this approach also often limits the number of system dependencies 

required for package installation. There are multiple ways to solve this, each differing slightly, but 

fundamentally the same.

Faster package loads
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SET TING repos  WITHIN A NOTEBOOK

The quickest method is to follow the wizard and adjust the repos option:

This works well, but not all versions of Databricks Runtime use the same version of Ubuntu. It’s easier to detect 

the Ubuntu release code name dynamically:

In this example, system() is used to run the command to retrieve the release code name. The downside of this 

method is that it requires every notebook to adjust the repos and HTTPUserAgent options.

1
2
3
4
5
6
7

# Set the user agent string, otherwise pre-compiled binaries aren't used
# HTTPUserAgent is required when using R 3.6 or later
options(
 HTTPUserAgent = sprintf("R/%s R (%s)", getRversion(), paste(getRversion(), R.version["platform"], 
R.version["arch"], R.version["os"])),
  repos = "https://packagemanager.posit.co/cran/__linux__/jammy/latest"
)

1
2

3
4
5
6
7
8

# Get Ubuntu release version
release <- system("lsb_release -c --short", intern = TRUE)

# Include in repos string
options(
  HTTPUserAgent = sprintf("R/%s R (%s)", getRversion(), paste(getRversion(), R.version["platform"], 
R.version["arch"], R.version["os"])),
  repos = paste0("https://packagemanager.posit.co/cran/__linux__/", release, "/latest")
)
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ENVIRONMENT VARIABLES AND INIT SCRIPTS

Databricks compute resources allow specification of environment variables, and there is a specific variable — 

DATABRICKS_DEFAULT_R_REPOS — that can be set to adjust the default repository. 
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Unfortunately this isn’t as dynamic as the first option. You’ll still need to set HTTPUserAgent in Rprofile.site 

via an init script:

Note that due to how Databricks starts up the R shell for notebook sessions, it’s not straightforward to adjust 

the repos option in an init script alone. DATABRICKS_DEFAULT_R_REPOS is referenced as part of the startup 

process after Rprofile.site is executed and will override any earlier attempt to adjust repos. Therefore, 

you’ll need to use both the init script and the environment variable configuration.

1
2
3
4
5
6
7 
 
8

#!/bin/bash
# Append changes to Rprofile.site
cat <<EOF >> "/etc/R/Rprofile.site"
options(
  HTTPUserAgent = sprintf("R/%s R (%s)", getRversion(), paste(getRversion(), R.version["platform"], 
R.version["arch"], R.version["os"]))
)

EOF
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Persisting packages
Before going any further, evaluate whether faster package loads can solve any installation pain points.  

It’s an easier solution to set up and manage, but sometimes it’s preferable not to install at all and persist  

the packages required, similar to how you’d use R locally. To achieve the same functionality on Databricks,  

we have to understand where packages get installed on Databricks compute.

All examples in this section use Unity Catalog volumes. DBFS can be used, but we don’t recommend it.

.libPaths()  ON DATABRICKS

When installing packages with install.packages, by default they’ll be installed to the first element of 

.libPaths(), which returns the paths of “R library trees,” directories where R packages reside. When you  

load a package, it’ll be loaded from the first location it’s found, as dictated by .libPaths().

When working within a Databricks Notebook, .libPaths() will return six values by default. In order they are:

It’s important to understand that the order defines the default behavior, as it’s possible to add or remove 

values in .libPaths(). You’ll almost certainly be adding values, because there’s little reason to remove values.

Path Details

/local_disk0/.ephemeral_nfs/envs/rEnv-<session-id> The first location is always a notebook-specific 
directory. This is what allows each notebook session 
to have different libraries installed.

/databricks/spark/R/lib Only {SparkR} is found here

/local_disk0/.ephemeral_nfs/cluster_libraries/r Cluster libraries: You could also install packages 
here explicitly to share amongst all users (e.g., lib 
parameter of install.packages)

/usr/local/lib/R/site-library Packages built into Databricks Runtime

/usr/lib/R/site-library Empty

/usr/lib/R/library Base R packages
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PERSISTING A PACK AGE

When going down the route of persisting packages, to avoid making things messy, you should consider how 

they’re organized and managed long term. Some practices you can consider include:

	■ Maintaining directories of packages per project, team or user

	■ Ensuring directories are specific to an R version (and potentially even a Databricks Runtime version)

	■ Coupling the use of persistence with {renv}

The recommended approach is to first install the libraries you want to persist on a cluster via a notebook. For 

example, to persist {leaflet} to a volume:

At this point the package is persisted, but if you restart the cluster or detach and reattach and try to load 

{leaflet}, it will fail to load.

The last step is to adjust .libPaths() to include the volume path, appending it to the existing paths:

We recommend against making it the first value. See Adjusting .libPaths() to learn why.

1

2
3

4
5
6

install.packages("leaflet")

# determine where the package was installed
pkg_location <- find.package("leaflet")

# move package to volume
new_pkg_location <- "/Volumes/<catalog>/<schema>/<volume>/my_packages"
file.copy(from = pkg_location, to = new_pkg_location, recursive = TRUE)

1
2

# Adjust .libPaths, making new_pkg_location the first path
.libPaths(c(new_pkg_location, .libPaths()))
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ADJUSTING .libPaths()

Given that .libPaths() can return six values in a notebook, you might wonder if there’s a “best” position to 

add your new volume path to. We don’t recommend prepending .libPaths() with volume paths because 

packages will attempt to install to the first value and you can’t directly install packages to a volume path  

(due to volumes being cloud storage and not a true file system). This is why the example for persisting a 

package copies to a volume after installation. That leaves a couple other options for where to add your  

path to .libPaths().

A safe default is to add a path after the cluster libraries location (currently third). This will make it appear 

as if Databricks Runtime has been extended to include packages in the volume paths. Alternatively, you could 

add it after the first path and all users will still have the notebook-scoped package behavior by default. 

However, cluster libraries may not load if they appear in the earlier paths under a different version. It’ll be up  

to you to decide what works best for you.

An example of adjusting .libPaths() looks like:

1
2

volume_pkgs <- "/Volumes/<catalog>/<schema>/<volume>/my_packages"
.libPaths(new = append(.libPaths(), volume_pkgs, after = 3))
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Helpful functions
Here are some functions for copying packages and adjusting .libPaths() that may make your life easier.

1
2
3
4

5
6

copy_package <- function(name, destination) {
  package_loc <- find.package(name)
  file.copy(from = package_loc, to = destination, recursive = TRUE)
}

# e.g. move {ggplot2} to volume
copy_package("ggplot2", "/Volumes/<catalog>/<schema>/<volume>/my_packages")
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add_lib_paths <- function(path, after, version = FALSE) {
  # Check if R version-specific path is needed
  if (version) {
    rver <- getRversion()
    lib_path <- file.path(path, rver)
  } else {
    lib_path <- file.path(path)
  }

  # Ensure the directory exists, create if not
  if (!file.exists(lib_path)) {
    dir.create(lib_path, recursive = TRUE)
  }

  lib_path <- normalizePath(lib_path, "/")

  # Inform the user about the primary package path
  message("primary package path is now ", lib_path)

  # Update the library paths with the new path
  .libPaths(new = append(.libPaths(), lib_path, after = after))
  
  # Return the library path
  lib_path
}
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AVOIDING REPETITION

To avoid manually adjusting .libPaths() for every notebook, you can craft an init script or set environment 

variables, depending on the desired outcome.

Using an init script
This example init script appends to the existing Renviron.site file to ensure any settings defined as part of 

runtime are preserved. The last two lines of the script are setting R_LIBS_SITE and R_LIBS_USER. Changing 

these lines can give you granular control over order for anything after the first value of .libPaths(), as it’s 

injected when the notebook session starts.

Note: In practice this interferes with how Databricks sets up the environment. Validate any changes 

thoroughly before rolling out to users.
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#!/bin/bash

# Define the variable 'volume_pkgs' with a path to the volume where 'my_packages' is located.
# <catalog>, <schema>, and <volume> are placeholders that should be replaced with actual values.
volume_pkgs=/Volumes/<catalog>/<schema>/<volume>/my_packages

# Append the R_LIBS_USER variable to the /etc/R/Renviron.site file 
# This configures the R environment to include additional library paths for R packages.
cat <<EOF >> "/etc/R/Renviron.site"
R_LIBS_USER=%U:/databricks/spark/R/lib:/local_disk0/.ephemeral_nfs/cluster_libraries/r:$volume_pkgs
EOF

# The 'R_LIBS_USER' variable is set to include multiple directories for R libraries:
# - %U: User-specific library path.
# - /databricks/spark/R/lib: Path for Databricks Spark R libraries.
# - /local_disk0/.ephemeral_nfs/cluster_libraries/r: Path for cluster libraries.
# - $volume_pkgs: The path defined earlier for the 'my_packages' directory on the specified 
volume.
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Using environment variables

There are particular environment variables (R_LIBS, R_LIBS_USER, R_LIBS_SITE) that can be set to initialize 

the library search path (.libPaths()).

R_LIBS and R_LIBS_USER are defined as part of startup processes in Databricks Runtime and they’ll be 

overridden if you set them from the cluster UI. It’s easier to adjust them via an init script.

R_LIBS_SITE can be set via an environment variable but is referenced by /etc/R/Renviron.site  

and provides limited control over where the path will appear in the .libPaths() order. It’ll appear  

fifth, after the packages included in Databricks Runtime, unless you’re using an init script to alter  

/etc/R/Renviron.site directly.

Note: How Databricks Runtime defines and uses the R environment variables is something that may 

change and should be tested carefully, especially if upgrading runtime versions.
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Databricks can be used to write distributed computing applications with R in two senses: by using R packages 

that provide access to inherently distributed systems like Apache Spark and Delta Lake, or by distributing 

arbitrary R code across multiple CPUs and executing in parallel. We’ll start with the former in order to fully grasp 

the latter.

Learning to scale with Databricks
Up to this point, we’ve emphasized that nearly all of the work you do in R can be done on Databricks. Now, it’s 

time to take a step further into the Databricks ecosystem.

Apache Spark is the core engine of Databricks, and complementary open source projects like Delta Lake and 

Unity Catalog are designed to work together with it. We recommend using Apache Spark to perform most of 

your daily data processing tasks — feature engineering, ETL, exploratory data analysis — even if you’re working 

with small to medium datasets. There are a few good reasons for this:

	■ Scalability: If the volume of data changes, you won’t have to rewrite your code

	■ Migration: SQL and dplyr scripts are easily migrated to and from Spark

	■ Skill development: It’ll make you a better R developer

To this end, let’s begin with the two packages available for working with Spark in R: sparklyr and SparkR.

sparklyr  VS.  SparkR

R users find themselves in the unique position of having to choose between two APIs for Spark. We recommend 

sparklyr over SparkR due to its lower learning curve, better compatibility with Unity Catalog via Databricks 

Connect and Posit PBC’s stewardship over the package. SparkR will also be deprecated with SparkR 4.0, so any 

new code you write is better off being written with sparklyr.  However, if you have existing SparkR code and 

want to understand the differences between it and sparklyr, this section will be useful. 

Distributed 
Compute
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Stewardship
A key difference between the two packages lies in their origin and authorship. SparkR is the “official” package 

and is documented at spark.apache.org. Built by the Spark community and developers from Databricks, 

it looks and feels a lot like PySpark and adheres closely to the DataFrame API. For new R users, it’s less 

approachable than packages they might be used to.

On the other hand, sparklyr originated from Posit PBC and is largely maintained by them. Its documentation 

is also hosted by Posit at spark.posit.co Given its origin, sparklyr is tightly integrated into the tidyverse, 

especially dplyr.

API differences
To understand the differences between APIs, let’s read CSV files into Spark using both sparklyr and SparkR 

and compare the classes of each. In these examples we explicitly reference the package used for each 

function to avoid confusion.
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## Read airlines dataset from 2008
airlinesDF <- SparkR::read.df("/databricks-datasets/asa/airlines/2008.csv", 
                               source = "csv", 
                               inferSchema = "true", 
                               header = "true")

## Read airlines dataset from 2007
airlines_sdf <- sparklyr::spark_read_csv(sc, name = 'airlines', 
                                         path = "/databricks-datasets/asa/airlines/2007.csv")

## Check the class of each loaded dataset
cat(c("Class of SparkR object:\n", class(airlinesDF), "\n\n"))
cat(c("Class of sparklyr object:\n", class(airlines_sdf)))

# output:
> Class of SparkR object:
>   SparkDataFrame 
>
> Class of sparklyr object:
>  tbl_spark tbl_sql tbl_lazy tbl
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## Function from sparklyr on SparkR object
sparklyr::sdf_pivot(airlinesDF, DepDelay ~ UniqueCarrier)

# output:
> Error : Unable to retrieve a Spark DataFrame from object of class SparkDataFrame 

1
2

3
4
5
6

## Function from SparkR on sparklyr object
SparkR::arrange(sparklyAirlines, "DepDelay")

# output:
> Error in (function (classes, fdef, mtable)  : 
  unable to find an inherited method for function ‘arrange’ for signature ‘"tbl_spark", 
"character"

Two distinct classes
Notice that SparkR and sparklyr, when used to read data, create objects that are two distinct classes.  

Now watch what happens when we run a sparklyr command on a SparkDataFrame and a SparkR command 

on a tbl_spark.

Calling SparkR functions on sparklyr objects and vice versa doesn’t work. Why not?

It doesn’t work because sparklyr translates dplyr functions like arrange() into a SQL query plan that’s used 

by Spark’s SQL API. SparkR functions interact directly with the DataFrame API. This limits API interoperability 

and is one of the reasons why we don’t recommend using both packages in a single script.
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API interoperability
We recommend sticking with one package instead of mixing them in a code base. However, for the sake of 

learning, let’s discuss the one way in which SparkR and sparklyr can talk to each other: Spark SQL. Recall 

that when we loaded the airlines data from 2007 into a tbl_spark, we specified the table name airlines. 

This table is registered with Spark SQL and can be referenced using the sql() function from SparkR. Executing 

SQL queries this way will return a Spark DataFrame:

From here on out, all examples will use sparklyr.
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## Use SparkR to query the 'airlines' table loaded into SparkSQL through sparklyr
top10delaysDF <- SparkR::sql("SELECT 
                              UniqueCarrier, 
                              DepDelay, 
                              Origin 
                              FROM 
                              airlines 
                              WHERE 
                              DepDelay NOT LIKE 'NA' 
                              ORDER BY DepDelay 
                              DESC LIMIT 10")

## Check class of result
cat(c("Class of top10delaysDF: ", class(top10delaysDF), "\n\n"))

## Inspect the results
cat("Top 10 Airline Delays for 2007:\n")
head(top10delaysDF, 10)

# output:
> Class of top10delaysDF:  SparkDataFrame 
>
> Top 10 Airline Delays for 2007:
>    UniqueCarrier DepDelay Origin
> 1             NW      999    EWR
> 2             AA      999    RNO
> 3             AA      999    PHL
> 4             MQ      998    RST
> 5             9E      997    SWF
> 6             AA      996    DFW
> 7             NW      996    DEN
> 8             MQ      995    IND
> 9             MQ      994    SJT
> 10            AA      993    MSY
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USING dplyr  AND sparklyr

As mentioned previously, sparklyr is built adjacent to the broader tidyverse ecosystem, sharing a tight 

integration with dplyr. Most dplyr code is portable to sparklyr, though you need to understand a little bit of 

how the integration works to be productive. The following quick tutorial will help get you up to speed. See the 

official Databricks documentation for a longer version. 

First load sparklyr and dplyr, then connect to Spark.

Note: This section assumes you’re using sparklyr in the Databricks Workspace. If you’re using 

Databricks Connect to establish a remote connection with sparklyr, see this documentation  

and tutorial.

1
2

3
4

library(sparklyr)
library(dplyr)

## Connect to Spark
sc <- spark_connect(method = "databricks")
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# Download data
system("wget https://raw.githubusercontent.com/prust/wikipedia-movie-data/master/movies.json -P /
dbfs/tmp/", ignore.stderr = TRUE)

# Read into Spark
jsonDF <-  spark_read_json(sc,
                         name = 'jsonTable',
                         path = "dbfs:/tmp/movies.json")

## Take a look at our DF
head(jsonDF)

> # Source: spark<?> [?? x 4]
>   cast       genres     title                                 year
>   <list>     <list>     <chr>                                <dbl>
> 1 <list [0]> <list [0]> After Dark in Central Park            1900
> 2 <list [0]> <list [0]> Boarding School Girls' Pajama Parade  1900
> 3 <list [0]> <list [0]> Buffalo Bill's Wild West Parad        1900
> 4 <list [0]> <list [0]> Caught                                1900
> 5 <list [0]> <list [0]> Clowns Spinning Hats                  1900
> 6 <list [0]> <list [2]> Capture of Boer Battery by British    1900

Now download some JSON data and read it into a Spark DataFrame with sparklyr::spark_read_json().
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jsonDF |> group_by(year) |>
 count() |>
 arrange(desc(n))

> # Source:     spark<?> [?? x 2]
> # Groups:     year
> # Ordered by: desc(n)
>     year     n
>    <dbl> <dbl>
>  1  1919   634
>  2  1925   572
>  3  1936   504
>  4  1926   491
>  5  1924   480
>  6  1937   473
>  7  1943   465
>  8  1944   456
>  9  1935   446
> 10  1950   443
> # ℹ more rows

In this example, jsonDF is a Spark DataFrame, but the code would work just as well if it were an R DataFrame. 
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sparklyr::sdf_sql(sc, 
"SELECT year, COUNT(*) AS n 
FROM jsonTable
GROUP BY year
ORDER BY n DESC"
)

SparkR::sql("SELECT year, COUNT(*) AS n 
FROM jsonTable
GROUP BY year
ORDER BY n DESC"
)

SQL translation
This magic is possible because sparklyr uses SQL translation with dplyr to pass SQL statements to Spark. 

This can be expressed in SQL directly using sparklyr::sdf_sql() or SparkR::sql().
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If you have dplyr code and want to convert it to SQL, use dbplyr::sql_render() at the end of your 

command chain.

The query can then be directly passed to sparklyr::sdf_sql() and SparkR::sql().

Using dplyr::mutate()
When you want to mutate data with sparklyr, you’ll need to use Hive UDFs. Here’s an example where we 

might normally use lubridate, but instead use Hive UDFs.
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query <- dbplyr::sql_render(
	 jsonDF |> 
group_by(year) |>
	 count() |>
arrange(desc(n))
) 

print(query)

> <SQL> SELECT `year̀ , COUNT(*) AS `ǹ
> FROM `jsonTablè
> GROUP BY `year̀
> ORDER BY `ǹ  DESC
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withDate <- jsonDF |>
              mutate(today = current_timestamp())

head(withDate)

> # Source: spark<?> [?? x 5]
>   cast       genres     title                           year today              
>   <list>     <list>     <chr>                          <dbl> <dttm>             
> 1 <list [0]> <list [0]> After Dark in Central Park      1900 2024-07-17 17:19:09
> 2 <list [0]> <list [0]> Boarding School Girls' Pajama…  1900 2024-07-17 17:19:09
> 3 <list [0]> <list [0]> Buffalo Bill's Wild West Parad  1900 2024-07-17 17:19:09
> 4 <list [0]> <list [0]> Caught                          1900 2024-07-17 17:19:09
> 5 <list [0]> <list [0]> Clowns Spinning Hats            1900 2024-07-17 17:19:09
> 6 <list [0]> <list [2]> Capture of Boer Battery by Br…  1900 2024-07-17 17:19:09
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PRIMER FOR DELTA LAKE IN R

Delta Lake is arguably the technology that made lakehouse architecture possible. Use Delta Lake to manage 

the tables that you’re working with in Databricks — for reads and writes, as well as updates, merges and 

deletes. When working with Delta Lake, you can always use SQL strings with sparklyr::sdf_sql(), but we’ll 

show examples with dplyr, dbplyr and sparklyr where we can.

Writes
By default, tables written to Unity Catalog in Databricks will be in Delta Lake format.  

With spark_write_table():

Here we set mode to “overwrite”. If you want to append new rows, switch it to “append”.

Reads
To read data from Unity Catalog, use dplyr::tbl() and dbplyr::in_catalog():

1
2
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6

# Using the jsonDF from the previous section
sparklyr::spark_write_table( 
  x = jsonDF, 
  name = "main.default.json_movie_table", 
  mode = "overwrite"
) 

1 new_jsonDF <- dplyr::tbl(sc, dbplyr::in_catalog("main", "default", "json_movie_table")
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Updates, merges and deletes
To make changes to existing tables, use sparklyr::sdf_sql():
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# Updates
sparklyr::sdf_sql(
	 "UPDATE main.default.json_movie_table SET year = 2000 WHERE title = 'After Dark in Central 
Park'"
)

# Merges
merge_df <- data.frame(title = c('Dune', 'Bespoke'), # data to merge
			      year = c(1967, 1900)) 
sdf_copy_to(sc, merge_df, name = 'merge_table")      # create temporary view in Spark SQL

sparklyr::sdf_sql(
	 "MERGE INTO main.default.json_movie_table j
	 USING merge_table as m
on d.year = m.year
	 WHEN MATCHED THEN
  UPDATE SET * 
WHEN NOT MATCHED
  THEN INSERT *"
)

# Deletes
sparklyr::sdf_sql(
	 "DELETE FROM main.default.json_movie_table WHERE year = 1900"
)
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Parallelizing arbitrary R code
One of R’s greatest strengths is its ecosystem of over 20,000 open source packages, making the odds of 

finding a package to solve a specific problem good compared to other languages used in data science.  

A weakness, however, is R’s scalability. Because R is single threaded by default and somewhat of a memory 

hog if you aren’t careful, many R users seek ways to scale their code. 

SCALING UP VS.  OUT

What do R users do when their laptop processes a DataFrame in R too slowly or data won’t fit in memory? 

Perhaps they downsample data or turn to packages like doParallel or furrr to parallelize R processes with 

the cores on their machine. If this fails, they might think of vertical scaling (scaling up) — getting a bigger 

machine with more cores and memory. This works to a point, but as data grows larger, this approach ultimately 

results in million dollar supercomputers. Good luck getting IT to provision one!  

An alternative approach is to scale out horizontally, distributing or partitioning a large dataset across a cluster 

of cheap, commodity hardware. This paradigm is known as cluster computing, and lucky for Databricks users, 

Apache Spark is an in-memory cluster computing engine. Not only does Spark have a SQL and DataFrame 

interface, it supports execution of user-defined functions (UDFs) at nearly unlimited scale. This makes Spark 

powerful and flexible enough to tackle nearly any high-performance computing (HPC) workload. 

USE CASES

What would you do if you could scale your R code indefinitely? You might tackle some very difficult 

embarrassingly parallel problems:

	■ Time series forecasting: The demand of thousands of consumer products, the price of stocks in an 

index, the demand for electricity across nodes of a grid

	■ Simulation: Transportation schedules for fleets of vehicles or aircraft, stress testing portfolios, 

hypothesis testing in omics

	■ Hyperparameter optimization: Searching thousands of parameters in parallel to fit the best model

	■ Inference: Making billions of predictions with a model trained in R
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Parallelizing R can make the impossible become possible. One customer was allotted 80 cores on their HPC 

system to run a vaccine search job, but the R code would’ve taken nearly a year to execute. With Databricks, 

they were able to scale up to 2000 cores and optimize the number of writes to disk, getting the job to 

complete in 2–3 days. In another case, the Minnesota Twins were able to simulate 300 billion pitches in a 

matter of days, not months.

If you’re engaged in any kind of research, we strongly encourage you to consider what parallelism can make 

possible for you. If you aren’t sure which approach to take, continue reading about when to scale up and when 

to scale out, using the decision tree below to guide you.
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WHEN TO SCALE UP

If you already use R packages to parallelize your code and want access to more cores, or you just need more 

RAM, then scaling up with a larger single-node compute instance is a good place to start. 

Quick migration from HPC systems
Migrating HPC workloads to Databricks is fairly simple. Install your R packages, load your data and run your 

code. All the popular packages for parallelizing R will work on Databricks, and you can easily provision a large 

single-node instance with 100+ cores. (We guarantee this is easier to get IT to agree to than a supercomputer.) 

High-memory workloads
For problems that aren’t easily parallelized, sometimes you just need more memory. For example, using an 

R package to fit a model on a very large dataset — you need all observations, and you can’t split it up into a 

model per group. High-memory single-node compute instances can meet these requirements into the 10s of 

GBs, and some packages like data.table are optimized to work with large datasets.  

A major advantage of using Databricks to scale up this way is that you can increase parallelism without 

pausing to first learn Apache Spark. Bear in mind though that Databricks compute is ephemeral by design, 

making it quite different from other HPC environments. If your code involves a lot of writing and reading files 

to disk, you’ll need to update it to write to a Unity Catalog volume or copy the final files from disk to a volume. 

You’ll need to reinstall packages every time you restart the single-node compute, forcing you to think more 

carefully about reproducibility.
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WHEN TO SCALE OUT

Making the switch from scaling up to scaling out involves becoming familiar with user-defined functions (UDFs). 

Before getting deep into UDFs, here are the scenarios when scaling out is better than scaling up.

Long-running jobs
Losing your work due to errors or machines going down is one of the worst things that can happen with a long-

running job. Apache Spark is fault tolerant by design — if a node goes down, another will take its place without 

interrupting or stopping the program. For very long-running applications it may make sense to build some 

checkpointing into it, but in general Spark will save you from the frustration of losing work.

Speeding up
If your job works but is bottlenecked by the number of cores available, switch to Spark. Spark can scale cores 

linearly by adding more nodes to the cluster. This lets you dial in the trade-off between execution speed, cost 

and time. If you want or need to reduce the execution time of your code by an order of magnitude or two, 

Spark will probably get you there. Of course, if a job is going to take a very long time, you may want  

to consider Spark anyway for its fault tolerance.

Bigger data
This is the obvious one. There’s a limit to how much data R can comfortably process on a single machine, 

even when using data.table and parallelism. If you’re working with 10s of GBs or consistently facing out-of-

memory (OOM) errors, then it’s time to switch to Spark. Spark will partition your data across multiple nodes 

and scale linearly into terabytes before you need to start being careful with what you’re doing.
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USER-DEFINED FUNCTIONS

Both SparkR and sparklyr support user-defined functions (UDFs) in R which allow you to scale out arbitrary R 

code across a cluster. 

How do these functions work? The R process on the driver has to communicate with R processes on the 

worker nodes through a series of serialize/deserialize (ser/de) operations through the Java virtual machines 

(JVMs). To facilitate the performance of ser/de operations, Apache Arrow has been integrated with Spark and 

R. Arrow is widely used in the data and AI ecosystem these days, and it plays a critical role in making UDFs 

work well. We therefore highly recommend loading the arrow R package as part of any UDF work you plan on 

doing. With that being said, let’s walk through the steps required to run arbitrary R code across a cluster.  
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There are a few important things to keep in mind with this control flow. 

	■ There’s overhead related to creating the R process and ser/de operations in each worker — UDFs will 

never be as fast as regular Spark code

	■ R processes on worker nodes are ephemeral. When the function being applied finishes execution, the 

process is shut down and all state is lost.

	■ As a result, you have to pass any contextual data and libraries along with your function to each worker 

to execute as expected

Since everything required for your UDF needs to be passed along with it, use notebook or cluster-scoped 

packages to ensure any dependencies for the UDF are available on each worker. This saves you time and gives 

you two options to reference a package within a UDF:

	■ Load the entire library — library(broom)

	■ Reference a specific function from the library namespace — broom::tidy()

Debugging UDFs can be hard enough, so we recommend using the second method to make it obvious which 

functions are being called at all times.

Distributed apply()
Between sparklyr and SparkR there are a number of options for how you can parallelize your R code, all of 

which are loosely modeled after the apply family of functions in R. An arbitrary R function can be applied to 

each group or each partition of a Spark DataFrame, or in the case of SparkR::spark.lapply(), to a list of 

elements in R. The following table summarizes all distributed apply functions.
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Package Function Applied to Input Output

sparklyr spark_apply partition or group tbl_spark tbl_spark

SparkR dapply partition Spark DataFrame Spark DataFrame

SparkR dapplyCollect partition Spark DataFrame R data.frame

SparkR gapply group Spark DataFrame Spark DataFrame

SparkR gapplyCollect group Spark DataFrame R data.frame

SparkR spark.lapply list element R list R list

spark_apply()
Since we recommend sparklyr in general, we recommend learning spark_apply(). That’s what we’ll focus on 

in the examples below. Sometimes you might want to use SparkR::spark.lapply() due to its unique inputs 

and outputs, but the rest of the UDFs in SparkR can be replicated exactly in sparklyr.

sparklyr::spark_apply() takes a tbl_spark as input and must return a tbl_spark. By default it will 

execute the function against each partition of the data, but passing a column name to the group by 

argument will instead execute each group. spark_apply() will also distribute all of the contents of your 

local .libPaths() to each worker when you call it for the first time unless you set the packages parameter 

to FALSE. On the Databricks Platform, we recommend installing packages ahead of time and setting this 

parameter to FALSE.

Note: To get the best performance, we recommend:

1.	 Specifying the schema of the expected output to spark_apply. If you don’t supply the schema, 

Spark will need to sample the output to infer it, which penalizes speed.

2.	 Loading the arrow package in R for better serialization/deserialization speed. It’s available as part  

of DBR 14.3.
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In the following examples we’ll train a model on each group of mtcars with a distinct cyl value. This will be 

a simple linear model with mpg the dependent variable and all other variables (except cyl) independent. 

Furthermore, we use the broom package, available in Databricks Runtime, to tidy up the output. The results will 

be a tbl_spark with different coefficients for each group.
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library(arrow)

# Connect to Spark
sc <- sparklyr::spark_connect(method  = "databricks")

# Push mtcars dataset to Spark
mtcars_sdf <- sparklyr::sdf_copy_to(sc, mtcars, overwrite = TRUE)

# Output schema
schema <- list(cyl = "double",
              term = "string",
              estimate = "double",
              std_error = "double",
              statistic = "double",
              p_value = "double")

## Fit a linear model on each group of data
results_sdf <- sparklyr::spark_apply(mtcars_sdf,
                                 group_by = "cyl",
                                 function(e){
                                   # 'e' is a data.frame containing all rows for each distinct 
cyl
                                   tidymod <- broom::tidy(lm(mpg ~ ., data = e[, -2]))
                                   tidymod
                                 },
                                  # Specify schema
                                  columns = schema,
                                  # Do not copy packages to each worker
                                  packages = FALSE)

df <- sparklyr::collect(results_sdf)
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DEBUGGING

Inevitably you’ll need to debug UDFs while you craft them. Follow these tips to make this as painless  

as possible.

Start small
It’s best to start by simply counting rows in each group or partition of data, making sure every row is flowing 

through the UDF. Then take a subset of input data and slowly introduce additional logic and the results that 

you return until you get a working prototype. Finally, slowly scale up the execution by adding more rows until 

you’ve submitted all of them.

Look at logs
When you hit errors, open up the logs. If the error is with Spark, you’ll see the stack trace in the notebook. If 

the error is with your R code inside the UDF, this may not be shown in the notebook. You’ll need to open up the 

Spark UI and check stderr from the worker logs to see the stack trace from the R process.

Monitor metrics
Once you have an error-free UDF, you can monitor the execution using compute metrics. These metrics 

contain detailed information on cluster utilization and can provide clues to where bottlenecks lie (e.g., 

indicating when CPUs are idle or swap memory is being used).

64T H E  R  D E V E L O P E R ’ S  G U I D E  T O  D A T A B R I C K S

https://docs.databricks.com/en/compute/clusters-manage.html#compute-driver-and-worker-logs
https://docs.databricks.com/en/compute/cluster-metrics.html
https://serverfault.com/questions/48486/what-is-swap-memory


Additional resources
By this point you should know enough to start working with Spark, Delta and R, including how to scale arbitrary 

R code up and out. However, we’re just scratching the surface. To continue your journey toward mastering 

Databricks, we recommend bookmarking and reading the following resources.

Spark and R
	■ The R in Spark — The definitive guide to R and Spark written by the authors of sparklyr

	■ sparklyr official documentation — A handy function reference with tutorials

	■ SparkR official documentation — An essential resource if you plan on using SparkR

	■ Collecting large results in sparklyr — Read this blog post to save yourself frustration

	■ Databricks Knowledge Base — Contains some useful troubleshooting tips

User-defined functions
	■ The R in Spark - Distributed R — The best resource for detailed information about how  

spark_apply works

	■ How the Minnesota Twins scaled pitch scenario analysis: Part I, Part II — A real-world use case with 

deep detail on debugging and overcoming bottlenecks with UDFs
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Databricks Workflows is a fully managed orchestration service that enables users to automate a variety of 

tasks in their Databricks workspace. A workflow may be composed of a single task or a complex set of tasks 

with dependencies. Workflows include monitoring and debugging capabilities and are used by thousands of 

Databricks customers for business-critical workloads. 

Automating with Databricks Workflows offers several compelling advantages for R users. 

1.	 By offloading long-running tasks, you can significantly boost productivity and continue working 

interactively without interruption 

2.	 Scheduling regular jobs for feature engineering, reporting or model training and inference keeps data 

products fresh and updated

3.	 You can run the same job with different parameters concurrently, optimizing resource utilization  

and scalability

4.	 Jobs compute is billed at a lower rate, making Databricks Workflows a more economical choice for 

extensive computations

For a more comprehensive look at Databricks Workflows, including best practices, we recommend reading 

Avnish Jain’s blog posts (part 1, part 2).

Automation
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Automating workflows from the UI

NOTEBOOKS VS.  R SCRIPTS

Workflows can be created in a Databricks workspace by navigating to the Workflows page, or when working in 

a notebook, clicking the Schedule button. This is fairly straightforward when your code is in a notebook, but 

what about scheduling an R script? There’s a Python script task type but no R script task type.  

To run an R script as a workflow, there are a few options. First, you can import the R script into the workspace 

and Databricks will automatically convert it to a single-cell notebook for you. If you’re using Git folders and 

want scripts in your repo to show up as notebooks in Databricks, then you’ll need to change the file extension 

to .r (not .R) and add # Databricks notebook source as a comment to the first line of the script.

If you don’t want to run your code as a notebook and prefer to run it as a .R file, then you’ll need to use the 

Spark Submit task type in Databricks Workflows. Note that Spark Submit has several limitations and won’t 

work with files in Git folders. 

Automating workflows programmatically

DEFINING DATABRICKS ASSET BUNDLES

For projects that are going to be deployed into production environments, or ones with complex multitask 

workflows, we recommend taking the time to define them as Databricks Asset Bundles (DABs). They’ll be much 

easier to maintain in the long run.  

The fields in a DAB map 1:1 to the Databricks REST API, and we recommend authoring them in an IDE that 

supports YAML language servers. These language servers provide syntax checks and autocomplete, which will 

save you lots of debugging time. A shortcut for creating the YAML is to configure the workflow in the UI, then 

copy the YAML and save it to a file.  
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You’ll still need to add the bundle name and targets to the YAML, but copy-pasting this way fills in the vast 

majority of the fields for you. The Databricks CLI can generate bundle configuration YAML from existing 

workflows too, with the databricks bundle generate command.
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If we were to take our National Parks Explorer tutorial and DAB-ify it, we’d put the following in a databricks.

yml file in the root directory of our project. This bundle configures a job named R User Guide - Hello 

National Parks Explorer to run every Thursday at 16:48:02 EST on a new cluster with Databricks Runtime 

14.3, with single-user data access mode and email notifications on failure.  
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bundle:
  name: national_parks_explorer
resources:
  jobs:
    R_User_Guide_Hello_National_Parks_Explorer:
      name: R User Guide - Hello National Parks Explorer
      email_notifications:
        on_failure:
          - rafi.kurlansik@databricks.com
      schedule:
        quartz_cron_expression: 2 48 16 ? * Thu
        timezone_id: America/New_York
      tasks:
        - task_key: R_User_Guide_-_Hello_National_Parks_Explorer
          notebook_task:
            notebook_path: /Users/rafi.kurlansik@databricks.com/r_user_guide_2024/R User
              Guide - Hello National Parks Explorer
            base_parameters:
              date: 2024-05-25
              state: NJ    
          new_cluster:
            spark_version: 14.3.x-scala2.12
            data_security_mode: SINGLE_USER
            num_workers: 8

targets:
  development:
    workspace:
      host: https://my-workspace.cloud.databricks.com
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1
2

databricks bundle deploy national_parks_explorer
databricks bundle run national_parks_explorer

1
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!/bin/bash
# create folder to upload script into
databricks workspace mkdirs /Shared/r-cli-demo/
# upload script to DBFS
databricks workspace import \
simple-plot.R \
/Shared/r-cli-demo/simple-plot \
--language 'R' \
--overwrite
# create job (notebook type)
databricks jobs create --json-file r-job.json --version 2.1

To deploy and run with the CLI, we execute the following two commands from the same root directory:

If you’re on the fence about using DABs and are considering using the CLI directly — don’t! It’s much more 

complex and brittle to chain together the necessary commands to deploy code and other assets this way. 

You’ll need to maintain your workflow configurations in a JSON file (which is arguably more difficult than YAML) 

and script all of the uploads and workspace object creation yourself. For example, imagine we have simple-

plot.R, an R script that plots the diamonds dataset. These are the commands to create a workflow for the 

script using the CLI.
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The interaction of the CLI with the workspace and 

JSON file can be visualized as follows. 

Using databricks bundle deploy and defining 

the complexity of your workflow in one or more 

YAML files is the simpler and recommended way to 

automate Databricks Workflows. Stick to using the 

CLI for file uploads, secret management and other 

lightweight, ad hoc tasks.

brickster

brickster provides full coverage of the Databricks Workflows REST APIs and includes a vignette on workflow 

management. Before working through the example below, see the R development toolkit section to learn how 

to get authenticated. Then follow these three steps to launch your first workflow with brickster.

1.	 Import your code into the Databricks workspace

2.	 Create a new workflow with a notebook task

3.	 Launch the workflow

Importing code to the workspace 
To get the best experience with Databricks Workflows, we recommend importing your R scripts into the 

Databricks workspace as a notebook. Let’s create a simple-notebook.r file with a basic analysis of the 

mtcars dataset using the tidyverse package. You could replace this with any other file you want to test with.
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First, install brickster.

Next, save some sample code to the local disk.
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# Install brickster
# With brickster
remotes::install_github("databrickslabs/brickster")
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# Save some R code to a local file
code <- "
library(tidyverse)

# Convert to tibble
mtcars_tb <- rownames_to_column(mtcars, var = 'car') %>% 
  as_tibble()

# Data wrangling
mtcars_final <- mtcars_tb %>% 
  filter(am == 1) %>% 
  select(car, mpg, cyl, wt, am) %>% 
  rename(cyclinder = cyl, 
         weight = wt,
         transmission = am) %>% 
  arrange(cyclinder, desc(mpg))

mtcars_final"

# Write .R file locally
temp_dir <- tempdir()
local_file <- file.path(temp_dir, "simple-notebook.r")
writeLines(text = code, con = local_file)
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Now specify the path to where you want this file to be in the Databricks workspace and use db_workspace_

import() to upload it. This will return an object ID.

Create a new workflow. 
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# import to workspace
workspace_nb_path <- "/Users/rafi.kurlansik@databricks.com/brickster_demo/mtcars_analysis"

library(brickster)

db_workspace_import(
  path = workspace_nb_path,
  file = local_file,
  format = "SOURCE",
  language = "R",
  overwrite = TRUE
)
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# define a job task
simple_task <- job_task(
  task_key = "mtcars_analysis",
  description = "wrangling mtcars dataset",
  
  # specify a cluster for the job
  new_cluster = new_cluster(
    spark_version = "14.3.x-scala2.12",
    driver_node_type_id = "i3.xlarge",
    node_type_id = "i3.xlarge",
    num_workers = 0,
    cloud_attr = aws_attributes(ebs_volume_size = 32)
  ),
  # this task will be a notebook
  task = notebook_task(notebook_path = workspace_nb_path)
)

# create job with simple task
simple_task_job <- db_jobs_create(
  name = "first Workflow with brickster",
  tasks = job_tasks(simple_task),
  # 9am every day, paused currently
  schedule = cron_schedule(
    quartz_cron_expression = "0 0 9 * * ?",
    pause_status = "PAUSED"
  )
)
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Run the workflow.

Your workflow should now be running. You can access the run URL in the Databricks workspace by digging into 

the run info.

DATABRICKS R SDK 

Before working through this example, see the R development toolkit section to learn how to get authenticated. 

Similar to brickster, you’ll launch a workflow in three steps:

1.	 Import your code into the Databricks workspace

2.	 Create a new workflow with a notebook task

3.	 Launch the workflow

Let’s work through the same steps as before, but this time using the Databricks R SDK.

Importing code to the workspace 
First, install the SDK.

1
2

# Kick off the job using the job ID
job_run <- db_jobs_run_now(job_id = simple_task_job$job_id)

1
2
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# Install and load R SDK
remotes::install_github("databrickslabs/databricks-sdk-r")
library(databricks)
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run_info <- db_jobs_runs_get(job_run$run_id)

run_url <- run_info$tasks[[1]]$run_page_url

print(run_url)
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Now save some code to the local disk.

Before you import simple-notebook.r, it needs to be base64 encoded. This is a single line of code using the 

base64enc package. 
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# Save some R code to a local file
code <- "
library(tidyverse)

# Convert to tibble
mtcars_tb <- rownames_to_column(mtcars, var = 'car') %>% 
  as_tibble()

# Data wrangling
mtcars_final <- mtcars_tb %>% 
  filter(am == 1) %>% 
  select(car, mpg, cyl, wt, am) %>% 
  rename(cyclinder = cyl, 
         weight = wt,
         transmission = am) %>% 
  arrange(cyclinder, desc(mpg))

mtcars_final"

# Write .R file locally
temp_dir <- tempdir()
local_file <- file.path(temp_dir, "simple-notebook.r")
writeLines(text = code, con = local_file)

1
2

library(base64enc)
my_r_file <- base64encode(base::charToRaw(readChar(path, file.info(path)$size)))
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To upload this file to the Databricks Platform, we’ll use workspaceImport() from the R SDK.

1
2

3
4
5
6
7
8
9

# Specify where we want to import to
path <- "/Users/rafi.kurlansik@databricks.com/r-sdk-demo/mtcars_analysis"

# Import the file as a notebook
workspaceImport(client, 
    path = path, 
    content = my_r_file, 
    format = "SOURCE", 
    language = "R", 
    overwrite = TRUE)

Creating the workflow
In the R SDK, new workflows are created using jobsCreate(). Tasks and their configurations are  

defined in a list (or list of lists), and we begin by defining a notebook task pointing to the code imported  

into the workspace.

1
2

3
4
5
6
7

# Specify the location of our notebook in the Workspace
path <- "/Users/rafi.kurlansik@databricks.com/r-sdk-demo/mtcars_analysis"

# Create notebook task
notebook_task <- list(
  notebook_path = path,
  source = "WORKSPACE"
)

To specify the compute resources for this simple R script, we set the number of workers to zero and 

choose an i3.xlarge node type. To browse available node types for your Databricks workspace, use 

clustersListNodeType() from the SDK. This command will return available types based on cloud (AWS, GCP, 

Azure) and region, including specs like total RAM and CPUs. Remember to pass values from the node_type_id 

column when working with parameters in the R SDK.
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1
2
3
4
5
6

# Compute configuration
single_node_config <- list(
  node_type_id = "i3.xlarge",
  num_workers = 0,
  spark_version = "14.2.x-cpu-ml-scala2.12"
)

Next, we declare any package dependencies for this workflow following the libraries data structure from the 

REST API. This data structure boils down to a list of lists that can be constructed simply using lapply:

1
2

3
4

5
6
7
8

# Vector of package names
packages <- c("tidyverse", "broom")

# Repository URL
repo_url <- "https://packagemanager.posit.co/cran/__linux__/focal/latest"

# Use lapply to create the nested list structure
package_list <- lapply(packages, function(pkg) {
  list(cran = list(package = pkg, repo = repo_url))
})

To create the workflow, combine the notebook task, compute config and package dependencies into — you 

guessed it — a list that we pass to jobsCreate().

1
2
3
4
5
6
7

8
9
10
11
12
13

# Putting it all together
mtcars_analysis_task <- list(
  notebook_task = notebook_task, # task type
  task_key = "mtcars_analysis",  # name of the task
  new_cluster = single_node,     # compute config
  libraries = package_list       # dependencies
)

# Create job
response <- jobsCreate(
  client,
  name = "my_first_workflow",
  tasks = mtcars_analysis_task
)
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Run this code and voilà, your workflow appears in the Databricks UI.

Launching the workflow
Triggering the newly created workflow is simple. Grab the job_id from the jobsCreate() API response and 

pass it to the jobsRunNow() function.

Checking results
The API response will include a run_id that can be passed to jobsGetRun(), which will return information 

about its status, including a URL to the Databricks Workflows UI for more details.

1

2

job_id <- response$job_id

run <- jobsRunNow(client = DatabricksClient(), job_id = job_id)

1

2

3

run_details <- jobsGetRun(client, run_id = run$run_id)

run_url <- run_details$url

print(run_url)
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Advanced 
Topics

Moving beyond the foundations of R on Databricks, this section will give you the insight and tools to be 

successful with more complex techniques.

Shiny 
Before we get into specifics about Shiny and the Databricks Platform, we highly recommend you review 

Mastering Shiny, the best resource for developing scalable and robust Shiny applications. This eBook presents 

all concepts with clear examples and covers the use of modules, testing and performance.

HOW SHINY WORKS ON DATABRICKS

On Databricks, Shiny apps are deployed via Databricks Notebooks. Assuming a deployed app, here is the 

high-level architecture.

Note: We recommend hosting Shiny apps on the Databricks Platform for lightweight, internal use cases 

that do not have high concurrency or public internet access requirements. In those cases, or if you 

have many Shiny apps and could use help managing them over time, we recommend Posit Connect as 

the best enterprise solution for Shiny (and other data apps).
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To run a Shiny app in a Databricks workspace
1.	 Import your Shiny code into Databricks. 

While you can run Shiny using files, the launching of Shiny (e.g., shiny::runApp()) must be triggered 

from a Databricks Notebook cell.  

2.	 Attach the notebook to Databricks compute and run it to launch the app. 

Launching this way generates a URL which can be shared with external users. Note that this URL is 

contingent on the specified cluster and port, so an alias would require a custom solution.

3.	 Use the single node with ODBC to DB SQL warehouse pattern instead of relying on a Spark-based 

connection like sparklyr or SparkR. 

For Shiny, we recommend this for the best performance, stability and access to Unity Catalog.

4.	 Users sign in to their Databricks workspace via SSO after following the URL. 

Any users of the Shiny app must have access to the notebook and be granted Can Attach permission  

to compute.  
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Running a Shiny application on the Databricks Platform is akin to operating it within a local RStudio session, 

as it doesn’t employ a dedicated Shiny server. Authentication for the application is managed through the 

Databricks workspace, necessitating that users possess Can Attach privileges to access it.

Integration is facilitated by the proximity of the Spark session, making it easy to incorporate Spark’s 

capabilities into the application. However, this setup is not intended for public hosting, and it includes a 

limitation with WebSocket time-outs, which typically occur at around 10 minutes.

HANDLING CONCURRENCY

Promises
To implement asynchronous programming in R, you can utilize the {promises} package. This package offers a 

vignette that provides guidance on how to incorporate asynchronous code effectively.

Transitioning an existing application to asynchronous operations can be a significant endeavor. It’s not as 

straightforward as simply enabling a feature; rather, it often involves extensive modifications across various 

layers of server code. For large and disorganized applications, it may be more practical to consider a complete 

rewrite rather than attempting to retrofit async functionality. This approach ensures better organization and 

integration of asynchronous principles throughout the application.

Background tasks and persistence
To enhance the power and flexibility of applications, the {brickster} package can be utilized to manage 

parameterized jobs in any language. Additionally, {callr} allows for the spawning of R threads or processes 

as needed, offering a potentially more straightforward approach compared to using {promises} for handling 

asynchronous operations.
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The architecture diagram illustrates how a Shiny application can use the {brickster} package to manage and 

execute long-running jobs within a Databricks environment.

1.	 All-purpose cluster: The Shiny application, along with a supporting notebook, is deployed within an 

all-purpose cluster. This setup allows the application to leverage the computational resources and data 

handling capabilities of the cluster.

2.	 Triggering jobs: When the Shiny application needs to start a job, it uses the db_jobs_run_now() 

function from {brickster} to trigger a job run with specific parameters. This function communicates 

with the Databricks job API (jobs/run-now) to initiate the job.

3.	 Managing jobs: The jobs are managed and monitored through a sequence of runs, identified by unique 

run IDs (Run 00001, Run 00002, etc.). The history and status of these runs can be queried using the 

db_jobs_runs_list() function, which interacts with the jobs/runs/list endpoint to provide a list of 

all job runs.

4.	 Executing notebooks: The long-running job is defined within a notebook, which extracts the  

necessary parameters and executes the job. This notebook is part of the job definition and is crucial  

for the job’s execution.
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5.	 Data persistence: Upon completion, the results of the job are persisted in Delta Lake. Delta Lake 

provides a robust and scalable storage solution for large data outputs. The notebook handling the job 

ensures that the results are written back to this storage system.

6.	 Result retrieval: The Shiny application can fetch the results from Delta Lake via Spark, enabling efficient 

data retrieval and integration within the application interface.

When do to what?
Here are some questions you should ask yourself about the app you’re building.

Question If yes, consider using . . . 

Are there operations which take a long time? More than 30 seconds? Use background tasks or {brickster}  
to run a Databricks job and persist results.

Under 30 seconds? Use {promises}.

Do I need to manage state over time? Persisting results or metadata in Unity Catalog via ODBC,  
Spark or Volumes

Are there components of my application that are  
reused together often (e.g., many plots with same/similar 
reactive inputs)?

Modularize your application

Do you need to process large amounts of data on demand? Use ODBC with a DB SQL warehouse. This yields the best  
price/performance without putting pressure on the  
application compute.

Do you have any of the considerations listed in this table  
in your application?

If not, the app should be simple, quick to run and work great  
as is. If not, revisit the questions with more scrutiny.
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FAQ 1.	 My libraries are taking too long to install. Why is it so slow? How can I speed it up? 

Compute on Databricks is ephemeral by design, and Databricks Runtime is built on Ubuntu. Therefore, 

whenever compute resources are restarted, packages downloaded from CRAN must be recompiled 

and reinstalled. See Faster package loads for more information and techniques to speed up installation.

2.	 My package is failing to install. Why is it failing? 

This is usually caused by missing dependencies. See System dependencies for more details.

3.	 Why can’t I run R on standard compute? 

For technical reasons related to CPU process isolation, R isn’t supported with notebooks on standard 

compute. R users can share compute resources by using sparklyr with DB Connect V2, ODBC 

or assigning dedicated compute to a group. See Compute resources and data access for more 

information.

4.	 Can I host Shiny apps on Databricks? 

Databricks supports hosting Shiny apps by launching the app from within a notebook, which works well 

for lightweight deployments. We recommend Posit Connect for the best experience hosting Shiny apps 

(see the Shiny section for more details).

5.	 Do I have to use notebooks with Databricks? 

No, you can author code in files in the workspace, or you can use your IDE. See Choosing an editor  

for more.

6.	 Do I have to run my R workflow/job as a notebook? 

No, you can execute R scripts with Databricks Workflows without needing to convert to a notebook, 

though there are some limitations (see Notebooks vs. R scripts).

7.	 How do I access Unity Catalog with R on shared compute? 

R users can share resources by using remote connections to standard compute like sparklyr with DB 

Connect V2 and ODBC, or by assigning dedicated compute to a group. See Compute resources and 

data access for more information.

8.	 How can I use RStudio/Positron with Databricks? 

We recommend Posit Workbench as the best enterprise solution for using RStudio with Databricks. See 

Guidance for working with IDEs for more details.
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9.	 Does Model Serving support R models? Can I serve R models via REST API? 

Model Serving doesn’t support R models. If you want to use Model Serving, we recommend rewriting 

your models in Python. To serve R models via REST API, we recommend Posit Connect.

10.	 How can I upgrade the version of R in Databricks? 

See this article. 

11.	 How do I upgrade the version of a package in Databricks Runtime? 

You can upgrade a package version in Databricks Runtime using any of the default installation methods. 

See Package management for more.

12.	 What’s the difference between SparkR and sparklyr? Which one should I use? 

SparkR is more PySpark-y, while sparklyr is more dplyr-y. We recommend using sparklyr because 

it’s easier to pick up and it supports Databricks Connect V2. See sparklyr vs. SparkR for more.

13.	 Will my R code run faster in Databricks? 

If you’re importing R code that doesn’t use Spark and running it as is, don’t expect to see any 

performance improvements. If you’re working with large datasets or parallelizing arbitrary R code, then 

Databricks can potentially accelerate your code by orders of magnitude. See Distributed Compute  

for more.
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