Rohit Menon

Software Engineer, Lyft Inc.

Rohit Menon is a Software Engineer on the Data Platform team at Lyft. Rohit’s primary area of focus is building and scaling out the Spark and Hive Infrastructure for ETL and Machine learning use cases. Previously he was one of the early engineers on the Data Platform team at Electronic Arts (EA, Inc) focussing on Data Compute and Security. Before EA, Rohit was a Software Engineer at VMware working on Application Deployment Framework on Virtualized environments.

Past sessions

Summit 2021 Hybrid Apache Spark Architecture with YARN and Kubernetes

May 28, 2021 10:30 AM PT

Lyft is on the mission to improve people’s lives with the world’s best transportation. Starting 2019, Lyft has been running both Batch ETL and ML spark workloads primarily on Kubernetes with the Apache Spark on k8s operator. However, with the increasing scale of workloads in frequency and resource requirements, we started hitting numerous reliability issues related to IP allocation, container images, IAM role assignment, and Kubernetes Control Plane.

To continue supporting growing Spark usage with Lyft, the team came up with a hybrid architecture optimized for containerized and non-containerized workload based on Kubernetes and YARN. In this talk, we will also cover a dynamic runtime controller that helps with per environment config overrides and easy switchover between resource managers.

In this session watch:
Catalin Toda, Software Engineer, Lyft Inc.
Rohit Menon, Software Engineer, Lyft Inc.


Summit 2019 Scaling Apache Spark on Kubernetes at Lyft

April 23, 2019 05:00 PM PT

Lyft is on the mission to improve people's lives with the world's best transportation. As part of this mission Lyft invests heavily in open source infrastructure and tooling. At Lyft Kubernetes has emerged as the next generation of cloud native infrastructure to support a wide variety of distributed workloads. Apache Spark at Lyft has evolved to solve both Machine Learning and large scale ETL workloads. By combining the flexibility of Kubernetes with the data processing power of Apache Spark, Lyft is able to drive ETL data processing to a different level. In this talk, Li Gao and Rohit Menon will talk about challenges the Lyft team faced and solutions they developed to support Apache Spark on Kubernetes in production and at scale.

Topics Include: - Key traits of Apache Spark on Kubernetes. - Deep dive into Lyft's multi-cluster setup and operationality to handle petabytes of production data. - How Lyft extends and enhances Apache Spark to support capabilities such as Spark pod life cycle metrics and state management, resource prioritization, and queuing and throttling. - Dynamic job scale estimation and runtime dynamic job configuration. - How Lyft powers internal Data Scientists, Business Analysts, and Data Engineers via a multi-cluster setup.