ADAM

: Genomics Formats and Processing Patterns
for Cloud Scale Computing

Matt Massie

Frank Nothaft
Christopher Hartl
Christos Kozanitis
André Schumacher
Anthony D. Joseph
David A. Patterson

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2013-207
http://www.eecs.berkeley.edu/Pubs/TechRpts/2013/EECS-2013-207.html

December 15, 2013




Copyright © 2013, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.



ADAM: Genomics Formats and Processing Patterns for Cloud

Scale Computing

Matt Massie!, Frank Austin Nothaft!, Christopher Hartl!?, Christos Kozanitis!,
André Schumacher®, Anthony D. Joseph!, and David Patterson!

!Department of Electrical Engineering and Computer Science, University of California, Berkeley
2The Broad Institute of MIT and Harvard
3International Computer Science Institute (ICSI), University of California, Berkeley

Executive Summary

Current genomics data formats and processing
pipelines are not designed to scale well to large
datasets. The current Sequence/Binary Alignmen-
t/Map (SAM/BAM) formats were intended for sin-
gle node processing [I8]. There have been attempts to
adapt BAM to distributed computing environments,
but they see limited scalability past eight nodes [22].
Additionally, due to the lack of an explicit data
schema, there are well known incompatibilities be-
tween libraries that implement SAM/BAM/Variant
Call Format (VCF) data access.

To address these problems, we introduce ADAM,
a set of formats, APIs, and processing stage imple-
mentations for genomic data. ADAM is fully open
source under the Apache 2 license, and is imple-
mented on top of Avro and Parquet [B 26] for data
storage. Our reference pipeline is implemented on top
of Spark, a high performance in-memory map-reduce
system [32]. This combination provides the following
advantages: 1) Avro provides explicit data schema
access in C/C++/C#, Java/Scala, Python, php, and
Ruby; 2) Parquet allows access by database systems
like Impala and Shark; and 3) Spark improves perfor-
mance through in-memory caching and reducing disk
1/0.

In addition to improving the format’s cross-
platform portability, these changes lead to signifi-
cant performance improvements. On a single node,
we are able to speedup sort and duplicate marking
by 2x. More importantly, on a 250 Gigabyte (GB)
high (60x) coverage human genome, this system
achieves a 50x speedup on a 100 node computing
cluster (see Table , fulfilling the promise of scala-
bility of ADAM.

The ADAM format provides explicit schemas for
read and reference oriented (pileup) sequence data,
variants, and genotypes. As the schemas are imple-

mented in Apache Avro—a cross-platform/language
serialization format—they eliminate the need for the
development of language-specific libraries for format
decoding/encoding, which eliminates the possibility
of library incompatibilities.

A key feature of ADAM is that any application that
implements the ADAM schema is compatible with
ADAM. This is important, as it prevents applications
from being locked into a specific tool or pattern. The
ADAM stack is inspired by the “narrow waist” of
the Internet Protocol (IP) suite (see Figure [2). We
consider the explicit use of a schema in this format
to be the greatest contribution of the ADAM stack.

In addition to the advantages outlined above,
ADAM eliminates the file headers in modern ge-
nomics formats. All header information is available
inside of each individual record. The variant and
genotype formats also demonstrate two significant
improvements. First, these formats are co-designed
so that variant data can be seamlessly calculated from
a given collection of sample genotypes. Secondly,
these formats are designed to flexibly accommodate
annotations without cluttering the core variant/geno-
type schema. In addition to the benefits described
above, ADAM files are up to 25% smaller on disk
than compressed BAM files without losing any infor-
mation.

The ADAM processing pipeline uses Spark as a
compute engine and Parquet for data access. Spark
is an in-memory MapReduce framework which mini-
mizes I/O accesses. We chose Parquet for data stor-
age as it is an open-source columnar store that is
designed for distribution across multiple computers
with high compression. Additionally, Parquet sup-
ports efficient methods (predicates and projections)
for accessing only a specific segment or fields of a
file, which can provide significant (2-10x) additional
speedup for genomics data access patterns.



1 Introduction

Although the cost of data processing has not histor-
ically been an issue for genomic studies, the falling
cost of genetic sequencing will soon turn computa-
tional tasks into a dominant cost [2I]. The process of
transforming reads from alignment to variant-calling
ready reads involves several processing stages includ-
ing duplicate marking, base score quality recalibra-
tion, and local realignment. Currently, these stages
have involved reading a Sequence/Binary Alignment
Map (SAM/BAM) file, performing transformations
on the data, and writing this data back out to disk
as a new SAM/BAM file [I8].

Because of the amount of time these transforma-
tions spend shuffling data to and from disk, these
transformations have become the bottleneck in mod-
ern variant calling pipelines. It currently takes three
days to perform these transformations on a high cov-
erage BAM ﬁleﬂ

Byrewriting these applications to make use of mod-
ern in-memory MapReduce frameworks like Apache
Spark [32], these transformations can now be com-
pleted in under two hours. Sorting and duplicate
mapping alone can be accelerated from 1.5 days on a
single node to take less than one hour on a commod-
ity cluster.

Table [1| previews the performance of ADAM for
sort and duplicate marking.

Table 1: Sort and Duplicate Marking for NA12878

l Software ‘ EC2 profile ‘ Wall Clock Time ‘
Picard 1.103 | 1 hs1.8xlarge 17h 44m
ADAM 0.5.0 | 1 hsl.8xlarge 8h 56m
ADAM 0.5.0 | 32 crl.8xlarge 33m
ADAM 0.5.0 | 100 m2.4xlarge 21m

| Software | EC2 profile | Wall Clock Time |
Picard 1.103 | 1 hs1.8xlarge 20h 22m
ADAM 0.5.0 | 100 m2.4xlarge 29m

The format we present also provides many pro-
gramming efficiencies, as it is easy to change evidence
access techniques, and it is directly portable across
many programming languages.

In this paper, we introduce ADAM, which is a pro-
gramming framework, a set of APIs, and a set of data
formats for cloud scale genomic processing. These
frameworks and formats scale efficiently to modern

1A 250GB BAM file at 30x coverage. See for a longer
discussion

cloud computing performance, which allows us to par-
allelize read translation steps that are required be-
tween alignment and variant calling. In this paper,
we provide an introduction to the data formats (§2))
and pipelines used to process genomes (§3)), introduce
the ADAM formats and data access application pro-
gramming interfaces (APIs) ( and the programing
model (§6)). Finally, we review the performance and
compression gains we achieve (§7), and outline fu-
ture enhancements to ADAM on which we are work-

ing (§8).

2 Current Genomics Storage
Standards

The current de facto standard for the storage and
processing of genomics data in read format is BAM.
BAM is a binary file format that implements the SAM
standard for read storage [I8]. BAM files can be
operated on in several languages, using APIs either
from SAMtools[I8] (in C++), Picard[3] (in Java),
and Hadoop-BAM[22] (in Hadoop MapReduce via
Java).

BAM provides more efficient access and compres-
sion than the SAM file format, as its binary encoding
reduces several fields into a single byte, and elimi-
nates text processing on load. However, BAM has
been criticized because it is difficult to process. For
example, the three main APIs that implement the
format each note that they do not fully implement
the format due to its complexity. Additionally, the
file format is difficult to use in multiprocessing envi-
ronments due to its use of a centralized header; the
Hadoop-BAM implementation notes that it’s scal-
ability is limited to distributed processing environ-
ments of less than eight machines.

In response to the growing size of sequencing
ﬁlesﬂ7 a variety of compression methods have come
to light [16, T, 27, 23, [6, O, B0, 14, 13]. Slim-
Gene [16], cSRA [28], and CRAM [11] use reference
based compression techniques to losslessly represent
reads. However, they advocate in favor of lossy qual-
ity value representations. The former two use lower
quantization levels to represent quality values and
CRAM uses user defined budgets to store only frac-
tions of a quality string. In the same spirit, Illumina
recently presented a systematic approach of qual-
ity score removal in [I3] which safely ignores quality
scores from predictable nucleotides; these are bases
that always appear after certain words. It is also

2High coverage BAM files can be approximately 250 GB for
a human genome.



worth mentioning that the standard configurations of
c¢SRA and CRAM discard the optional fields of the
BAM format and also simplify the QNAME field.

3 Genomic Processing
Pipelines

After sequencing and alignment, there are a few com-
mon steps in modern genomic processing pipelines for
producing variant call ready reads. Figure [1] illus-
trates the typical pipeline for variant calling. These
steps minimize the amount of erroneous data in the
input read set by eliminating duplicate data, calibrat-
ing the quality scores assigned to bases (base quality
score recalibration (BQSR), and verifying the align-
ment of short inserts/deletions (indels).

Raw Reads From Sequencer

+

Align To Reference

<+

Sort By Reference Order

<+

Eliminate Duplicate Reads

<+

Base Quality Score
Recalibration

~

Local Indel Realignment
(Optional)

<+

Call Variants

Processing Stages Of Interest

Figure 1: Variant Calling Pipeline

Traditionally, bioinformaticians have focused on
improving the accuracy of the algorithms used for
alignment and variant calling. There is obvious merit
to this approach—these two steps are the dominant
contributors to the accuracy of the variant calling

pipeline. However, the intermediate read process-
ing stages are responsible for the majority of exe-
cution time. Table [2] shows a breakdown of stage
execution time for the version 2.7 of the Genome
Analysis Toolkit (GATK), a popular variant call-
ing pipeline [19]. The numbers in the table came
from running on the NA12878 high-coverage human
genome.

Table 2: Processing Stage Times for GATK Pipeline

Stage GATK 2.7/NA12878
Mark Duplicates 13 hours

BQSR 9 hours
Realignment 32 hours

Call Variants 8 hours

Total 62 hours

To provide the readers with a background about
how the stages of this pipeline work, we discuss the
four algorithms that implement the intermediate read
processing stages. For a detailed discussion of these
algorithms, we refer readers to DePristo et al [10].

1. Sorting: This phase performs a pass over the
reads and sorts them by the reference position
at the start of their alignment.

2. Duplicate Removal: An insufficient number
of sample molecules immediately prior to poly-
merase chain reaction (PCR) can cause the gen-
eration of duplicate DNA sequencing reads. De-
tection of duplicate reads requires matching all
reads by their 5’ position and orientation after
read alignment. Reads with identical position
and orientation are assumed to be duplicates.
When a group of duplicate reads is found, each
read is scored, and all but the top-scoring read
are marked as duplicates. Approximately two-
thirds of duplicates marked in this way are true
duplicates caused by PCR-induced duplication
while the remaining third are caused by the ran-
dom distribution of read ends[8]. There is cur-
rently no way to separate “true” duplicates from
randomly occurring duplicates.

3. Base Quality Score Recalibration: During
the sequencing process, systemic errors occur
that lead to the incorrect assignment of base
quality scores. In this step, a statistical model
of the quality scores is built and is then used to
revise the measured quality scores.

4. Local Realignment: For performance reasons,
all modern aligners use algorithms that provide



approximate alignments. This approximation
can cause reads with evidence of indels to have
slight misalignments with the reference. In this
stage, we use fully accurate sequence alignment
methods (Smith-Waterman algorithm [24]) to lo-
cally realign reads that contain evidence of short
indels. This pipeline step is omitted in some vari-
ant calling pipelines if the variant calling algo-
rithm used is not susceptible to these local align-
ment errors.

For current implementations of these read process-
ing steps, performance is limited by disk bandwidth.
This bottleneck occurs because the operations read
in a SAM/BAM file, perform a bit of processing, and
write the data to disk as a new SAM/BAM file. We
address this problem by performing our processing it-
eratively in memory. The four read processing stages
can then be chained together, eliminating three long
writes to disk and an additional three long reads from
disk. The stages themselves cannot be performed in
parallel, but the operations inside each stage are data
parallel.

4 ADAM Design Philosophy

Modern bioinformatics pipelines have been designed
without a model for how the system should grow or
for how components of the analytical system should
connect. We seek to provide a more principled model
for system composition.

Our system architecture was inspired heavily by
the Open Systems Interconnection (OSI) model for
networking services [33]. This conceptual model stan-
dardized the internal functionality of a networked
computer system, and its “narrow waisted” design
was critical to the development of the services that
would become the modern internet. Figure[2]presents
a similar decomposition of services for genomics data.

The seven layers of our stack model are decom-
posed as follows, traditionally numbered from bottom
to top:

1. Physical Storage: This layer coordinates data
writes to physical media, usually magnetic disk.

2. Data Distribution: This layer manages access,
replication, and distribution of the genomics files
that have been written to disk.

3. Materialized Data: This layer encodes the
patterns for how data is encoded and stored.
This provides read /write efficiency and compres-
sion.

Stack for
Genomics Systems

Application
Variant Calling

Presentation
Enriched Read/Pileup

Evidence Access
Spark, Shark, Hadoop
\ Schema /

/| ADAM Schema |\

/ Materialized Data

Parquet |

Data Distribution
| HDFS, Tachyon

Physical Storage
| Disk

Figure 2: Stack Models for Networking and Genomics

4. Data Schema: This layer specifies the repre-
sentation of data when it is accessed, and forms
the narrow waist of the pipeline.

5. Evidence Access: This layer implements ef-
ficient methods for performing common access
patterns such as random database queries, or se-
quentially reading records from a flat file.

6. Presentation: The presentation layer pro-
vides the application developer with efficient and
straightforward methods for querying the char-
acteristics of individual portions of genetic data.

7. Application: Applications like variant calling
and alignment are implemented in this layer.

A well defined software stack has several significant
advantages. By limiting application interactions with
layers lower than the API, application developers are
given a clear and consistent view of the data they are
processing. By divorcing the API from the data ac-
cess layer, we unlock significant flexibility. With care-
ful design in the data format and data access layers,
we can seamlessly support conventional flat file ac-
cess patterns, while also allowing easy access to data
with database methods (see . By treating the



compute substrate and storage as separate layers, we
also drastically increase the portability of the APIs
that we implement.

This approach is a significant improvement over
current approaches which intertwine all layers to-
gether — if all layers are intertwined, new APIs must
be developed to support new compute substrates [22],
and new access patterns must be carefully retrofitted
to the data format that is in use [15].

We can distill our philosophy into three observa-
tions that drive our design decisions:

1. Scalability is a primary concern for mod-
ern genomics systems: Processing pipelines
operate on data that can range in size from
tens of gigabytes to petabytes. We cannot re-
move processing stages, as this has an unaccept-
able impact on accuracy. To increase pipeline
throughput and thereby reduce latency, our sys-
tems must be able to parallelize efficiently to tens
to hundreds of compute nodes.

2. Bioinformaticans should be concerned
with data, not formats: The SAM/BAM for-
mats do not provide a schema for the data they
store. This omission limits visibility into the
structure of data being processed. Addition-
ally, it significantly increases implementation dif-
ficulty: by making the format a primary concern,
significant work has been required to introduce
programming interfaces that allow these formats
to be read from different programming languages
and environments [I8] [3] 22].

3. Openness and flexibility are critical to
adoption: As the cost of sequencing continues
to drop [21], the processing of genomics data will
become more widespread. By maintaining an
open source standard that can be flexibly modi-
fied, we allow all the members of the community
to contribute to improving our technologies. De-
veloping a flexible stack is also important; ge-
netic data will be processed in a host of het-
erogenous computing environments, and with a
variety of access patterns. By making our format
easy to adopt to different techniques, we maxi-
mize its use.

We believe that the greatest contribution of our
stack design is the explicit schema we have intro-
duced. This innovation alone drives the flexibility of
the stack: on top of a single exposed schema, it is
trivial to change the evidence access layer to repre-
sent the relevant data in array or tabular form. A

schema is essential, as it makes it inexpensive to sup-
port novel access patterns, which can enable new al-
gorithms and applications.

In the next two sections, we discuss the implemen-
tation of ADAM, and how it was designed to satisfy
these goals. We then analyze the performance of our
system and the impact of our design philosophy.

5 Data Format and API

ADAM contains formats for storing read and ref-
erence oriented sequence information, and vari-
ant/genotype data. The read oriented sequence
format is forwards and backwards compatible with
BAM/SAM, and the variant/genotype data is for-
wards and backwards compatible with VCF. We pro-
vide two APIs:

1. A data format/access API implemented on top
of Apache Avro and Parquet

2. A data transformation API implemented on top
of Apache Spark

In this section, we provide brief introductions to
these two APIs. We then introduce the data repre-
sentations, discuss the content of each representation,
and introduce the transforms that we provide for each
representation.

The data representation for the ADAM format is
described using the open source Apache Avro data
serialization system [5]. The Avro system also pro-
vides a human readable schema description language
that can auto-generate the schema implementation
in several common languages including C/C++/C#,
Java/Scala, php, Python, and Ruby. This flexibility
provides a significant cross-compatibility advantage
over the BAM/SAM format, where the data format
has only been implemented for C/C++ through Sam-
tools and for Java through Picard [I8] [3]. To com-
plicate matters, in BAM/SAM there are well known
incompatibilities between these APIs implemented
in different languages. This problem persists across
APIs for accessing variant data (discussed in §5.3).

We layer this data format inside of the Parquet
column store [26]. Parquet is an open source colum-
nar storage format that was designed by Cloudera
and Twitter. It can be used as a single flat file, a dis-
tributed file, or as a database inside of Hive, Shark, or
Impala. Columnar stores like Parquet provide several
significant advantages when storing genomic data:

e Column stores achieve high compres-
sion [4]. Compression reduces storage space on



disk, and also improves serialization performance
inside of MapReduce frameworks. We are able to
achieve up to a 0.75x lossless compression ratio
when compared to BAM, and have especially im-
pressive results on quality scores. Compression
is discussed in more detail in

e Column stores enable predicate push-
down, which minimizes the amount of
data read from disk. [I7] When using pred-
icate pushdown, we deserialize specific fields in
a record from disk, and apply them to a predi-
cate function. We then only read the full record
if it passes the predicate. This is useful when
implementing filters that check read quality.

e Varied data projections can be achieved
with column stores. This option means that
we can choose to only read several fields from a
record, which improves performance for applica-
tions that do not read all the fields of a record.
Additionally, we do not pay for null fields in
records that we store. This feature allows us to
easily implement lossy compression on top of the
ADAM format, and also allows us to eliminate
the FASTQ standard.

By supporting varied data projections with low
cost for field nullification, we can implement lossy
compression on top of the ADAM format. We dis-
cuss this further in

Figure[3]shows how ADAM in Parquet compares to
BAM. We remove the file header from BAM, and in-
stead distribute these values across all of the records
stored. This dissemination eliminates global infor-
mation and makes the file much simpler to distribute
across machines. This distribution is effectively free
in a columnar store, as the store just notes that the
information is replicated across many reads. Addi-
tionally, Parquet writes data to disk in regularly sized
row groups (from [26], see Parquet format readme);
this data size allows parallelism across rows by en-
abling the columnar store to be split into independent
groups of reads.

The internal data types presented in this section
make up the narrow waist of our proposed genomics
stack in Figure [2| as discussed in the prior section.
In and we review how this abstraction al-
lows us to support different data access frameworks
and storage techniques to tailor the stack for the
needs of a specific application.

For application developers who are using Apache
Spark, we provide an additional API. This API con-
sists of transform steps for RDDs (see Zaharia et

BAM File Format ADAM File Format

1:c20, TCGA, 4M;

3:c20, CCGAT
5M; 58
c20, CCGT, 3M1D1M;

Figure 3: Comparative Visualization of BAM and
ADAM File Formats

al [BI] for a discussion of RDDs) containing ge-
nomic data, and several enriched types. These trans-
form steps provide several frequently used process-
ing stages, like sorting genomic data, deduplicating
reads, or transforming reads into pileups. By im-
plementing these transformations on top of RDDs,
we allow for efficient, distributed in-memory process-
ing and achieve significant speedups. In this section,
we describe the transformations that we provide per
each datatype. In section we discuss the perfor-
mance characteristics of sorting and duplicate mark-
ing. Detailed descriptions of several of the algorithms
that underly these transformations are provided in

appendix

5.1 Read Oriented Storage

Table [ defines our default read oriented data for-
mat. This format provides all of the fields supported
by the SAM format. As mentioned above, to make
it easier to split the file between multiple machines
for distributed processing, we have eliminated the file
header. Instead, the data encoded in the file header
can be reproduced from every single record. Because
our columnar store supports dictionary encoding and
these fields are replicated across all records, replicat-
ing this data across all records has a negligible cost
in terms of file size on disk.

This format is used to store all data on disk. In
addition to this format, we provide an enhanced API
for accessing read data, and several transformations.
This enhanced API converts several string fields into
native objects (e.g. CIGAR, mismatching positions,
base quality scores), and provides several additional
convenience methods. We supply several transforma-
tions for RDD data:

e Sort: Sorts reads by reference position
e Mark Duplicates: Marks duplicate reads

e Base Quality Score Recalibration: Normal-
izes the distribution of base quality scores



Table 3: Read Oriented Format

Group Field Type
General Reference Name String
Reference ID Int
Start Long
Mapping Quality Int
Read Name String
Sequence String
Mate Reference String
Mate Alignment Start Long
Mate Reference 1D Int
Cigar String
Base Quality String
Flags Read Paired Boolean
Proper Pair Boolean
Read Mapped Boolean
Mate Mapped Boolean
Read Negative Strand | Boolean
Mate Negative Strand | Boolean
First Of Pair Boolean
Second Of Pair Boolean
Primary Alignment Boolean
Failed Vendor Checks | Boolean
Duplicate Read Boolean
Attributes | Mismatching Positions | String
Other Attributes String
Read Group | Sequencing Center String
Description String
Run Date Long
Flow Order String
Key Sequence String
Library String
Median Insert Int
Platform String
Platform Unit String
Sample String

e Realign Indels: Locally realigns indels that
have been misaligned during global alignment

e Read To Reference: Transforms data to be
reference oriented (creates pileups)

e Flag Stat: Computes statistics about the
boolean flags across records

e Create Sequence Dictionary: Creates a dic-
tionary summarizing data across multiple sam-
ples

The performance of sort and mark duplicates are
discussed in The implementations of sort, mark

duplicates, BQSR, and indel realignment are dis-
cussed in appendix

5.2 Reference Oriented Storage

In addition to storing sequences as reads, we provide
a storage format for reference oriented (pileup) data.
Table [4|documents this format. This pileup format is
also used to implement a data storage format similar
to the GATK’s ReducedReads format [10].

Table 4: Reference Oriented Format

Group Field Type
General Reference Name String
Reference 1D Int
Position Long
Range Offset Int
Range Length Int
Reference Base Base
Read Base Base
Base Quality Int
Mapping Quality Int
Number Soft Clipped Int
Number Reverse Strand Int
Count At Position Int
Read Group | Sequencing Center String
Description String
Run Date Long
Flow Order String
Key Sequence String
Library String
Median Insert Int
Platform String
Platform Unit String
Sample String

We treat inserts as an inserted sequence range at
the locus position. For bases that are an alignment
match against the I"efelrencefj‘]7 we store the read base
and set the range offset and length to 0. For deletions,
we perform the same operation for each reference po-
sition in the deletion, but set the read base to null.
For inserts, we set the range length to the length of
the insert. We step through the insert from the start
of the read to the end of the read, and increment the
range offset at each position.

3Following the conventions for CIGAR strings, an align-
ment match does not necessarily correspond to a sequence
match. An alignment match simply means that the base is
not part of an indel. The base may not match the reference
base at the loci.



As noted earlier, this datatype supports an opera-
tion similar to the GATK’s ReducedRead datatype.
We refer to these datatypes as aggregated pileups.
The aggregation transformation is done by grouping
together all bases that share a common reference po-
sition and read base. Within an insert, we group
further by the position in the insert. Once the bases
have been grouped together, we average the base and
mapping quality scores. We also count the number of
soft clipped bases that show up at this location, and
the amount of bases that are mapped to the reverse
strand. In our RDD API, we provide an additional
ADAMRod datatype which represents pileup “rods,”
which are pileup bases grouped by reference position.

5.3 Variant and Genotype Storage

The VCF specification more closely resembles an
exchange format than a data format. In partic-
ular, the per-site and per-sample fields (“INFO”
and “FORMAT”) define arbitrary key-value pairs, for
which parsing information is stored in the header of
the file. This format enables side computation—such
as classifying a particular SNP as likely or unlikely
to damage the structure of a protein—to operate on
a VCF and store their results. A typical analysis
pipeline may comprise of several steps which read in
the VCF produced by the previous step, add addi-
tional annotations to the INFO and FORMAT fields,
and write a new VCF.

Maintaining full compatibility with VCF presents
a structural challenge. Each (properly constructed)
VCF file contains the data schema for its INFO and
FORMAT fields within the file header. Potentially,
every VCF file utilizes a different schema.

Maintaining support for these catch-all fields by
incorporating the file schema within an ADAM-VCF
Record violates the layer separation that is a part of
the design goals: the Evidence Access layer (layer 5
in Figure [2)) would take on the role of reading format
information from a record, and using that to parse
the contents of an information blob. Furthermore,
the format information is “hidden” from the Schema
layer (layer 4 in Figure : the system cannot know
what information the record should contain until it
looks at the format information for the record. This
approach presents challenges to

e tools, which cannot check whether a field they
expect is part of the record schema (until run-
time);

e developers, who will have to write their own
parsers for these unstructured blobs; and

e repository maintainers, who need to adjudicate
whose (complex) fields and parsers are widely-
used enough to merit inclusion and official sup-
port.

The “narrow waist” of the ADAM Schema divides
the world of parsing and file formats from the world
of data presentation and processing. Relying on the
allegory of the network stack, just as the transport
layer need not worry about how to retrieve data from
across a network boundary, the access layer of the
bioinformatic process should not need to worry about
parsing or formatting raw data blobs.

The VCF format has repeated violations of this
principle. While the VCF format is supposed to
render a schema for all key value pairs in its
INFO and FORMAT fields, a number of bioinfor-
matics tools do not provide this parsing informa-
tion, and so types must be inferred. In addition,
some tools (in particular annotation tools such as
VariantEffectPredictor[20]) serialize rich data types
(such as nested maps) into the INFO field, describing
their format as simply “String”.

By adhering rigidly to specific schema, not only do
we encourage separation of concerns, we also limit ex-
tensibility abuse, and the practice of looking at online
documentation to understand how to parse a field in
a VCF. The schema is the documentation, and the
parsing is not the tool writer’s concern!

These issues extend beyond tools that produce mal-
formed VCF's or uninterpretable schema; the format
is ill-supported by APIs that intend to support them.
For instance, PyVCF always splits on commas, even
if the number of values is defined as 1. Thus, it
mis-parses VariantPredictorOutput which is a sin-
gle (though doubly-delimited by “” and “—”) field.
Similarly to facilitate compression, per-sample fields
(are not required to propagate all values.

To address this issue, we eliminate the attributes
from the Variant and Genotype schemas. Instead, we
provide an internal relational model that allows addi-
tional fields to be provided by specifying an explicit
schema. At runtime, an ADAM VariantContext class
is provided that handles the correct joining of this
data. This class eliminates the need for an attributes
section and the parsing incompatibilities related to
this section, while maintaining the ability to arbitrar-
ily introduce new fields as necessary. This approach
provides all the flexibility of the current VCF format,
while eliminating the pain points.

An additional benefit of the new Variant and
Genotype schemas is that they have been designed
to ensure that all Variant call information can be
reconstructed using the called sample genotypes.



Table 5: Genotype Format

Field Type
Reference ID String
Reference Name String
Reference Length Long
Reference URL String
Position Long
Sample ID String
Ploidy Int
Haplotype Number Int
Allele Variant Type Variant Type
Allele String
Is Reference? Boolean
Reference Allele String
Expected Allele Dosage Double
Genotype Quality Int
Depth Int
Phred Likelihoods String
Phred Posterior Likelihoods String
Ploidy State Genotype Likelihoods String
Haplotype Quality Int
RMS Base Quality Int
RMS Mapping Quality Int
Reads Mapped Forward Strand Int
Reads Mapped, MapQ == 0 Int
SV Type SV Type
SV Length Long
SV Is Precise? Boolean
SV End Long
SV Confidence Interval Start Low Long
SV Confidence Interval Start High Long
SV Confidence Interval End Low Long
SV Confidence Interval End High Long
Is Phased? Boolean
Is Phase Switch? Boolean
Phase Set ID String
Phase Quality Int

Table 6: Variant Format

Field Type
Reference 1D String
Reference Name String
Reference Length Long
Reference URL String
Position Long
Reference Allele String
Is Reference? Boolean
Variant String
Variant Type Variant Type
ID String
Quality Int
Filters String
Filters Run? Boolean
Allele Frequency String
RMS Base Quality Int
Site RMS MapQ Double
MapQ=0 Count Int
Samples With Data Int
Total Number Of Samples Int
Strand Bias Double
SV Type SV Type
SV Length Long
SV Is Precise? Boolean
SV End Long
SV Confidence Interval Start Low Long
SV Confidence Interval Start High Long
SV Confidence Interval End Low Long
SV Confidence Interval End High Long




This functionality is important for genomics projects
where many samples are being sequenced and called
together, but where different views of the sample pop-
ulation are wished to be provided to different sci-
entists. In this situation, the total call set would
be filtered for a subset of samples. From these col-
lected genotypes, we would then recompute the vari-
ant calls and variant call statistics, which would then
be provided as an output. This transformation is pro-
vided by our RDD-based API. Additionally, we pro-
vide an ADAMVariantContext datatype, which ag-
gregates variant, genotype, and annotation data at a
single genomic locus.

6 In-Memory Programming
Model

As discussed in the main bottleneck in current ge-
nomics processing pipelines is packaging data up on
disk in a BAM file after each processing step. While
this process is useful as it maintains data lineageﬂ it
significantly decreases the throughput of the process-
ing pipeline.

For the processing pipeline we have built on top
of the ADAM format, we have minimized disk ac-
cesses (read one file at the start of the pipeline, and
write one file after all transformations have been com-
pleted). Instead, we cache the reads that we are
transforming in memory, and chain multiple trans-
formations together. Our pipeline is implemented on
top of the Spark MapReduce framework, where reads
are stored as a map using the Resilient Distributed
Dataset (RDD) primitive.

7 Performance

This section reviews performance metrics pertinent
to the ADAM file format, and applications written
on top of ADAM. Our performance analysis is parti-
tioned into three sections:

o Microbenchmarks: In this section, we
compare several test cases that have little com-
putation, and review ADAM against Hadoop-
BAM. This section looks to evaluate the disk ac-
cess performance of ADAM. In this section, we

4Since we store the intermediate data from each processing
step, we can later redo all pipeline processing after a certain
stage without needing to rerun the earlier stages. This comes
at the obvious cost of space on disk. This tradeoff makes sense
if the cost of keeping data on disk and reloading it later is
lower than the cost of recomputing the data. This does not
necessarily hold for modern MapReduce frameworks [31].
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are most interested in validating scalability and
building intuition for the efficiencies provided by
variable projection and predicate pushdown.

° Applications: The main goal of ADAM is
to accelerate the read processing pipelines that
were introduced in In this section, we re-
view the throughput of our processing pipeline

for both single nodes and for clusters, despite
the focus of ADAM being the latter.

. Compression: Here, we review the reduc-
tions in disk space that we are able to achieve
when compared against BAM. We also review
how we can achieve further compression through
aggregating pileup data, and how to implement
both lossy and reference-based compression top
of ADAM.

7.1 Microbenchmarks

To validate the performance of ADAM, we cre-
ated several microbenchmarks. These microbench-
marks are meant to demonstrate the pure read/write
throughput of ADAM, and to show how the system
scales in a cluster.

To validate these benchmarks, we implemented the
relevant tests in both ADAM and Hadoop-BAM [22],
running on Spark on an Amazon Elastic Compute
2 (EC2) cluster. We used the m2.4zlarge instance
type for all of our tests. This instance type is an 8
core memory optimized machine with 68.4 Gibibytes
(GiB) of memory per machine.

We ran these benchmarks against HG00096, a low-
coverage human genome (15 GB BAM) from the
1,000 Genomes Project. The file used for these
experiments can be found on the 1000 Genomes
ftp site, ftp.1000genomes.ebi.ac.uk in directory
/voll/ftp/data/HGO0096/alignment/.

7.1.1 Read/Write Performance

The decision to use a columnar store was based on
the observation that most genomics applications are
read-heavy. In this section, we aim to quantify the
improvements in read performance that we achieve
by using a column store, and how far these gains can
be maximized through the use of projections.

Read Length and Quality: This microbench-
mark scans all the reads in the file, and collects
statistics about the length of the read, and the map-
ping quality score. Figure |4 shows the results of this
benchmark. Ideal speedup curves are plotted along



with the speedup measurements. The speedups in
this graph are plotted relative to the single machine
Hadoop-BAM run.

Speedup on Length/Quality Statistic Test (Low Coverage)
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Figure 4: Read Length and Quality Speedup for
HG00096

This benchmark demonstrates several things:

e ADAM demonstrates superior scalability over
Hadoop-BAM. This performance is likely be-
cause ADAM files can be more evenly distributed
across machines. Hadoop-BAM must guess the
proper partitioning when splitting files [22]. The
Parquet file format that ADAM is based on is
partitioned evenly when it is written[26]. This
paritioning is critical for small files such as the
one used in this test — in a 16 machine cluster,
there is only 1 GB of data per node, so imbal-
ances on the order of the Hadoop file split size
(128 MB) can lead to 40% differences in loading
between nodes.

Projections can significantly accelerate compu-
tation, if the calculation does not need all the
data. By projecting the minimum dataset nec-
essary to calculate the target of this benchmark,
we can accelerate the benchmark by 8x. Even a
more modest projection leads to a 2x improve-
ment in performance.

7.1.2 Predicate Pushdown

Predicate pushdown is one of the significant advan-
tages afforded to us through the use of Parquet [26].
In traditional pipelines, the full record is deserial-
ized from disk, and the filter is implemented as a
Map/Reduce processing stage. Parquet provides us
with predicate pushdown: we deserialize only the
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columns needed to identify whether the record should
be fully deserialized. We then process those fields; if
they pass the predicate, we then deserialize the full
record.

We can prove that this process requires no addi-
tional reads. Intuitively, this is true as the initial
columns read would need to be read if they were to
be used in the filter later. However, this can be for-
malized. We provide a proof for this in Section C
of the Appendix. In this section, we seek to provide
an intuition for how predicate pushdown can improve
the performance of actual genomics workloads. We
apply predicate pushdown to implement read quality
predication, mapping score predication, and predica-
tion by chromosome.

Quality Flags Predicate: This microbenchmark
scans the reads in a file, and filters out reads that do
not meet a specified quality threshold. We use the
following quality threshold:

e The read is mapped.
e The read is at its primary alignment position.
e The read did not fail vendor quality checks.

e The read has not been marked as a duplicate.

This threshold is typically applied as one of the first
operations in any read processing pipeline.

Gapped Predicate: In many applications, the ap-
plication seeks to look at a region of the genome (e.g.
a single chromosome or gene). We include this pred-
icate as a proxy: the gapped predicate looks for 1
out of every n reads. This selectivity achieves per-
formance analogous to filtering on a single gene, but
provides an upper bound as we pay a penalty due to
our predicate hits being randomly distributed.

To validate the performance of predicate push-
down, we ran the predicates described above on the
HGO00096 genome on a single AWS m2.4xlarge in-
stance. The goal of this was to determine the rough
overhead of predicate projection.

Figure [5] shows performance for the gapped predi-
cate sweeping n.

There are several conclusions to be drawn from this
experiment:

e As is demonstrated by equation in Sec-
tion C of the Appendix, we see the largest
speedup when our predicate read set is signifi-
cantly smaller than our projection read set. For
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Figure 5: Gapped Predicate on HG00096

smaller projections, we see a fairly substantial
reduction in speedup.

As the number of records that passes the predi-
cate drops, the number of reads done to evaluate
the predicate begins to become a dominant term.
This insight has one important implication: for
applications that plan to access a very small seg-
ment of the data, accessing the data as a flat file
with a predicate is likely not the most efficient
access pattern. Rather, if the predicate is regu-
lar, it is likely better to access the data through
a indexed database.

We additionally calculated the performance im-
provement that was achieved by using predicate push-
down instead of a Spark filter. Table [7] lists these
results.

Table 7: Predicate Pushdown Speedup vs. Filtering

Predicate Min Avg Max | Filtered
Locus 1.19 1.17  0.94 3%
Gapped,n=1 | 1.0 1.0  1.01 0%
Gapped, n =2 | 1.22 127 129 | 50%
Gapped,n =4 | 1.31 142 1.49 75%
Gapped,n =8 | 1.37 158 1.67 87.5%

These results are promising, as they indicate that
predicate pushdown is faster than a Spark filter in
most cases. We believe that the only case that showed
a slowdown (max projection on Locus predicate) is
due to an issue in our test setup. We therefore can
conclude that filtering operations that can be per-
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formed statically at file load-in should be performed
using predicate pushdown.

7.2 Applications

ADAM relies on Apache Spark for in-memory, map-
reduce style processing. At the heart of Spark is
a programming construct, called a Resilient Dis-
tributed Dataset (RDD), which represents a fault-
tolerant collection of elements that are operated on
in parallel.

Programming with an RDD is very similar to pro-
gramming with any standard Scala collection like Seq
or List. This polymorphism allows developers to
focus on the algorithm they’re developing without
concerning themselves with the details of distributed
computation. The example code presented in this
section highlight the succinctness and expressiveness
of Spark Scala code. While ADAM is currently writ-
ten exclusively in Scala, Apache Spark also has Java
and Python support.

Code written in Apache Spark can be run multi-
threaded on a single machine or across a large clus-
ter without modification. For these applications to
be run in a distributed fashion, the data needs to
be loaded onto the Hadoop Distribute File System
(HDFS). HDF'S breaks the file into blocks, distributes
them across the cluster and maintains information
about block (and replica) locations. Breaking large
files like BAM files into blocks allows systems like
Spark to create tasks that run across the entire clus-
ter processing the records inside of each block.

The NA12878 high-coverage BAM file used for
these experiments can be found on the 1000 Genomes
ftp site, ftp.1000genomes.ebi.ac.uk in directory
/voll/ftp/data/NA12878/high coverage_alignment/.

The next two subsections compare BAM perfor-
mance of these applications on a single node to
ADAM on a single node and then to ADAM on a
cluster.

7.2.1 Single Node Performance

A single hsl.8xlarge Amazon EC2 instance was
used to compare the performance of ADAM to Picard
Tools 1.103. This hs1.8xlarge instance has 8 cores,
117 GB Memory, and 24 2,048 GB HDD drives that
can deliver 2.4 GB/s of 2 MB sequential read perfor-
mance and 2.6 GB/s of sequential write performance.

The 24 disk were configured into a single RAID 0

configuration using mdadm to provide a single 44TB
partition for tests. Measurements using hdparm



showed buffered disk reads at 1.4 GB/sec and cached
reads at 6.1 GB/sec.

The AMI used ()ami-belc848e) was a stock Ama-
zon Linux AMI for x86_64 paravirtualized and EBS
backed. Aside from creating the RAID 0 partition
above, the only modification to the system was in-
creasing the limit for file handles from 1024 to 65535.
This increase was needed to handle the large number
of files that Picard and ADAM spill to disk during
processing. All single-node tests were performed on
the same EC2 instance.

OpenJDK 1.6.0-24 (Sun Microsystems Inc.) was
used for all single-node tests.

Picard Whole Genome Sorting: Picard’s Sam-
Sort tool was used to sort the NA12878 whole genome
BAM file using the following options as output by Pi-
card at startup.

net.sf.picard.sam.SortSam \
INPUT=/mnt/NA12878.bam \
OUTPUT=/mnt/NA12878.sorted.bam \
SORT_ORDER=coordinate \
VALIDATION_STRINGENCY=SILENT \
MAX_RECORDS_IN_RAM=5000000 \
VERBOSITY=INFO \

QUIET=false \
COMPRESSION_LEVEL=5 \
CREATE_INDEX=false \
CREATE_MD5_FILE=false

The RAID 0 partition was also used as the
java temporary directory using Java property
java.io.tmpdir ensuring that Picard was spilling
intermediate files to a fast and large partition. Pi-
card was also given 64 GB of memory using the Java
-Xmx64g flag. Because of the large amount of mem-
ory available, the MAX_ RECORDS_IN RAM was set to
5000000 which is ten times larger than the Picard
default.

Picard took 17 hours 44 minutes wall clock time to
sort the NA12878 whole genome BAM file spending
17 hours 31 minutes of user CPU time and 1 hour of
system CPU time.

Since Picard isn’t multi-threaded, only a single
CPU was utilitized at nearly 100% during the en-
tire sort. Memory usage didn’t grow beyond 30GB
(even though 64GB was available) which seems to in-
dicate that MAX_RECORDS_IN_RAM could have been set
even higher. dstat reported disk utilization of 40M /s
reading and writing during the initial 4.5 hours of
sorting which dropped to 5M/s reading and 8M/s
writing during the last 13.25 hours when the final
merging of spilled files occured. Picard spilled 386
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GB of data during the sort.

ADAM Whole Genome Sorting: The follow-
ing ADAM command was used to sort the NA12878
whole genome BAM file and save the results to the
ADAM Avro/Parquet format.

$ java -Xmxilig \
-Dspark.default.parallelism=32 \
-Dspark.local.dir=/mnt/spark \
-jar adam-0.5.0-SNAPSHOT.jar \
transform -sort_reads \
NA12878.bam \
NA12878.sorted.adam

ADAM took 8 hours 56 minutes wall clock time
to sort the whole genome using 6 hours of user CPU
time and 2 hours 52 minutes of system CPU time.

During the initial key sort stage, ADAM was read-
ing the BAM at 75M/s with about 60% CPU uti-
lization for a little over 90 minutes. During the
map phase, dstat reported 40M /s reading and 85M /s
writing to disk. The shuffle wrote 452.6 GB of data
to disk. During the final stage of saving the results
to the Avro/Parquet format, all CPUs were at 100%
usage and disk i/o was relatively lighter at 25M/s.
RAM usage peaked at 73 GB of the 111 GB available
to the VM.

Whole Genome Mark Duplicates: Picard’s
MarkDuplicates tool was used to mark duplicates in
the NA12878 whole genome BAM file.

net.sf.picard.sam.MarkDuplicates \
INPUT=[/mnt/NA12878.sorted.bam] \
OUTPUT=/mnt/NA12878.markdups.bam \
METRICS_FILE=metrics.txt \
VALIDATION_STRINGENCY=SILENT \
PROGRAM_RECORD_ID=MarkDuplicates \
PROGRAM_GROUP_NAME=MarkDuplicates \
REMOVE_DUPLICATES=false \
ASSUME_SORTED=false \
MAX_SEQUENCES_FOR_DISK_READ_ENDS_MAP=50000 \
MAX_FILE_HANDLES_FOR_READ_ENDS_MAP=8000 \
SORTING_COLLECTION_SIZE_RATI0=0.25 \
READ_NAME_REGEX=
[a-zA-Z0-9]+: [0-9]: ([0-9]+) : ([0-9]+) : ([0-9]+) .* \
OPTICAL_DUPLICATE_PIXEL_DISTANCE=100 \
VERBOSITY=INFO \

QUIET=false \

COMPRESSION_LEVEL=5 \
MAX_RECORDS_IN_RAM=500000 \
CREATE_INDEX=false \
CREATE_MD5_FILE=false




Single Node Performance Summary: ADAM
essentially doubles performance over BAM on a single
node, although cluster performance is the real goal of
ADAM. (Single node mark duplicate performance is
still being collected.)

Table 8: Single Node Runtime Comparison

ADAM Runtime
8 h 56 m

Runtime
17 h 44 m

Application
SamSort

7.2.2 Cluster Performance

Unlike current genomic software systems, ADAM can
scale out to reduce the time for data analysis by dis-
tributing computation across a cluster. Thus, cluster
performance is the critical test for ADAM.

Flagstat: Even the simplest application can benefit
from the ADAM format and execution environment.
For example, the samtools flagstat command prints
read statistics on a BAM file, e.g.

$ samtools flagstat NA12878.bam

1685229894 + 0 in total (QC-passed reads + QC-failed reads)
0 + 0 duplicates

1622164506 + 0 mapped (96.26\%:-nan\%)

1685229894 + 0 paired in sequencing

842614875 + 0 readl

842615019 + 0 read2

1602206371 + O properly paired (95.07\%:-nan\%)
1611286771 + 0 with itself and mate mapped

10877735 + 0 singletons (0.65\%:-nan\%)

3847907 + O with mate mapped to a different chr

2174068 + O with mate mapped to a different chr (mapQ>=5)

ADAM has a flagstat command which provides
identical information in the same text format.

Table 9: Time to Run Flagstat on High-Coverage
NA12878

Software ‘Wall clock time
Samtools 0.1.19 25m 24s
ADAM 0.5.0 Om 46s

The ADAM flagstat command was run on EC2
with 32 cr1l.8xlarge machines which is, not supris-
ingly, why ADAM ran 34 times faster. While the
samtools flagstat command is multi-threaded, it
can only be run on a single machine.

Sort: When coordinate sorting a BAM file, reads
are reordered by reference id and alignment start po-
sition. This sorting makes it easier for downstream

tools to find reads for a specific area of the reference
and makes finding mates in paired-ends reads more
efficient. Many utilities will only except BAM files
that have been sorted, e.g. Picard MarkDuplicates.

Each read is mapped to a tuple with the two values:
position and read. Unmapped reads that a value of
None for ReferencePosition are sent to the end of
the file.

Table 10: Sort NA12878

Software EC2 profile ‘Wall clock time
Picard Tools 1.103 1 hs1.8xlarge 17h 44m
ADAM 0.5.0 32 cri.8xlarge 33m
ADAM 0.5.0 100 m2.4xlarge 21m

ADAM was run on an EC2 cluster with 32
crl.8xlarge machines and a cluster with 100
m2.4xlarge instances.

Monitoring the Spark console during sorting re-
vealed that the sortByKey operation (on line 10
above) took a total of 1 min 37 secs. The map op-
eration (at line 2 above) took 1 min 48 secs, and the
remainder of the time, 29 min 25 secs, was spent writ-
ing the results to HDFS. There were a total of 1586
tasks with a majority finishing in under 10 minutes.

Mark Duplicates: The ADAM algorithm for
marking duplicate is nearly identical to Picard’s
MarkDuplicates command.

Table 11: Mark Duplicates for NA12878

Software EC2 profile ‘Wall clock time
Picard 1.103 1 hs1.8xlarge 20 h 6 m
ADAM 0.5.0 | 100 m2.4xlarge 29m

7.2.3 Tuning Spark on EC2

All applications were run on Amazon EC2 with mini-
mal tuning. The performance numbers in this report
should not be considered best case performance num-
bers for ADAM.

An important Apache Spark property is
spark.default.parallelism which controls
the number of tasks to use for distributed shuffle
operations. This value needs to be tuned to match
the underlying cluster that Spark is running on.

The following graph shows CPU time series for two

sort operations on a 32-node crl.8xlarge EC2 clus-
ter running back to back with different values for
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Table 12: Time to Sort NA12878

Wall clock time
47 min 10 secs
32 min 38 secs

spark.default.parallelism
500
48

spark.default.parallelism. The early CPU pro-
file is when spark.default.parallelism is set to
500 and the latter profile is when it’s set to 48. You
can see from the graph that with the higher level
of parallelism there is a significantly higher amount
of system CPU (in red) as 32 CPUs contend for ac-
cess to the two disks in each cril.8xlarge instance.
While cril.8xlarge instances provide plenty of mem-
ory, they do not have enough disks to help distribute
the I/0 load.

CPU Graph.png
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Figure 6: Comparison of 500 to 48 parallelism

7.3 Compression

By using dictionary coding, run length encoding with
bit-packing, and GZIP compression, ADAM files can
be stored using less disk space than an equivalent
BAM file. Typically, ADAM is up to 75% of the size
of the compressed BAM for the same data. If one is
performing pileup aggregation, compression can im-
prove to over 50%.

8 Future Work

Beyond the initial release of the ADAM data formats,
API, and read transformations, we are working on
several other extensions to ADAM. These extensions
strive to make ADAM accessible to more users and
to more programming patterns.
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8.1 Database Integration

ADAM format plays a central role in a library that we
develop that will allow sequencing data to be queried
from the popular SQL based warehouse software such
as Shark [29], Hive [I] and Impala [2]. In fact, the
Avro/Parquet storage backend enables the direct us-
age of ADAM files as SQL tables; this integration
is facilitated through libraries that integrate Parquet
with the aforementioned software [26].

Of course, there is more work remaining before
Shark provides biologically relevant functionality,
such as the one that is outlined in Bafna et al [7].

Shark needs to be enhanced with libraries that pro-
vide efficient indexing, storage management and in-
terval query handling. The indexing scheme that we
develop enables range based read retrieval, such as
the indexing mechanism of samtools, quick access to
mate pair reads such as the indexing mechanism of
GQL [I5] and also text based search features on fields
such as the read sequence and the CIGAR string,.

To keep storage size under control, we implement
a set of heuristics that prevent the materialization of
queries with reproducible output. Finally, given that
most biological data is modelled after intervals on
the human genome, our library includes user defined
functions that implement interval operators such as
the IntervalJoin operator of GQL.

8.2 API Support Across Languages

Currently, the ADAM API and example read process-
ing pipeline are implemented in the Scala language.
However, long term we plan to make the API acces-
sible to users of other languages. ADAM is built on
top of Avro, Parquet, and Spark. Spark has bind-
ings for Scala, Java, and Python, and Parquet im-
plementations exist for Java and C++. As the data
model is implemented on top of Avro, the data model
can also be autogenerated for C/C++/C#, Python,
Ruby, and php. We hope to make API implementa-
tions available for some of these languages at a later
date.

8.3 BQSR and Indel Realignment

BQSR and indel realignment implementations are
available in ADAM, but have not yet been fully vali-
dated for correctness nor has their performance been
fully characterized. We anticipate this work to be
complete in early 2014.



8.4 Variant and Genotype Format

Although we have defined a draft variant and geno-
type format, we are currently working with a multi-
institution team to refine these formats. Our aim
is to clarify problems present with the current VCF
spec, and to make the variant and genotype formats
more amenable to computational analysis, curation
and distribution, and clinical use. We plan to release
a follow-on report when this format is stable.

9 Discussion

As discussed in this paper, ADAM presents a signifi-
cant jump for genomics data processing. To summa-
rize, the benefits are as follows:

e ADAM achieves approximately a 30x to 50x
speedup when compared to other modern pro-
cessing pipelines.

e ADAM can successfully scale to clusters larger
than 100 nodes.

e ADAM presents an explicit data schema which
makes it straightforward for the data access layer
(layer 3 in Figure [2)) to be changed to support
new access patterns.

In this section, we discuss a few tradeoffs inherent
to ADAM.

9.1 Columnar vs. Row Storage

In our current implementation, we use the Parquet
columnar store to implement the data access layer.
We chose to use columnar storage as we believe that
columnar storage is a better fit for bioinformatics
workloads than flat row storage; this discussion is
introduced in §f]

Typically, column based storage is preferable unless
our workload is write heavy; write heavy workloads
perform better with row based storage formats [25].
Genomics pipelines tend to skew in favor of read-
ing data — pipelines tend to read a large dataset,
prune/reduce data, perform an analysis, and then
write out a significantly smaller file that contains the
results of the analysis.

It is conceivable, however, that emerging workloads
could change to be write heavy. We note that al-
though our current implementation would not be op-
timized for these workloads, the layered model pro-
posed in Figure [2] allows us to easily change our im-
plementation. Specifically, we can swap out colum-
nar storage in the data access layer with row oriented

storage H The rest of the implementation in the sys-
tem would be isolated from this change: algorithms
in the pipeline would be implemented on top of the
higher level API, and the compute substrate would
interact with the data access layer to implement the
process of reading and writing data.

9.2 Programming Model
Improvements

Beyond improving performance by processing data
in memory, our programming model improves pro-
grammer efficiency. We build our operations as a set
of transforms that extend the RDD processing avail-
able in Spark. These transformations allow a very
straightforward programming model that has been
demonstrated to significantly reduce code size [31].
Additionally, the use of Scala, which is an object func-
tional statically typed language that supports type
inference couples provides further gains.

Additional gains come from our data model. We
expose a clear schema, and build an API that expands
upon this schema to implement commonly needed
functions. This API represents layer 6 in the stack
we proposed in Figure [2)). To reduce the cost of this
API, we make any additional transformations from
our internal schema to the data types presented in
our API lazy. This transformation eliminates the cost
of providing these functions if they are not used. Ad-
ditionally, if an additional transformation is required,
we only pay the cost the first time the transformation
is performed.

In total, these improvements can double program-
mer productivity. This gain is demonstrated through
GAParquet, which demonstrates some of the func-
tionality in the GATK on top of the ADAM stack [12].
In the DiagnoseTargets stage of GATK, the number
of lines of code (LOC) needed to implement the stage
dropped from 400 to 200. We also see a reduction in
lines of code needed to implement the read transfor-
mation pipeline described in Table compares
LOC for GATK/GAParquet and the read transfor-

mation pipeline.

10 Summary

In this technical report, we have presented ADAM
which is a new data storage format and processing
pipeline for genomics data.

16

5Tt is worth noting that the Avro serialization system that
we use to define ADAM is a performant row oriented system.



Table 13: Lines of Code for ADAM and Original Im-
plementation

’ Application ‘ Original ‘ ADAM ‘

GATK Diagnose Targets
Walker 326 134
Subclass 93 66
Total 419 200

ADAM makes use of efficient columnar storage sys-
tems to improve the lossless compression available
for storing read data, and uses in-memory process-
ing techniques to eliminate the read processing bot-
tleneck faced by modern variant calling pipelines. On
top of the file formats that we have implemented, we
also present APIs that enhance developer access to
read, pileup, genotype, and variant data.

We are currently in the process of extending
ADAM to support SQL querying of genomic data,
and extending our API to more programming lan-
guages.

ADAM promises to improve the development of ap-
plications that process genomic data, by removing
current difficulties with the extraction and loading of
data and by providing simple and performant pro-
gramming abstractions for processing this data.

A Availability

The ADAM source code is available at Github at
http://www.github.com/bigdatagenomics/adam,
and the ADAM project website is at http:
//adam.cs.berkeley.edu.  Additionallyy, ADAM
is deployed through Maven with the following
dependencies:

<dependency>
<groupld>edu.berkeley.cs.amplab.adam</groupId>
<artifactId>adam-format</artifactId>
<version>0.5.0-SNAPSHOT</version>
</dependency>

<dependency>
<groupld>edu.berkeley.cs.amplab.adam</groupId>
<artifactId>adam-commands</artifactId>
<version>0.5.0-SNAPSHOT</version>
</dependency>

At publication time, the current version of ADAM
is 0.5.0. ADAM is open source and is released under
the Apache 2 license.

B Algorithm Implementations

As ADAM is open source, the source code for the
system is freely available. However, the implementa-
tions of the algorithms are not always trivial. In this
section, we highlight the algorithms that underly our
read processing pipeline.

B.1 Sort Implementation

The ADAM Scala code for sorting a BAM file is suc-
cinct and relatively easy to follow. It is provided
below for reference.

def adamSortReadsByReferencePosition():
RDD [ADAMRecord] = {
rdd.map(p => {

val referencePos = ReferencePosition(p) match {

case None =>
// Move unmapped reads to the end
ReferencePosition(Int.MaxValue,
Long.MaxValue)
case Some(pos) => pos
}
(referencePos, p)
}) .sortByKey () .map(p => p._2)
}

B.2 BQSR Implementation

Base Quality Score Recalibration is an important
early data-normalization step in the bioinformatics
pipeline, and after alignment it is the next most
costliest step. Since quality score recalibration can
vastly improve the accuracy of variant calls — partic-
ularly for pileup-based callers like the UnifiedGeno-
typer or Samtools mpileup. Because of this, it is likely
to remain a part of bioinformatics pipelines.

BQSR is also an interesting algorithm in that it
doesn’t neatly fit into the framework of map reduce
(the design philosophy of the GATK). Instead it is an
embarrassingly parallelizable aggregate. The ADAM
implementation is:

def computeTable(rdd: Records, dbsnp: Mask) :
RecalTable = {

rdd.aggregate (new RecalTable) (
(table, read) => { table + read },
(table, table) => { table ++ table })
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The ADAM implementation of BQSR utilizes the
MD field to identify bases in the read that mismatch
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the reference. This enables base quality score re-
calibration to be entirely reference-free, avoiding the
need to have a central Fasta store for the human ref-
erence. However, dbSNP is still needed to mask out
positions that are polymorphic (otherwise errors due
to real variation will severely bias the error rate esti-
mates).

B.3 Indel Realignment
Implementation

Indel realignment is implemented as a two step pro-
cess. In the first step, we identify regions that have
evidence of an insertion or deletion. After these re-
gions are identified, we generate candidate haplo-
types, and realign reads to minimize the overall quan-
tity of mismatches in the region. The quality of mis-
matches near an indel serves as a good proxy for the
local quality of an alignment. This is due to the
nature of indel alignment errors: when an indel is
misaligned, this causes a temporary shift in the read
sequence against the reference sequence. This shift
manifests as a run of several bases with mismatches
due to their incorrect alignment.

B.3.1 Realignment Target Identification

Realignment target identification is done by convert-
ing our reads into reference oriented “rods”f] At each
locus where there is evidence of an insertion or a dele-
tion, we create a target marker. We also create a tar-
get if there is evidence of a mismatch. These targets
contain the indel range or mismatch positions on the
reference, and the range on the reference covered by
reads that overlap these sites.

After an initial set of targets are placed, we merge
targets together. This is necessary, as during the read
realignment process, all reads can only be realigned
once. This necessitates that all reads are members
of either one or zero realignment targets. Practically,
this means that over the set of all realignment targets,
no two targets overlap.

The core of our target identification algorithm can
be found below.

def findTargets (reads: RDD[ADAMRecord]):
TreeSet [IndelRealignmentTarget] = {

// convert reads to rods

val processor = new Read2PileupProcessor

val rods: RDD[Seq[ADAMPileup]] = reads.flatMap(
processor.readToPileups(_))

6 Also known as pileups: a group of bases that are all aligned
to a specific locus on the reference.
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.groupBy(_.getPosition) .map(_._2)

// map and merge targets
val targetSet rods.map(
IndelRealignmentTarget (_))
.filter(!_.isEmpty)
.keyBy(_.getReadRange.start)
.sortByKey ()
.map(new TreeSet() (TargetOrdering) +
.fold(new TreeSet () (TargetOrdering)) (
joinTargets)

_._2)

targetSet
}

To generate the initial unmerged set of targets, we
rely on the ADAM toolkit’s pileup generation utili-
ties (see $5.2). We generate realignment targets for
all pileups, even if they do not have indel or mismatch
evidence. We eliminate pileups that do not contain
indels or mismatches with a filtering stage that elim-
inates empty targets. To merge overlapping targets,
we map all of the targets into a sorted set. This set
is implemented using Red-Black trees. This allows
for efficient merges, which are implemented with the
tail-call recursive joinTargets function:

@tailrec def joinTargets (
first: TreeSet[IndelRealignmentTarget],
second: TreeSet[IndelRealignmentTarget]):
TreeSet [IndelRealignmentTarget] = {

if (!TargetOrdering.overlap(first.last,
second.head)) {
first.union(second)
} else {
joinTargets (first - first.last +
first.last.merge(second.head),
second - second.head)

As we are performing a fold on an RDD which is
sorted by the starting position of the target on the ref-
erence sequence, we know a priori that the elements
in the “first” set will always be ordered earlier rel-
ative to the elements in the “second” set. However,
there can still be overlap between the two sets, as this
ordering does not account for the end positions of the
targets. If there is overlap between the last target in
the “first” set and the first target in the “second” set,
we merge these two elements, and try to merge the
two sets again.



B.3.2 Candidate Generation
and Realignment

Candidate generation is a several step process:

1. Realignment targets must “collect” the reads
that they contain.

For each realignment group, we must generate a
new set of candidate haplotype alignments.

Then, these candidate alignments must be tested
and compared to the current reference haplo-

type.

If a candidate haplotype is sufficiently better
than the reference, reads are realigned.

The mapping of reads to realignment targets is
done through a tail recursive function that performs a
binary search across the sorted set of indel alignment
targets:

Q@tailrec def mapToTarget (read: ADAMRecord,
targets: TreeSet[IndelRealignmentTarget]):
IndelRealignmentTarget = {

if (targets.size == 1) {

if (TargetOrdering.equals (targets.head, read)) {

targets.head

} else {
IndelRealignmentTarget.emptyTarget

}

} else {

val (head, tail)
targets.size / 2)

val reducedSet = if (TargetOrdering.lt(

tail.head, read)) {

head

} else {
tail

}

mapToTarget (read, reducedSet)

targets.splitAt(

}
}

This function is applied as a groupBy against all
reads. This means that the function is mapped to
the RDD that contains all reads. A new RDD is gen-
erated where all reads that returned the same indel
realignment target are grouped together into a list.

Once all reads are grouped, we identify new candi-
date alignments. However, before we do this, we left
align all indels. For many reads that show evidence
of a single indel, this can eliminate mismatches that
occur after the indel. This involves shifting the in-
del location to the “left”[j by the length of the indel.

"To a lower position against the reference sequence.

After this, if the read still shows mismatches, we gen-
erate a new consensus alignment. This is done with
the generateAlternateConsensus function, which dis-
tills the indel evidence out from the read.

def generateAlternateConsensus (sequence: String,
start: Long, cigar: Cigar): Option[Consensus] = {
var readPos = 0
var referencePos

start

if (cigar.getCigarElements.filter(elem =>
elem.getOperator == CigarOperator.I ||
elem.getOperator == CigarOperator.D
).length == 1) {
cigar.getCigarElements.foreach(cigarElement =>
{ cigarElement.getOperator match {
case CigarOperator.I => return Some(
new Consensus(sequence.substring(readPos,
readPos + cigarElement.getLength),
referencePos to referencePos))
case CigarOperator.D => return Some(
new Consensus("",
referencePos until (referencePos +
cigarElement.getLength)))
case _ => {
if (cigarElement.getOperator
.consumesReadBases &&
cigarElement.getOperator
.consumesReferenceBases
) o
readPos += cigarElement.getLength
referencePos += cigarElement.getLength
} else {
return None
}
}
}
B
None
} else {
None

From these consensuses, we generate new haplo-
types by inserting the indel consensus into the ref-
erence sequence. The quality of each haplotype is
measured by sliding each read across the new hap-
lotype, using mismatch quality. Mismatch quality is
defined for a given alignment by the sum of the qual-
ity scores of all bases that mismatch against the cur-
rent alignment. While sliding each read across the
new haplotype, we aggregate the mismatch quality
scores. We take the minimum of all of these scores
and the mismatch quality of the original alignment.
This sweep is performed using the sweepReadOver-
ReferenceForQuality function:
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def sweepReadOverReferenceForQuality (
read: String,reference: String,
qualities: Seq[Int]): (Int, Int) = {
var qualityScores = List[(Int, Int)]()

for (i <- 0 until (reference.length -
read.length)) {
qualityScores = (
sumMismatchQualityIgnoreCigar (
read,
reference.substring(i, i + read.length),
qualities),
i) :: qualityScores

}

qualityScores.reduce ((pl: (Int, Int),
p2: (Int, Int)) => {
if (p1._1 < p2._1) {
pl
} else {
p2
}
b
}

If the consensus with the lowest mismatch quality
score has a log-odds ratio (LOD) that is greater than
5.0 with respect to the reference, we realign the reads.
This is done by recomputing the cigar and MDTag
for each new alignment. Realigned reads have their
mapping quality score increased by 10 in the Phred
scale.

B.4 Duplicate Marking
Implementation

The following ADAM code, reformatted for this re-
port, expresses the algorithm succinctly in 42 lines of
Scala code.

for (((leftPos, library), readsByLeftPos) <-
rdd.adamSingleReadBuckets ()
.keyBy (ReferencePositionPair(_))
.groupBy(leftPositionAndLibrary) ;

buckets <- {

leftPos match {
// These are all unmapped reads.
// There is no way to determine if
// they are duplicates
case None =>
markReads(readsByLeftPos.unzip._2,
areDups = false)
// These reads have their left position mapped
case Some(leftPosWithOrientation) =>
// Group the reads by their right position
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val readsByRightPos =
rightPosition)

// Find any reads with no right position

val fragments = readsByRightPos.get (None)

// Check if we have any pairs

// (reads with a right position)

val hasPairs = readsByRightPos.keys
.exists(_.isDefined)

if (hasPairs) {
// Since we have pairs,
// mark all fragments as duplicates
val processedFrags = if (fragments.isDefined

readsByLeftPos. groupBy (

) A
markReads (fragments.get.unzip._2,
areDups = true)
} else {
Seq.empty
}

val processedPairs =
for (buckets <- (readsByRightPos - None)
.values;
processedPair <-
scoreAndMarkReads (buckets.unzip._2))
yield processedPair
processedPairs ++ processedFrags
} else if (fragments.isDefined) {
// No pairs. Score the fragments.
scoreAndMarkReads (fragments.get.unzip._2)
} else {
Seq.empty
}
};
read <- buckets.allReads) yield read

For lines 1-4, all reads with the same record group
name and read name are collected into buckets.
These buckets contain the read and optional mate
or secondary alignments. Each read bucket is then
keyed by 5 ' position and orientation and grouped
together by left (lowest coordinate) position, orienta-
tion and library name.

For lines 8-41, we processed each read bucket with
a common left 5’ position. Unmapped reads are never
marked duplicate as their position is not known.
Mapped reads with a common left position are sepa-
rated into paired reads and fragments. Fragments, in
this context, are reads that have no mate or should
have a mate but it doesn’t exist.

If there are pairs in a group, all fragments are
marked duplicates and the paired reads are grouped
by their right 5" position. All paired reads that have
a common right and left 5’ position are scored and all
but the highest scoring read is marked a duplicate.

If there are no pairs in a group, all fragments are
scored and all but the highest scoring fragment are
marked duplicates.



C Predicate Pushdown Proof

Theorem 1. Predicate pushdown requires no addi-
tional disk accesses.

Proof. If R is the set of records to read, Proj is the
projection we are using, and size(i,j) returns the
amount of data recorded in column j of record i, the
total data read without predicate pushdown is:

R Proj

Z Z size(m, 1)

By using predicate pushdown, we reduce this total
to:

(1)

p=True Proj\Pred

Z Z size(n,i) (2)

R Pred

E E size(m,i
m i

R
)+

Pred represents the set of columns used in the
predicate. The set Ry—7,4 represents the sub-
set of records in R that pass the predicate func-
tion. We can show that if no records fail the
predicate (i.e. R
and [2| become equal. This is because by definition
Proj (Pred U (Proj \ Pred)).

O
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