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JOOm5S., STSICREKRTETBIEANRI R —AECBNLEI, IJ-RY>2T)ILESD
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ERMEBICHITDT —IPTAI T A T—FI>>2Z7, 7HIAMDEEC(E, BTERILVFBOEEZSTD.
I35V a1035vSaRREDEIK RIVRIEDRENSIKERZTFDCENEENET (2L, CNICREENEE
A) o CNSDEEDIRE(CHDRADMIEREEDIDIE. BFRINREDRAT—I I TY, T voIF7—4, gz
BT —AW® RS>0 3> F—IREDRET—IY b T72AHXAAIAT—IIRREE. EREENFIETSE
BEERT —HAV—AD—PITT, CNSEETHALRAITTATVIREETNTWVWET, URT, RIETA.
AT SATORRBREDERICHBITDIESHK A LOBIBZEFRERT D(C(E. RIEN(C(EHAITFEDERYZMITLU TEST L.
DR TEDINEDIMNCHD D TULET, RDBMSR—XDHWFTT /O —(F. BE[EEEZ DT LIED. AIEERIDT —
B%fE> THREDHEITOED T DIBEIC(E. BHEICERAT-ILTETERA. =510, ZL<OBIFORRIIFIMIE. 2
#E SOL ¥° Python RXR—ZAM API T(F2 <. KR EEEFRALULTVET,

FLVRT &S, Apache Spark™ (C(d. KFRILIEZBAICHINE T DT« > ROMEEIRE, £ < DEFHAHERENTEE
SNTVET, =5(C. BRUHD pandas #EX%{F > T Apache Spark FEHATHEMMMFE O T A2HRITTEdA—T
V=D TOZ T bKoalas (. T—FHAT>2F 4 AT FHI X MM OMEEEILERET DDIC/ZIID TWLET,

CDOITOJTIE. A+HEEDT« vH—ICW U TRRYEEZ S (CHEET DA EZBNTUET,. RIC. O—HJLIDE

TREZE>1—J)IAE L. Databricks Connect TUw FIRBFRIIMGE Y NE/ERR T D HEZEBELE T, REIC. &t
EERIDOZOMOFETDC T« — RIDFT—IER/ERXT—UTUKLSELTUVB pandas DI1—HF—DAIC, T
HRVEDBIZED T, Koalas NED KD (CHEIMNQRFT —SFPBA T XDDT—0 IO~ (CRT—Y > DI %ZFERILT Dh %=
BREULFET.


https://databricks.com/blog/2020/06/24/introducing-koalas-1-0.html#%3A%7E%3Atext%3DIntroducing%20Koalas%201.0%26text%3DKoalas%20was%20first%20introduced%20last%2Cthe%20release%20of%20Koalas%201.0
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B3R5 —45 Y — ADERE

FI . CHRNRERMERIIOT—FtZY bTHD b — REREHEZIERT D2 NS
HFEL&LD. COTOTDEHICT—FY hE2Zal—hLFEULEZ. COT—FY
& BEIEREHEER (ML —R) &FS 3 FIIARIKMEY RAT7— (NBBO) J+r—R

(Za2—3—UESEEIFIIR EDEBIFN) MSRITED 2T —9ZETILICLTVET,
T—HDFIFCESNETEBNZIEITET.

www.tickdata.com/product/nbbo/

CDEETIE. —HCEARANRABABERAELTVET., 1 ARAMMT 1 F7OR
FIABESBUTLEEZVN. UTFTOFT—FCY MSEFEIRETZEFZET M LRS
> (C TimestampType ZEIDHTZDT. bL— ROFERRE (X ESIBARFOEERRE (.
EREDI=H(C event_ts ([CUR—ASNFELUE. 5. COERESRMLAETNTLDSE
273 Notebook [CRENTUWVBKD(C. RHENICIE INSDT—Fv hEFILFRERIC
I D ET. T—IDRMEBZHREL. HHRAEEHIFUET. X T, UTDLSAN
EEOOTYI(CH U TRBMIERNTY,

trade_schema = StructType([ StructField("symbol",
StringType()), StructField("event_ts",
TimestampType()), StructField("trade_dt",
StringType()), StructField("trade_pr",
DoubTleType())

D

quote_schema = StructType([ StructField("symbol",
StringType()), StructField("event_ts",
TimestampType()), StructField("trade_dt",
StringType()), StructField("bid_pr",
DoubTleType()), StructField("ask_pr",
DoubleType())

D
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L display(spark.rcad.format(™declta™) . Load("/tep/tinseryfdelita/trades™] }
Spark Joios

symbo: svent_ts trade_dt ftrade_pr

AR 2017-08-21T 1'1:58:35. D00 0000 o T-08-31 347 3411812850558

EMIS AN T-LE-ATF52:54, 0000000 AN T-08-31 348, 2007055152273
A 2017-08-31T0d:32:52_ 0004 0000 2017-08-31 3463701 3HETHA53S
AN AN T-08-31T02: 3237, 0000000 2 7-08-31 346,301 258001 2885
LaLa] 20170821 T 06 0306, D00 0000 S0N7-08-31 349.513861321. 2247
EMIE 201 T-08- 31T 82 (0 38, D00+ 0000 S 7-08-31 F4R0215275784011
EMIS 2017-08-21T03: 35:54. D00 D000 20 7-0e-31 4H.5171330367T943
EMIS 201 T-CE- 3 T 5 HE2, 000+ 0000 S T-08-31 34H.54131 P05455575
E¥WH 2017-08-371 TV 0z 02230, D0 000D 2017-08-31 a8 BE3ITaT 28437

I displayispark.rcad. format("delta™) . load (" /tmp /1 nservidelta/guotes™) )
¥ 11| Spark Jobs

symib evend_is trada_dt bid_pr ask_pr
COET 204 7-08-31T00:10-1 00000000 2o0iy-08-31 343.E0005460012838 350.9098402 75807

AMD 20 T-08-F1T00:1 0120000000 anT-e-3 7. (AT 000RB0T 204 48,51 630858431 52
YN 204 7-08-31T00:10-19.000-0000 2017-08-31 348.53260061 203054 351.41B0643371137
KYN 200 F-08-F1TO0 101900000000 2N T-08-31 344, 7098081216355 348, 002007 94 T 25066
Ly 204 7-08-31T00:1 001 90000000 2017-08-31 34621 EBDOTRITAR 34B.6TT20930682145
EMIS 20 T-08-51T00-10-19 000--0000 2 7-08-31 3484801 250232342 351.0830078023341
EMIS 0 70851 TO0:A 01 90000000 A T-08-31 346 B4IETINS4586R3 348, THINAR4DETRER
EMIS S0 7-08-31T00: 100 1500000 0000 2017-08-31 B4G.54202281 125708 4B, 2BAGEAREA OGS
CaF 0 03 TO0A D 1 90000000 A T-DR-31 348,11 208605271178 352,341 TTROATRANRS

Apache Spark Z{E > IBERIN DY —= L &5t

SHOERMISZ CE. HREAT 60 AU LKA RSN TWET, BEEITKEED
F—AtY MICNEITOEDIESICEENDCEEZEZD L. GEICIBETEWY—IL
PMRE(CIRDE T, Apache Spark (XETLDIzHD > TF)LiR APl ZIRMELTH D, WFI{E
DIZHDIBEET 22> TEHDDT., FENIA NI IR ZNY— U TENTDIZHD
W—)LEUT, mEhE. URD, REITRBDIBRICIRIEET, £9. B &EKBECED
J—>hB8iaH. BBlI7—9ty hMEENU T, T—F9Z2X 51 AT DEERGEZBN
ULET., =E&IC. COO—RzEISR(C)\wH—246 LT, Databricks Connect ZfED /2
REMFEZERILT DHFEZBITUET, ROR—DANIO(ERBLUETILI—-R
(&, F{TD Notebook [CHNDET,


http://www.tickdata.com/product/nbbo/
https://www.investopedia.com/
https://databricks.com/product/databricks-delta
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HE02ETTT2INATHE
246 0EGTTTRIE4TED
HECRETTT 2T
246 CEGTTTIE4TED
5 ARTIABET 34200
247 14E23T44BTTON
46 4BEIABEINE 156
B STZRAAAERTRED
348421 TR IBE 10055

latest_offer

350 3951 S5PEEEFEN
350 SR
350 3951 S5PEEERE0
348 BETMBETINE

351 TE001 3573067

32 2711 4ETEOGRERL
350 40N TTISTMSS
30 21 44I000E34 TRE

—~/

As-of join
J R(ZZRTD Notebook ZEZHB L TS IZEL\,
A&Mmmﬁ EDHA LR > T DR TENRENOADEZIRY, —iMICERIN
BR—T'FETY . FEAEDRRINDINT(E. EHDIA TDRERINS 2 R)L L THE
BN, BIORS (ML —RRE) (CHFET DIFEDRBICHITD 1 DDEFRY (F : # apply our custom join
NBBO) DIREEZIBRELET. FORITIE. LTDOSIRILICDNT, 2TOEBICDNT USETESEE 05 S e Sa RN Gl P e
e = o _ 4 . N mkt_hrs_trades_ts = base_ts(mkt_hrs_trades)
NBBO MIRREZEEERL CLVE T, TORICTRI KD IC. mPIIDAR—R E73xDERS (B quotes_ts = quotes.filter(col("symbol") == "K")
51) M5, NBBOT—FtwY haEY—U T BFALRXIT(C [BEIDRFRTD
BHOLY REAT7—] NEFEINBLIICLELRZ, BFOLY REAT7Z—hHDH dsplaly Cilaz o Zranlas 8. Jon et i2))
nE. ROKXDICFHHETEZET,
CDXRDIRMERE. EORRTREEMET L TLDD (KERAT LY RTRENTLY dsplay ke _hrs_srades_ts. foin(quates 131}
) ZEMEIIEDIC. TDE (RTLY RELTASNTVETY) ZRELTHET, Fhinci - E—
COEDIERE. VLT 7iEZEEHDICHCEBIEEEZE ED KD (CiRE T DMNCHEEZES pimepiiham o e £ !
AET S i e ; I
FI. HBIHFHAFDT 1 > RO last ZED T, BRINECAARIZEDREDIENULL 51 e e ‘ :
\ 0)1 %;* bta"i LJJ: DO aJ1;EGJ':I'L:dth.IHH:E{de ;HH_:EI’LJ;’J;&}ZS’S.‘G K 1
# sample code inside join method % -
#define partitioning keys for window E =
partition_spec = Window.partitionBy('symbol') g b N
¥ o
# define sort - the ind_cd is a sort key (quotes before trades) é =
join_spec = partition_spec.orderBy('event_ts'). \ & -
rowsBetween (Window.unboundedPreceding, Wwindow.currentRow) ﬁ
# use the last_value functionality to get the latest effective record 350 %\/ /\/
select(last("bid", True).over(join_spec).alias("latest_bid")) -
204 7-06-31 TOA 2058 0000000 PT-0E-3TT0E: 38: 22, D00+-0000 M?w:;‘rl']‘lﬂg?ﬁﬂw
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b — RIS =2 (CHUTVWAP ZEN =TT D

FRTERY—FEZRUEURN,. CCTIHEEMNQREST. dh B RESMNEFM
% (VWAP) ([CERZHTTHELLD, CDIBEF. —HZEBEU TODISD ML R &l
BEDIZEERDET ., SW/IN—TSZAAD VWAP BEE (GR4FD Notebook) (F. VWAP HVEE
FHOEB|iitEZ EBo /=D TFEI> 2D I 2FFiZERrUET. 1F . VWAP (AL >28) A
BSiitgZ TEI2 T4 > ROZKFETDCENTE, ZOMANENONITET CLNDIEE
A~UTWET,

trade_ts = base_ts(trades.select('event_ts', symbol, 'price', 1it(100).

alias("volume™)))
vwap_df = trade_ts.vwap(frequency = 'm')

display(vwap_df.filter(col(symbol) == "K") \
.filter(col('time_group') .between('09:30','16:00')) \
.orderBy('time_group'))

350

350 M vwap

350 W max_price
350
350
350

vwap, max_price

350
350
350
350

350
10:00 13:17

time_group

10:52 12:47 13:42 14:53 15:14
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Databricks Connect Z{#F U e RIEFHFEDEIRIL

CCETDECA, EBROBFRINA NI OTRDIZHDEARNRS W) =2\ DHVERK U
TEFEUE, LML, O—ROKXRBILICEEDS 1 -IULET A MIWMET, CNIXIDET
TODOMRXNTY, S, Fh/z5(d Databricks Connect #E A UE U, CHNICKD.
O—73)V IDE TORFEMNAIRECIRD, SATDT—FITVYIRITSRAZICHT DTS
D#RERME £ UZE UTz. Databricks Connect DEAFEDHTICHIFTD AW hEUTIE, IR
RIRT R N —F ([CRFRFIDMEERIBINNT D ENTE ., HEEZIRIET DIeDHICMAFEED
BEDTAWVIT =T UTAAFSIT+ T Spark VLU RET CEIFERRENE
mEnecEMNEIFoNxEd,

PyCharm Z{£> T, UWFIREFRINT 1 —F v —twv hEERKT DI=HD PySpark DEE
BSOSV ITRIEDICREBRISAZEIBLTWNET, COIDE (X, I— ROWTE. TA4—
v hDZEEL, O— RZEEITIDIRNCTTAPAV Y RERBLL T NI B2HDIRIE
ZERMLTINET,

» # PySparkifinance |- PrsmPromcis Py SostaF nance] - - me_vanpy [PySpe kil arance]
Frisarkdfnante & maliiees oy

i sk vl i

e
from pyspark.Sal.Window import Window
import pandas as pd

from base import base_ts

¥
class enarich_ts:

def _ dnit_ (self, df):
self.df = df.withColusn(“epoch_ts"”, df.event_ts.cast("long™])

def append_Llag_mean_window_stat{self, input_col, lag_nbl:

windowSpec = Window.partitionBy( ' symbal®)
corderBy( epoch_ts']
« rangeBetween(=1slag_nb, @)

self.df = self.df.withColumn{"relling_mean_" + inmpui_col +
windowSpec) )

lag_" + strilag_pb), fn.mean(input_coll.over(

def append_prvig_fields(self, other):
left = base_ts(self.df)

128 e g Ligcanen Pyt o sk 13 e, by 284 Ak | U e
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O—LOSRZ0O0—RU. AT—STIIRA>ITISARSOF v TAEISIOT« TR CNZEREICTBzHIC. /NI > RT Spark Z3E4T U7IAHYS pandas D APl Z5ER T3

2T U%ZFEITI D Jupyter Notebook Z{FED T. ST hw I SEESpark 1— REEST 7335 E U T Koalas ZEB A UE LTz, Koalas D API (& pandas (CXWF LU TWLWBDT, fELN

LTWET, OV-IRAUICIE. SATUSRAICH LTSI THERTIN T PIZBHICT D LI, AT—5TI)LIR0— RADBITIITOI— REE TEH

FHRRSNTUNET, F9 (KRIED Koalas D >ih— h&ESHR) ., Koalas D&EFIEERIIBIREADESHZBNT
DHIC. SRFRICHBITBRFEDOREA. DED IO NS> JICDVWTHIATFXR

| — A= ks SISO THELL D,

PEO + 4+ G B
far gins dn [1, 5, 18, 201: RO = ZANNRETDETO NSO IR REUET,

S8Cs = Minsoe
mat_wiew.append_lag_mean_window _stat('price', secs)

e i 1. WBISHE, ESOMEICHEE5X SIS SIFAMBRERRLTVET,
spark.conf,set(’ spark sql.execution.arrow,enabled”, "false")

d,set_option('display.width®, &8) PN e A _ s N
I R M e L ST 2. 2ttF. KRR ASEEN (FEFARFUELEZ ST UIEXDAFERZY ) &
@iurnluh I"dv_dl- price ﬂ&ﬂ epach_ts rolling meam_price_lag 60 rolling meean_price_Lag 300 rolling_osean_price_lag 600 rolling_owean_price_lag 1200 'E‘ﬁl Lj aE g_o
B TARD |1212|\?o ey 1346499931 Nme Mo 11504137646 345.499931 346.499931 346439931 345.499031 e A VN R - ¢ L
e s e - 3. mMEMENRLIRD &L IS LR UE T,
1 [TARD ig:.-l‘-uﬂ-mam 8- | :ﬂﬂ FOR0ET (Neme Mone |1 15041 I3TAR 343 358047 348 393047 348.398047 1347 447989
2 TARD ilzrg.l‘o- W a1y 2~_\_|_ 1504139326 346.411332 346411332 46411332 E:«ﬂ 0450 4. ’%‘?i(i?ﬁéﬁ([ﬂﬁ’%%,ﬁﬁ% L (:n(gLXHU OD,EEXD‘BJ:F:T_I% (:‘%EEJJ SnCL \5) N j:RE
| 3 o . ) ) ) ) ) ) B ] = N E N —_ ~ 33 —_
-gi—gég\_} B =, A | T P o e — RIS EG| SNTERN AR TH O L (CENMNDS T, KDARSRMEEZIAS
B Neme ™o 40172 34% TR %8117 48, L] 4R, 9
I l_m = P TR Y P I CEEREBIRLS SN, KERFIEmZ LT TVWET,
H TARG |IJR ‘0 5 '%4 540960 [Name None || 1504140432 347 540960 348.676373 348676373 |347.921359

&E(IC. O—HJLIDEZFERALT. ERCRADERIIT—IY hOIYTU7SAXE
NERRIIE1—(SBMNIDZET,. MADHRZFTDZENTEET,

Koalas Z=mimiElE(CER

pandas API (& Python TD7F —FIEIEXDDI=HDIEEEY —)LTEHD. NumPy. SciPy.
Matplotlib 7R ED Python T —FH A T ADIT AR T AICESIHFEESNTLET,
Pandas DRmELTIE. KEDT—FICHBEICRT—ILTERVCEMNEITESNET,
BT —AICEFBICAIEREDER NI AILT—INEENTH D, CNEFDXOEEH O
STSATUADICIIIERE(CEETT,

HER : CCO /T Uw RA ES https://pxhere.com/en/photo/1531985, https://pxhere.com/en/photo/847099
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SBADESDHIC, T7—X—AX—T v hETYTIVINA DE DR A %E D I fGERMEIN S
CICHDET, COBITIE. £EDT7Y TIVI\ABEICHERD > TOEEMNED TLVD
CEEHMO>TWVWBRS > F—DILTah. ZOE., £ TCHOI7—X—AX—Tv ~TU>
OZBALTVWBRCEERLTVWET ., CNUE. RENICIE. TLFTaHFICEBATRC
EICKDTRERFEZFZIZDT., IJLTa FEVWFICT LI ATHED) > IZER7E
IRCENTEFT,

20> S>> J0tiICE. A= —DJ0—- O IE =R DIHNENGDEFT (T
MSH) , (. A—F-—TO-DAREIEDEREG. JO> ST IMRELTND
BJEEMEDH DT+« > ROZRE S DD(CIKIIEF T .

Order Flow Imbalance
- Examining Depth Bid

i

Ask Available Volume at Price Points
Decreases with Cancellations

Price

< databricks
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ZNTIE, TISREREZFRL DD, &EMEB L83 /2H(C Koalas N\ o —=%
FoTHELLD. BEERNIIC(E. ROELDRBRCESEFBLT, A—4F—2J0—-DOAREED
EEXRDITTVWEET,

. AR NOEEHHRERN (TS
. BRAENETE T BEHDST T« > KD
.« F—HTL—LET—IUTA—I— IO DT IGEEN TS

IR 5 DEEHEBR

—HERIREERINT —IDIL 22 TCF. A>Ty hEEEIBRNSDFT, SEHEED
T—4 ([EBET—572E) TR BEEUENRDONSZENHDFET, 2> XE
SORVESEIC & (CIEBDENS DIHE. BEOHEIDITHERZRT LD (CEEIHRYT
DRENGDDFRT, UTFDT—XTE 1EICE(CEBDOEY R/ ATHRODBENRES
NTNBDT, A=Y —DAMEZETET DHIC(E. B EDRRNFEDEZ1DDIE
(CEODITZWERNET,

import databricks.koalas as ks

kdf_src = ks.read_delta("...")

grouped_kdf = kdf_src.groupby(['event_ts'], as_index=False).max()
grouped_kdf.sort_values(by=["'event_ts'])

grouped_kdf.head()

Symbol Date Time bid_pr ask_pr bid_shrs_qt ask_shrs_qt event_ts
39757 ITUB 03/05/2014 09:30:00.011  13.14  13.23 700.0 200.0 2014-03-05 09:30:00.011
39758 ITUB 03/05/2014 09:30:00.0562 13.15 13.23 700.0 200.0 2014-03-05 09:30:00.052
39759 ITUB 03/05/2014 09:30:00.235 13.15 13.22 700.0 100.0 2014-03-05 09:30:00.235
39760 ITUB 03/05/2014 09:30:00.236 13.16 13.22 100.0 100.0 2014-03-05 09:30:00.236
39761 ITUB 03/05/2014 09:30:00.237 13.16 13.21 100.0 700.0 2014-03-05 09:30:00.237


https://www.youtube.com/watch?v=BXiFKCjc6Rw
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Koalas ZfE> TR+ > RO >0

BERIDEEEHBRLIZD T, BEBEMEZREDIIBIEHICEERTHELLD., BHRY

DI+ > RIE, —MENCIFEIDRASA AVREREERICEZERUET, FEAEDH

L> RETE (IR (L, BEHEBEITHELRE) (F StTEZTIHICHBEOIZZERLT

WET, Koalas (. LUTDXDICshift ZE> T+ > RORNDSIPYU— ROEZEISY
B1z8bD= > T )13 pandas DA > — T T A=A LU TULET (Spark DS EEERICAN
TWEY) .

grouped_kdf.set_index('event_ts', inplace=True, drop=True)
Tag_grouped_kdf = grouped_kdf.shift(periods=1, fill_value=0)

Tag_grouped_kdf.head()

COERHIRIIRE AT LATHRLIZEDTY

Tagged = grouped_kdf.merge(lag_grouped_kdf, Teft_index=True, right_
index=True, suffixes=['"', '_Tag'])
Tagged["imbInc_contrib'] = Tagged['bid_shrs_qt']*lagged['incr_demand'] \
- lagged['bid_shrs_qgt_lag']*Tlagged['decr_demand'] \
- lagged['ask_shrs_qgt']*Tagged['incr_supply'] \
+ lagged['ask_shrs_qt_lag']*Tagged['decr_supply']

Symbal Date Time bid pr ask pr bid _shrs gt ask_shrs_qt

event_ts
2014-03-05 09:30:00.011 0 o o 0 0 0.0 0.0
2014-03-05 09:30:00.052 ITUB 03/05/2014 09:30:00.011 13.14 1323 700.0 200.0
2014-03-05 09:30:00.235 ITUB 03052014 09:30:00.052 13.15 13.23 700.0 200.0
2014-03-05 09:30:00.236 I[TUB 03/052014 09:30:00.235 13.15 13.22 T00.0 100.0
2014-03-05 09:30:00.237 ITUB 03/05/2014 09:30:00.236 13.16 1322 100.0 100.0

AANAI>TTI—> U,

Koalas DFIDBEE TR ZETE I D

BEENGTETEIEDOT., COTF—FtY MxOBIZORRIET—UIEVEEBNE
I, AT TlE. KoalasDY—>%H{FE> T, B >FTVIREDY—2HEITOTCUVET,
CNICEKD., BRETEICMEBRFRASNZE 2 —HESN., FEXOREEEZEC DAAD
ga_o

< databricks

Symbol Time bid pr ask pr bid pr lag ask pr _lag imbinc_contrib

event_ts
2014-03-05 09:30:00.011 ITUB 09:30:00.011 1314 13.23 0 1] 500.0
2014-03-05 09:30:00.052 ITUB 09:30:00.052 13.15 13.23 13.14 13.23 0.0
2014-03-05 09:30:00.235 ITUB 09:30:00.235 13.15 13.22 13.15 13.23 100.0
2014-03-05 09:30:00.236 ITUB 09:30:00.236 13.16 13.22 13.15 13.22 -600.0
2014-03-05 09:30:00.237 I[TUB 09:30:00.237 1316 1321 13.16 13.22 -600.0

Koalas 7S NumPy Tz T« v hetE3d

EYDE[HEN D5, Koalas DT —F T L —AZRETDICKII DT A -V MMTE
HiLUET, CORIETIE. T(SEDRIC. NIFEZEDBEANMORMEM TET I L
NTEFEIN. FHADEDHIC, TLDT o v H—"ITUB" DEERT—F Y MU TE
TUTHFELL DS, LUF. FH4 (X Koalas #@iERZ NumPy > —F 17w MMIZEHEL. SciPy 5
A TS VURFERLUTCA—F - TJO—DRNIEOEREERI TETDILDICLTVET,
to_numpy( ) BB EMERIT BT T, COPMETIYVSITRENTEET,

from scipy.stats import t
import scipy.stats as st
import numpy as np

g_ofi_values = lagged['imbTnc_contrib'].to_numpy()

10



TP AI2RA-RT—RDEYVIT TV D COERHIRIIRE AT LATHRLIZEDTY

ToR(E. A—4F— - JO—OREEONHZ. NMIFDODEENREUEANRD MEIFE T i
3_57_:&)(:\ 50/0 & 95% 0)7—73—CC:5(CjDW I\L/TC:E»@_C‘Q_O ﬁ*ﬁ%j’r \y l\ét‘-\ 10000 Anorna|‘:
Zo70Ow haAERR T D 0— RICDULTIE. Notebook BAEEZSHBLTLIEEL)\,

L
_ _ . 3 5000 !
Koalas/SciPy D—2 JO— T8 UL ARIHOESE (L. ATZEMERLU TOTZHIGIRER > " ! ] ' ' 0 s o 'i
N —~ 3 N ~ ~ é 2 I a % " { - s & y 1
F—ATHBIO> NSO D OBIERLA SR> ZEBEULTUVET, S ARl b 2 ool L e d -‘i{ *t e
E
5 —5000 : | “ ¢
Order Flow Imbalance with Best Fit distribution 5 s ‘-'..
dgamma(a=0.68, loc=-0.00, scale=1088.80) -ioooo .
= best_pdf
0.0014 — QE:F_;E,H -15000 :
a5 10:49 05 10:50 05 10:51 05 10:52 05 10:53 05 10:54 05 10:55 05 10:56 05 10:57 05 10:58 05 10:59

0.0012

0.0010 = - m
> 1D Order Imbalance Heat Map
S 0.0008
g
= 0,0006

0.0004

0.0002

0.0000Q —_ —

-4000 -3000 ~2000 -1000 0 1000 2000 3000 4000

Order Imbalance Using supply/Demand

TOBFRFDERIE T, LEEDOEBEEE U THESNEERBEA AL B THASIN
TWEY, REDOIRIET(E, plotly SIS URBRALT. BEEESEBBEOHEEZE—
NWTORTEESHTNET ., BRII(C(E. 10:50:10-10:50:20 DEFRERAE, JO> S
> DBENSBIEN IR RIREEEE U TRELE T,

< databricks 11
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4=
O off

CDELETIE. ApacheSpark &5 —FTUW IR &EBERINDITTERITDAEZ. D>
ROYWS W) (\—ZFo IEEENRAEE. Koalas Z{F > TIN5 EDOmE A TR LT
EFEUL. FEAEDT—FYATI 25+ X M pandas APl (CHF L TUL\DD T, Koalas
(& Apache Spark DX — )Lz BIREIC LIRHYS pandas DiREZEFIFI I 2DICIZIIEE T,
BF 25347 (C Spark & Koalas Z{ES X Uw MIUTFTDEH DT,

e URYD, RIE, A>T SAT 2 RADI—RT—ATORERIDHZ. as-ofjoin &>
JUIREETTFELE T,
+ Databricks Connect Z{F U T EiR/ARIEAIE & 1w FIRBF R FIHEEE DIERK

o T=HABATRADITANDF— /a7 Koalas THREZ. pandas DELVRT O AP
TERMICT DR LR, T—YEFERT—ILZVvITETEET,

S5IF =T UV IRDD Notebook ZiX UK E=0\, SRIFRIIDI—RAT—XTH
EFEEEDID(ICHR— NTINCDLTIE. TESHSBRVEDELIZEE0,

F—A T 1w OERID Notebook ZfF > TEEREIEDH D

< databricks

CDERIHEIRS AT ATERRUIZEDTY

12


https://pages.databricks.com/rs/094-YMS-629/images/Democratizing%20Financial%20Time%20Series%20Analysis.html?_ga=2.34224418.2091689691.1591215417-566957636.1584739382&_gac=1.27662030.1589579628.Cj0KCQjw-_j1BRDkARIsAJcfmTFmZ1FrPnLWn4a6NsA_7M8Sc8-1KbOXqjgUhC_B7LqzO78jU8PyzusaAlt2EALw_wcB
https://pages.databricks.com/rs/094-YMS-629/images/Democratizing%20Financial%20Time%20Series%20Analysis.html?_ga=2.92913178.629507392.1589211892-2105806216.1585857288

F—AYATI O RA—RAT—ADEYVI T v

B35 Partl:
NS 1 LT—J DIIE

S LT—T & MLflow %&
FIA U TZBRGEABEDIEYE Part 1
9IeE

Ricardo Portilla

Brenner Heintz
Denny Lee

2019 4 A 30H

< databricks

CDERIHEIRS AT ATERRUIZEDTY

[(FAFZVT - FAL-DT=T] OTW: BNTALDT-T) LWSERZRNCHODE. [N\vT - ko -5
Ja1—Fv—1 2U—-XDHT, X—F+ + XTITSAMNEFREREE AL TTOUT7 > ZE IR L TNDA A—ZBUNE
WREINEULNERA. LU, BINSYALD—TEIALRINILTERL, BT —5RA > MEOKREEN 7T
Z(CEAEALTVRVMEE(C, BERIIT—SZBN(CLEER T DeHICfER SN FKMM T,

LUTFTHITDRDIC. BNTA AD—TDREIBELRAED1 DIEERER# C 9. <. Google Home ¥° Amazon
Alexa 7/)\A RZHEEN T D/zdD [BRDHDEE]| Z#Bl T DIDIEFTHDENBIETEET,

BN LD—T(F. Z<ORPDIBH(CERTETRIENTRENRTIZYITY., BNSTALAD—TOREZZIEHT
D& HELETOILABN, FERNAICHAIZEECRDCENTEEFT, UTORABRZER TH TS,

+ FINANCIAL MARKETS : TZ2(C—HLUTLWVRLKTH., ML SREBOMIGEET =R I E. HlXE 28
(28H) &£38 (31H) OAXES|IT—4 %K T D,

« WEARABLE FITNESS TRCKERS : S{TEDRENRKBIDIFA L EE(CEILUITIBETE. HITEDRE EHFHE LD
[FHE(CETETED LD FE LU,

* ROUTE CALCULATION : RS /\—DEEZFE(CDWLTRIMNEI > TOWNUE. RSA/I—DETA (CRAT B KD IEHERIE
RZEETEIDCENTEFET BIXIE, BESFEFRERZREELRLUCLDIN., LRI DIDICFEETXID B/,
MBRE) &

T—IYAT2FT A A b T=FT7FURN BRINFT—HZRINESHETECDT IV IICREBLTNDIFIT T
¥, TRCEINSNERRIIERST —F(F. TR(C [BENL] S—FERUIDCHETRDIZENTERNS L
NH2N5TY,

ZHITOTIYU—XTlE UTFTOZTEICDWTEDTLEFET,

. BN A LD—TOEKRIE
s B IIWNA—FT A4 AT I TENSIALD—TEZETITD
« MLflow ZRWzY > T )LIRGET — 5 DB S A D — T DELT

13
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BN LT—T

BERIILEEBSEDBR (G 2DDANKERIIBDERA NI Y IZEMTDZETT . 220D
R RPIDIRNMAE (IR, BE. T—F&NRT NUICEEL, XD NLZERRO
TNSDRBDI—TV Y RIEBEZETHE I D LK TEH RSN D,

Dynamic time warping (&, 1970 FANSEF R ZZIRE U CEEZRHCEHEEERHICALYS N
TEERRIEBEMTH D, L<BIHETNTLVSDmIC Dynamic time warping for

isolated word recognition based on ordered graph searching techniques i*&o D &F 9,

i

OG> RyFUIRIFTRLS, RERINCEFABETYT (Fl : 2 DORE
HUXEE DRI ZERENE T, A AE K ELUTHBED. SANBZRANDIHE) .
PIZ(E . FTOISTDREBDIRTIE, GHRNBERIVYF>T (A—0Uy RV F
>0) NIEECHRNTI . —7. BNRKERND-T Z2ERAITDE. X (F1D5EE
) BAINTNTE. 2 DOBIREIEC—HSERITENTEET, FNITUEREAL
TWBEERFRDFREA. ES—DDFER. INZO/ (X MIFEEUMERT7EULTER
BIETY., CDFA. BFANNEVWEES ) -XOEUENBENC EZBRUET,

< databricks

COERHIRIIRE AT LATHRLIZEDTY

f’-"-\ o
\ \
\
\
\ \
Lf ‘_‘,/"
IOy RRVF>4 E9S1 LD—IO XV F

HE8 : Wiki Commons (Euclidean_vs_DTW.jpg)

TERY (BERERY CFREERY) (& LITFDIL—ILICHE> TR fx) ZALWT. &8
(D=2) JXIRZBVWTARESZ—HSBILDCEHRID LN TENE, ek S7R
BDEHRIENET,

f(x)) maps to f(x;) when i < = j

J(x)) maps to f(x;) only when (j — i) is within fixed range

14


https://ieeexplore.ieee.org/document/1171695
https://commons.wikimedia.org/wiki/File:Euclidean_vs_DTW.jpg

F—HAYAI>RAIA—RT—IADEYVI TV

AR NACSERANAE SR,

RIS, BNSIALD—T(F. A—FT AV VYT (TERASIN. NS0 TDHE
EZHRFLUE T, COBITIE "The Expanse” EWLVDF L EFBENSD 2 DOELRDSIH
[CEDVWT. 4 DDERDA—FT A AVVYITRFEHUET, 46 DDA—FT 1 AT IYVT
(UTFTTEHKZENTEEIN, CNERETEHSDERA) D, ZDSED3ID
(DUwT1 20 4) ([FEIBEXICEDVNTWVET,

“Doors and corners, kid. That’s where they get you.”

ZUT. 1DOOUYT (OUwF3) WE5IHETY,

" You walk into a room too fast, the room eats you.”

Doors and comers, kid.

Clip1
That’s where they get you. [v2]

Doors and corners, kid. Clip2
That's where they get you. [v1]

» 0:00/0:06 == o) 3 > 0:00/0:08 == o)

Doors and corners, kid.
That’s where they get you. [v3]

Clip 3 | Youwalkinto a room too fast, Clip4

the room eats you.

» 0:00/0:07 e= o) 3 » 0:.00/0:07 o= o)

H# : “The Expanse”

< databricks

COERHIRIIRE AT LATHRLIZEDTY

IR 4 DDA —F« A2 w FD matplotlib Z{ER LZERIL T,

« JUwF1: CNE&EtY IJICED<KERFITY "Doors and corners, kid. That's where
they get you"

o JUWT 2 A2 hR—2 3 0RE/N\Y - RIGICFERESN TS OUY 1%
NR—=R(CUEFTUWRERF [v2] TT,

s JUwT3I: InNBOUVITI1ERUA>Y bR—23> EEAE—RT"Youwalkintoa
room too fast, the room eats you."

o UWT b4 A2 hR=23 > 0RE/\ IOy NERBMLTVWBROUY T 1%
BCURUWLRERAI[vZ] T,

Clip 1 | Doors and corners, kid. Clip 2 | Doors and comers, kid.

That's where they get you. [v1] That's where they get you. [v2]

Clip 3 | Youwalkinto a room too fast, Clip4 | Doors and corners, kid.

the room eats you. That’s where they get you. [v3]
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https://www.imdb.com/title/tt3230854/
https://www.amazon.com/The-Expanse-Season-1/dp/B018BZ3SCM
https://dennyglee.files.wordpress.com/2019/03/doors-and-corners-kid_thats-where-they-get-you.wav
https://dennyglee.files.wordpress.com/2019/03/doors-and-corners-kid_thats-where-they-get-you-2.wav
https://dennyglee.files.wordpress.com/2019/03/you-walk-into-a-room-too-fast_the-room-eats-you.wav
https://dennyglee.files.wordpress.com/2019/03/doors-and-corners-kid.wav

TP ATIRA-RT—-RADEYITT VD COERHIRIIRE AT LATHRLIZEDTY

NBDA—FT« AT W T&5HFHAF. matplotlib ZfED TARIL I DT — R(E UTFD BRIDLDC, 2DDOVUYT (COBERFTIVT1EOUYT 4) REUSIAXICH
J—RAZIRY MIFEHSNTWNET, LTA> bxR—23> (RE) ELAFT2S—NRIEDHES.

from scipy.io import wavfile
from matplotlib import pyplot as plt
from matplotlib.pyplot import figure

# Read stored audio files for comparison
fs, data = wavfile.read(“/dbfs/folder/clipl.wav”)

# Set plot style
plt.style.use (‘seaborn-whitegrid’)

# Create subplots
ax = plt.subplot(2, 2, 1)
ax.plot (datal, color=’#67A0DA")

# Display created figure Doors and corners, kid. That’s where they get you.

fig=plt.show () 1
display (fig)
STE/E0— RAR—X(Z. Notebook [Dynamic Time Warping Background| (C&0DZFET,

< databricks 16


https://pages.databricks.com/rs/094-YMS-629/images/dynamic-time-warping-background.html?_ga=2.26621182.2112692442.1591844546-225663068.1585060489

F—HAYAI>RAIA—RT—IADEYVI TV

RN I—OVy Ry F>2T (UTFDIST) (SRS & RiEZEIDSIVWTE.,

oUwT (8B) £EHLWIUYT (8) OBOYAZ2TJEF—HUEEA.

Iy RwF>0

_ Lo ' : where
doors and : kid IR

; corners ;

< databricks

COERHIRIIRE AT LATHRLIZEDTY

BNRRD -T2 ERBLT. IN52DD0Y y THORRYI LI Z BI8E (C T D 2 8D(CHF
Mz hSEBB3TENTEFT.

E VAN R

: corners’
': . : 1L the
doors : kid L » y

' and! ; that’s

17
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BERTILEE(C (L. fastdtw PyPi SA TS URFERAUEI., T —FT IV IRADT—DIANR—
AICPYPIiTATSURA A M=) DEIE. Azure| AWS (CHDET, fastdtw E{FD
CET. BRBEBERIBDIEMZRE<STEITDCENTEET,

from fastdtw import fastdtw

# Distance between clip 1 and clip 2
distance = fastdtw(data clipl, data clipZ2) [0]
print (“The distance between the two clips is %s” % distance)

TR0 — RAR—X (3. Notebook [Dynamic Time Warping Background| (C&HNDZFE T,

Clip 1 Clip 2 480148446.0
Clip 3 310038909.0
Clip 4 293547478.0

20000

o ‘k" | -“'L.
-

=13000
1] 0000 100000 15000 200000 Foia WR000 50000 000040 450000

< databricks

COERHIRIIRE AT LATHRLIZEDTY

FAERTRERER
s BIRDTISTICHDELDIC, BEIVYINEUEEEA > MR—2 32 THDEH.
U1 & 4 DEIRER<SIEOTVET,

« DU EOUYT I ORDERMENRDES (DUyT4 EHBRIDERNTT
) . EEFBESITEAY bR—232PXE-REFFLUTT.

« OUwT1E2 0 BAUBIAXZEED TLWBICEMMNDST . 1> hRr—23>2EX
E— RAMBIHICEIRESN TSz, REEMIRIZDTVET,

CEBEDXD(C. EBRFHT—T T 2 DDERDEERINDIELUEZHER T D ENT
EESER

RETI(E
STETHNYALT—TICONTHBLTEELLEN, TOI1—RT— R EBRFEED
ERCEALTHELL S,
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https://pypi.org/project/fastdtw/
https://docs.azuredatabricks.net/user-guide/libraries.html#pypi-libraries
https://docs.databricks.com/user-guide/libraries.html?_ga=2.202207314.2112692442.1591844546-225663068.1585060489#pypi-libraries
https://pages.databricks.com/rs/094-YMS-629/images/dynamic-time-warping-background.html?_ga=2.266370253.2112692442.1591844546-225663068.1585060489
https://databricks.com/blog/2019/04/30/using-dynamic-time-warping-and-mlflow-to-detect-sales-trends.html

F—AYATI O RA—RAT—ADEYVI T v

$B3E Part2:
Y1 LT—T & MLflow
ZF B8 U =R HEm OBz

S LT—T & MLflow %&
FIA U Tz BRSEABEDIEYE Part 2
eieE .

Ricardo Portilla

Brenner Heintz
Denny Lee

2019 4 A 30H

< databricks

COERHIRIIRE AT LATHRLIZEDTY

BH=

HRIENID TS MRBREEDIEHERE LTV EBHRLUTHTLZEW. FEEF. RO—>DTORSHIERICE
EUREENDDCEZIMO>TUVEDT, TNZREUTIRFEL. —EE(SIETEFEDIT —AZIRFEL TCWEUE. T
UCWENTSBCETERTCVNDDT, REF—AE—FEICRFEOEENZEZLDELUTWVET, HIRTZDEEDZD
(CIDTYUHIZBATDICEE BRISESBRIZEANIZD T, HRIZOTUF(E. TNESDIZIANEITDIZDIC,
2TODETI00% DBEETERITSNTVBRC EXERITDINENDDET,

HIXTZ(FEIF/RCEO E U T REDEERINEEFHITDICEZFRLTNWET, FIX(E ROKXSPB(C(FEEREIN
EL<RINELNFEEA. Bl (FEHBEZERTD5E) « BASEIERICELIZDFT GDTUZHIDT 1 SA
S hOUYTSAFI—2ICHENSDZDH) « TOFv—hZ2RT. SRIEORHOEERDORBEEDZRTHE
L&So

Optimal weekly Product Sales
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TP AI2RA-RT—RDEYVIT TV D COERHIRIIRE AT LATHRLIZEDTY

SRI=0AEF. SADEENGRI=DEERNETEIRDBLIREBEERTEICE _
TY . FEROVEEDIRGEHESOREHIOTICEEBLTVEITH. SEDREIE import pandas as pd
Pz LDREDITRDEEZTULET,

# Use Pandas to read this data

N e . N . sales_pdf = pd.read_csv(sales_dbfspath, header='infer"')
AERNZBRATTEEMORFEN bDIBmZTENE. BENSDFXZF+v )L U

NERBSRLLIED, BE<IRVLWESRZADIEDIC, —AT. BEDODEEN+D(TIRVEBREE # Review data
BATUESE, TUA—EIIBFESEI T ENTET, EEDITIANCERT BT display(spark.createDataFrame(sales_pdf))
BEMEN B DET,

CC Tl BRI L - D—THEMCHEELE T, BIRUCREROBELHHENET

2

£

Product_Code Wo L w2 w3 W4 W5 We w7 ws wa w10 w11 W12

FNTULESTENBBINSTT . BEEL THETDICHIRERENNBVESESS e N N R PO T I I LIy T PR

9

TUL DN, ZORIOBYCEODBEICED EE<DRBELEET D ETIEDHEDLENTSE P2 7 6 3 2 7 1 6 3 3 3 2 2 6 2
ZOTHNE. BRERICUERA. BU. I—DUVUY RYVF2I%ES ThRTT —4 P3 7 18 9 10 8 7 13 12 6 14 9 4 7
CHERENZERIDCEICRETDE, COZEZEBEUTCVWRVWEREZEIEIRLUTUE P4 12 8 13 5 9 6 9 3 13 118 4 5 4
L BEEBEVNTLWK CEICRRDIMEBULINERA. TORDDIC, BINSYALD—TZE i : 8 LAl I . £ s b s L e E‘ 4
AUT. SEOEMICREREMZERVUET, £ i s : L 2 8 2 = i ) : ! 2 :
P7 4 8 3 7 8 7 2 3 10 3 5 2 3 4

P8 8 6 10 9 6 8 7 5 0 10 8 8 15 9

%Ez@,ﬁ&%} v hEERHAD

UClT=—4Ftty RURS KU (CHBBERFTELEEREIT Sty bEFERLUT. FtLEN—
ADEERIDFEITINES, (HH : James Tan. jamestansc@suss.edu.sq. > >HR—
JILEERIFEKRE)

BHERMITTR=N, EF‘a‘i@%ﬁi(i?U"@ﬁéﬂi@“o BFHEC & (CARFESNERRmDE
fii#aRUTVWET . T—Ftw MMIEF 8N EORmNHDET,

< databricks


https://archive.ics.uci.edu/ml/index.php
https://archive.ics.uci.edu/ml/datasets/Sales_Transactions_Dataset_Weekly
mailto:jamestansc@suss.edu.sg

FT—AYATI O RAA-RT—ADEY I TV

JO45 0 N — RCRERERIIFE O #5318

# Calculate distance via dynamic time warping between product code and

optimal time series
import numpy as np
import _ucrdtw

def get_keyed_values(s):
return(s[0], s[1:1)

def compute_distance(row):

return(row[0], _ucrdtw.ucrdtw(list(row[1][0:52]), Tlist(optimal_

pattern), 0.05, True)[1])

ts_values = pd.DataFrame(np.apply_along_axis(get_keyed_values, 1, sales_

pdf.values))

distances = pd.DataFrame(np.apply_along_axis(compute_distance, 1, ts_

values.values))
distances.columns =

STESNIEBNERT—T 0 iRt SzERTdcE. EXNISATDTWEEREDDhZE

R3ITENTEFT,.

Counts
[ ] [0 Lo L
(=] (=] (=] (=) g

—
L=}

o, Hmm
=

< databricks

['pcode', 'dtw_dist']

DTW Distances For Fach Pairwise Product Sales Comparison

6 7 8 g 10

Distances

COERHIRIIRE AT LATHRLIZEDTY

ZTHhS., RERRESRICEREBAEVLVERI— R GtESNZ0TW BRI RE/N NSNS
D) ZR/EITDCENTEFI, T—HTIVIRXEZFEO>TNDBDT, SOLOITU%ZED
TREHEIOBIRIDCENTEEXFT., REEVEDOERRUTHFELLD.

%sql

-- Top 10 product codes closest to the optimal sales trend

select pcode, cast(dtw_dist as float) as dtw_dist from distances order
by cast(dtw_dist as float) Timit 10

6.0

o

=]

o

tn

556
5
4
4
3
3

1.5
1.0
0.5
0.00

2
2
P675 P703 P358 PBO7 PB16 P&01 P674 par2 P478 PBI4
pcode

diw_dist
ot o

[=]

[=]

[=]

CHOOTV%Z, &EIGRGE b > R SREEVRRI— ROMLIT DI ELEBICE
ITUTZRER. bLORIECERBEL. R RDSREEVN 2 DORBER/FET DT ENT
EFRU, NS 2D0RE=ZTOY bUT, TNENDEVWZRTHFEL &L D,
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Comparing Optimal Sales Trends with P675 and P7186

35
—s— Optimal Sales Trend
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CEBDLSIC. Bm#675 (AL>ZBO=AF) (&. BXFTLEOEFENEZLDE
BWEDD., sERIRGE hL > RICRBRIYFUTNET (CTNICDNWTIFERIFEE
IEUETY) . COfERIE. DTWEEBINREIEVEMRIC(IE. EBUREUVTNDIARITIX
BZVRMUIEE-—DEINL—NBDEFERENDEH. BBICHIR>TLWETD, (53
Ao BROIEHEREEBIIBEL. BMNRERIDO—TDlzs, BT ECERDET, ) B,
HE#716 (FRDE) (F. REBO—HZRIEMTHD. FEAEZEBIHDEEA.

< databricks

COERHIRIIRE AT LATHRLIZEDTY

RELERZIRYT — DTW DEEBEHV N <
X ARFCEMU TV DIEE

NT. THOFEREES (Mo [RiERFGEIE] ) (CROGIEVRBOUX MITEE
DT, DTW EEBEAV NS VOB IETEMA TV B EBICRDIAD C ENTE DL ICRRD
FU, BHEEULTIE. RDKSBREDONEZSNET ., Bam#202 (& DTW DIEEEH
6.86 THAD(CH L. AODHRIRIEDIESEL7.89TH 0. HHDEmELR N> RICIEFE(C
BIE(CBRELTLETD,

# Review P202 weekly sales
y_p202 = sales_pdf[sales_pdf['Product_code'] == 'P202'].values[0][1:53]

Comparing Optimal Sales Trends with Weekly Sales for P2

—a— Optimal Sales Trend
—r— PfLl0
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MLflow Z{ERU TV —FT+4 I 7T REEBICRA | - FORHI—RlcenEnLET.
— XA MDORGZIEH T D

MLflow (&. EB&. BIRM. BRHZSOMWFEEDOS 1 IO A 0L 2RI B lcodbDA—T

import miflow

def run_DTw(ts_stretch_factor):

SV=ADTSY RNITA—=LTY . T—FTUYDIAD Notebook (&, TRICHETNIE # calculate DTW distance and z-score for each product
MLflow IRIRERMULTHE D, RERDMEM. /I\SA—FPARNIOIZDOY . BROREFR with mlflow.start_run() as run:
EZBITSCENTEFT . MLflow ZEVVEDHDIZHDFFMICDNTIE, PFIAS b= _
me 4 # Log Model using Custom Flavor
L AQISIRN dtw_model = {'stretch_factor' : float(ts_stretch_factor),
"pattern' : optimal_pattern}
MLflow DFRETDHINME, ERERDA>TY MEFOURTY bD2T%R. FROTHRMED m1flow_custom_flavor.log_model(dtw_model, artifact_path="model")
HDHETRBRTEDRICLICHDET ., 7 —FZBBEI DU, "Run” & LTSNS, . - -
— N — i Log our stretch factor parameter to MLflow
FRBROOVZTHT S ENTEXT mlflow.log_param("stretch_factor", ts_stretch_factor)
* PARAMETERS : E5/LADAS # Log the median DTW distance for this run
. METRICS : ESLOHA. = FEFILOBRIIORE mlflow.log_metric("Median Distance", distance_median)
« ARTIFACTS : EFILICKD TR SNZLTD I 7 1)L -PNG IO MM2CSV F—4 # Log artifacts - CSv fileand PNG plot - to MLflow
By & mlflow.log_artifact('zscore_outliers_' + str(ts_stretch_factor) +
& '.csv')
+ MODELS : EFILZDEDTH D, HICUO— RUTTRMBZIRHT B CEHT D LG AT FelC L P e, Dl
TENTEXT, return run.info

=BEDBEE. CNZFERALT. BRI —FICERATERIRADT—TETHD [

N FT7 O] RE(LECRAS, BOREEO—T7ILTUILET -8 LT stretch_factors_to_test = 10.9, .01, 0025, 0.05, 0.1, 0.25, 0.5]

BIETIBDCENTEFEI, MLflow DEEEZFIEL. m1flow.log_param(). run_DTW(n)

m1flow.log_metric(). mlflow.log_artifact(). m1flow.log_model() ZfF>

THEICOF I TEBRRDICTREDIC, AABEBEUATOLSCTYVIUET,
F—ABEETIDEUC, FHNTWVWD [RENLYFI7045—1 )I\SA—=~F00OT &,
DTW EBREXA b Uw ODz XAV (CEDWTIMUEE U THRUEREROOT ZER LEL
2o E5(C. DTWEEREDEA NI S LDKREN (TJ71IL) ZREFIDEETEFHUR,
CNSDORERRTIE. T—FITVYHRACO—HIICHEFEENTSD., RARRERER
BCEICRDODTEPILATEDRLSICIRODTVET,

with mlflow.start_run() as run:
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https://mlflow.org/
https://mlflow.org/
https://www.mlflow.org/docs/latest/index.html
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MLflow N &EREROOT ZRFUZD T, ERZFARTHEFLLD. T—FTIUwVIR
Notebook M5, A LD "Runs” 771 > %EIR U,

I8 Runs ('

ENTNORBROEREZRRUTLHRUTHEL LD,

/Users/denny.lee @databricks.com/HorovodRunner-DL

ariment 1D: 2102416 Artifact Loca dbls ‘databrickemillon 2102418

Derarizag CSV A =E B8

EJ'.:-‘.‘J—"E{E‘;_-L"_.'_-.' denny.ios ar: 0.06 Ciglance-FOSN: 5267007702
5 TREOS0R 8T

i S ALY

1 3. GEAEZIGG010

Digtand - WTH. 546610543855
A 3 T1H0S63044L

1 SINME2rEES

PETA 5.32560830629

P, 5 11006261452

34 5.52193959660

iT. 5.2TO232TTON0

BLZETEFHDEFRAN [ALYF - 75— &g &, REPAIEB RS
LEI. BRNCIE. CNFBCHIEO>TVET, ZILTUXACKBEEZRIAFZ(E
BBCT-—TSEIZTMEE5RDE. T—HIOAENWT 1y hZERDIFDZENTEFET,
ARENC(E FAEDEDIZHICWS DD/ A PR &I TZD T,
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MLflow COOF>TEFT)L

MLflow (&, EER/\SA—FPOXA KNI, EEY) (TOv M2CSV I 71ILDKDSIRE

M) &EOJ(CEIFRT BIEITTRL., MRFEBES)L 20T (5% T DHEEZERF> TLE T,
MLflow DEFTILIE. —B U API [CEEIDLD (EBEILESNZEIAILSFTHD. o

MLflow \Y —JLYo#EE E DEIRMZER U TVET . COHEBEERMEIERCEN T, ED
KDIRPythonEFILTH D THE. Z<DERD A TOABREICRRICERMIDEN
TEFE9,

MLflow (C(&. scikit-learn. Spark MLlib. PyTorch. TensorFlow '2&EZSD. REMNRE L
S—REMEZ SIS UDEL(CHBOEFTILIL—/\—RTUO—-RENTVET,
INBSDEFILIL—/N—F COITOTEETERIAESNTVDELDC, EFILARAIC
BEINCRICOVZZZRLUEED, BO—-RUEDIBRZEEBBICLTINET. HlX
(&, MLflow %Z scikit-learn TER I d%E. EF/LoOF>J(E. EEROHHSUTDI—
REEITIDDEAULSSVHETT,

mlflow.sklearn.log_model(model=sk_model, artifact_path="sk_model_path")

cnickD, Y—RIN—F12DS514TS5Y (XGBoostX° spaCy k&) 0= >F)LiR Python
BMEDEDHISDETIVE. MLilow EFTILEUTREFEIDIZENTEET . Python
HIL—N\ZFEAUVTERESNEZETIIVIE. BUIISRXFTLAAICFIEL. Inference API
ZEUTHDOMLAow Y—IILEHBEFATICENTEFT . ECOI—RT—R(ICHIET
B EIARTIEETIHY. Python BAZESTIL T L —/\—(XAJEERIR D iR TREEDE L)
EDICRDEDCEHETENTVE T, DAY LB O> Y UFHfiZrIgE(C L. ETL
Do—< 3> (EFTY, BHDO IDZ<<D IAK] EFILDOTL—)\—RA>S1>I(C
ROTE, STRUYVIRPython BT L —/N\—FEER [FrvFA—-IL] ELTDE
ZEREL. HSWBFEFED Python I— R & MLflow DERER hSwvF >0V —)LFwv b
CORIDIBELZ L TNET,
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https://databricks.com/blog/2018/09/21/how-to-use-mlflow-to-reproduce-results-and-retrain-saved-keras-ml-models.html
https://databricks.com/wp-content/uploads/2019/04/dtw-mlflow-1.2019-04-27-20_46_35.gif
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Python MEE T L —/\—&F>TEF /)L 2OV (CRETFET DDEHERTOTCATY, EA
BRETFTIWVCEHBTEETIVEVUTREIDCENTEFIIN, 1DDFRHLNHDET. TN
(& pandas @D DataFrame ZA N & UTRIFTED . DataFrame E/z(d NumPy BeF &R E IR T
NEROFRA. COEBHFNEZENES. BEZE MLlow ESILE U THRET DICIE.
PythonModel Z k3 U7z Python SR ZTEHRL. T CTHAT DL D (CHRAS LR

T .predict) AV W REA—)\—=54 RIIBLENHDET,

HBDEITHSOT(ICETFEENIEETI/ILZO— RIS

WS DHDERDA MY F I 705 —2RANTT—IEETUEDT, ROAFTVI(E
RO ERNS, EREMERIL. OJ(CERHUEA NI O (THE U THICENTZESTIL
HERITCEICIRDET ., MLlow Z#ES EOVEFIVEERL. ThEERUTHLWLT—
ATOFAEITSICIE. ROFIEEFERUET

« EF)LZEO—RUEWunDU> 0% )WL TLIES0N,

« [ZEf7ID] ZOE—-UZEY,

s EFILMRESNTUVWR IAIINSYDZEIZAETLTHEET ., IW\cEDIFEE. BT
"model” EWL\WDEZBITY,

o UTDOELSICEFTILIAINAGE N IDZADLTLIESLY,

import custom_flavor as mlflow_custom_flavor

loaded_model = mlflow_custom_flavor.load_model(artifact_path="model', run_
id="'e26961b25c4d4402a9a5a7a679fc8052")
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EFILDHEBERUEESDICEELTWB S EAERT ZHIC, EF)IL2O—RU. &%
new_sales_units TYERLUTEZ2 DOFETRD DTW BB Z HITE T DIcH(ICEHITDI &
NTEFE9,

# use the model to evaluate new products found in ‘new_sales_units’
output = loaded_model.predict(new_sales_units)
print(output)

IRDAFTY T

ZEDXD(C. FAeBEDMLflow EFTILIE. FIUWMETPRZZ LR MBZ EFEHICFRIL T
WET, FJ/=. Inference API [CEHLLTULNBDT., FRDODH—-—EITTSY hIA—A
(Microsoft Azure ML Y2 Amazon Sagemaker 72 &) ([CEFI)LZFT IO LIZD. O—HILD
RESTAPIZ> RRA> h&ELTT IO ULRED. Spark-SOL CREEICERTE?1—Y—%
&% (UDF) Z/ERRLTZED TR ENTEFET,

Ex#(C. Databricks Unified Data Analytics Platform Z{FER LT, 851 LAD—TZFERL
CHRGEEmZ T I 25 F2RBELE UIC. SHI(E. Databricks Runtime for Machine
Learning 2R LTz (75 LEIEZFEIT BIcHDEN S A LT —TF & MLflow DfEHA |
Notebook Z &t L <12&L\,

F—A T 1w X DOERID Notebook &> CTEERFIRH D
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https://pages.databricks.com/rs/094-YMS-629/images/dynamic-time-warping-background.html?_ga=2.233855382.983042554.1590516546-2105806216.1585857288&_gac=1.246744624.1590016694.EAIaIQobChMIpOWx38nD6QIVXx-tBh1JXASHEAAYASAAEgL8oPD_BwE
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BTLeE FHUVWERDEEDHICELS HBIA—N—NBEEDIXEZ T THFEEZ LU TS EE(C, ERREROMANT T SAV—ICL>TENTWS &
.~ o b . ([CENDEFELUR. NEETE. FHERIEBRETE—LOBENREL., HHEREDEHICHELERDS T ECRDET,
14N> MU DERE(E EEEHILT SN TEIRED, BRERNT ITRREBRE UET, COIDRBEQT ICUESELL, HRED

HFERIONE T, HERANDDEEAN ?

HAARNGHER T, BmOBEEI[HECTFATEDITLLD. UNUERICE REROFRTH>TE. FRIMDLE
FCLOTHEZRITDIENG DT, EELE. EMROMIE, SR, REXDOHIE. FRIEHFEEREIC
LOTERIDFT, NEEE, MBHEE, REFEE, YISV —(F BEOZ-—XZEECHLZLDD, BRIR1>

StesE R NUBEEZRNLSICTBEHIC. CNSOBRBCEDEERINEIROERA. BT, BEEBDHONES

Bryan Smith ENEHDOESRAICEIIEEFT .

Rob Saker EEE. PESNZEEAS I EDOCREESNDECBCUY — RS T BT E(CEICEDEATNED, XN
DELE,. FROBERBALESERITECHDITENZL, TOBEZEMRTDEHIC. BELEGRT—SIILRTSWY

202094 H 22H Mot — /s, HAOEPIE. SESNEHUWESILICIEE L TOET.

EARCEBNIZ TR TERRZTE(CTFATEDIDIITERLS, BROFZEDZILICEK D THIMIEX O TZFXKR(TIRD
EBEHDFT ., THd. 2020 FHIEEIC COVID-19 DIRA LR D TAILANDEEN S bA L v hR—)(—Da@mtIns
[LFED R ECHZEFELUTVET, H-E-BOHERIL AT - IRV EROIOAS bCKDE "BE2MNATREL TV
HD% 2 BB TIRGELIZ" EDTETT,

FTESZIKRT DI L(F. COMBOEMIGRRT(EHDFERA. MLy MR—){—DARFA-H—THD>3—
7 ST v orE IO T Iy OOHETR. AXHRICEBFDZET. PAUADOFEINRTETIE ALY b
R—=)\—DHEBEN 40% IBRXDEBEEDZ L TVWELUZ, CNISHIEL T, BEfLE Ly bAR—)C—DEER (CHERL
SNLORER T, FEE%Z 20% BT LN TEHUR, FEAEDTIHZTE. I TIC 24 B 365 HEIE N4 =
BENTHEL CTL\D2e. NI EDEE (C(E, BANFEDEB A TIHDESR(C K DEERDDILANNE LIEDFE
ER
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https://www.forbes.com/sites/brucelee/2020/03/06/how-covid-19-coronavirus-is-leading-to-toilet-paper-shortages/#9b204777a8dd
https://foxsanantonio.com/news/local/h-e-b-president-talks-toilet-paper-shortage-reassures-customers-there-will-be-enough
https://www.usatoday.com/story/money/2020/04/08/coronavirus-shortage-where-has-all-the-toilet-paper-gone/2964143001/
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COLOREESDEING. ERAICHEZRFIRIEENSDFET. TS5 —(3.
TSR ZILK U CEERNZILA UGS (L E L SN ERZMIET DDICEHT
DEBEMNSDDFT ., bALy M=/ —FEHERRBETIN, TOEEG. KE. HF
Ao AR FET. O TOFRMIEN SHEIENSD/ULT &, i THRESNDIBLE

HRAHE CARTF L CVWE T . PIHEBENMEE I D E. A—D—DEET IR ZINFE L.

I UTHETTDETICREAMMNDET.

NI Y THREFENDH T SAF T2 DEEEN . COLDIIAEEREZZZ TL
FI9. UITSAFI—22HROEALBRE. >R NUDKIBIRIENEL, EEY)
MR SOEN, AEMIREERDETHREZS| ISR I IuEeMN'd D FRI. HEZIESE
(CREDETDA—D—INFTEEEG, BITSA VD EEZBRIT IS ONTERD,
ZTOFER. EROYTSA V- EEZBR IS ONNFERDaEEENSDDET, [EE
(CEESNTVRWNES, NEEEDPYTSAT—(F. REMERCR > EEE(TIBRI(
SR NUPDEERENZIRATNDCECRIKMELNEFEA L. HEEBELNBDDEA
IR >R NUDN\y OO0 ZYIRT D1zH(C. BELDEDIMNETLTWD S L
(CRI<hELNFEEA.

ZDITIND«4 v ITHRZERT DIEHICE. FANTFRTDIHFEOTERLEZHFE LN
5. BEOHNZEE(CIRT I DHENSHDET,

ZEA MY IDHICKDINEEREDOEE

COVID-19 /> F 2w oERDEGHEETEDRLZFA TR EEEH UL, TS5
F I —> % EEY B2 TORMBN L URIFNUSIRS 1RO RFERIEOBRLE ORI M5 % i F
SREDICLTVD, HEEGENIEBRNIEERFATH > TE. BEPY—-EX (TS
FTEEFZEL. TNEZEZE L CEBNICERURITNERDEHA.
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BNDFETRNY —)UE BROFEROFEINE. RS> RO ARBPAAXRD M XIR,
JOE—>3>. &K TOMOBRZREDHBERDOHEZEZRL C. FEOFIEZT
FRILE T, INSOY—ILIE FRSNCREOHEBEZERLE I FD>EIDE
ZTED., BODHFDEZDEZ LEBDEFRLTNDIESH., REZB<EREEN DD E
ER

FHFAMEZIRE T D EFEETHDIN . TNERARICEZLRDE. TOMAIORHESE
MEIBEITDETHD. CORMMERMEF. BENLGFEZEDHHZIRHLUTNDEERX
BIENTEFT, COLDICTFAZEERDZET. COFEEDEDED (CHL T REH
EVWDREZIBDDZENTEFT,
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https://sloanreview.mit.edu/article/the-bullwhip-effect-in-supply-chains/
https://www.kinaxis.com/en/blog/preparing-covid-19-and-bullwhip-effect-what-happens-supply-chain-when-you-buy-100-rolls-toilet
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MR CERL, BENLGFEORHH (IERTHD. ULIZA DT, 100% TE2ICHETE

BIEEFHDEFRBA. UN L. ERIQEEZT I Dd0ENSH DT D LAIC, BIENLE

DEHHE(CHIETDRENZD LT DELEED L. AR NUBHERHRDD (RRCE
EXRAEEYTR) 1B D CLZRHMIDIENTEET., TNICKD., FAEBF BIE
HNIRREDOEEBEDOIFEDES(CHLLLDS LT D, MEOIREEEREE >R NUDT
ARDINS > R7%ZED. I—0Y MR OB —ERLNLVEERT D EITIRDFT,

ZDOT—EXLNLDOIFEZER UITHER. FMEEM(CH I 2EEM & LU ToREZzR
TS HEOFRBECHIGT DEHICRBIBZEU LO—EEDORRTEZRE LR
TNERSRNWC ECIRDETT, COREREL. THHERNRARE(CHIET DD
BIRPADIVEECIA T, BfEAHROBERED/I\SORZMDIENS, REOFEDEF &
AE (ZTTERRVN) OEECHIET DENZSZTINET,

WHBIFTZEEELN)LDOFTE

BT SAFT—>OEBRNQEXEAT(E. EEEEFFEDORERM MBI (St
W B2DDRDSEDIDZEERLTEHESND, CORECTIIREORERME(CERZ
HTTWNBDT, FMEERRY— RYALDERBZHHRTDENTE, BERINSE—D
Hi L SNIEZEREOARNER I CENTEET.

BRTEE=2" /7Y, %o,
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—ETEAE. TR, ZEREENTIFEUE (D) DED DEEDFIIR IR AR
(C. AbwoLTWS U\TA=T2R) YA TILOHARE (JPCT) OEHSRZERCZE
DS MIGUEWAEREDERE (2) (CEAETIEZRCZEDEUVTGIEENDZLZE
HMBLTNET ., CORDRBRERIE. TEICHEFEL TVWZIELLEHICD USRIAT D
BNHDFET,

A&, BENFIHEHOOBIENIMEDESFH & U TEEL TV S EZHBALUEULIEN
SEDFRTEZNARELTVWET, HEUZDEHNCOFMBEORED (THECHTRL
TWBEIRES D E. EHEOmMANCH D ZOSHEDIFIHERSTET D ENTEET,
CNEFEERBEL LU THSNTVET ., FEODEEREEL LU TCHEASNDMER (F. FiEE
DEBOEDEFHRDOREZRHLTINET,

CDOEE FFIHEZFLT/INS O APENTND LARELTNDDT, COEEANDIED
55, TOFIBENSEERENVNK ONVFREIT DEEZESHI LN TEDZENAD
MOFRT ., BADMISUZWBENRREBEDEIGZRT 2 (T — EXLNILORFFHEZ
ERYTDIBE. FLFLZEREDSTEDO—EE LU TERT DUEN D DIBEDRERED
BICRDIENTEFT . EOHED/ - > 5T — 7R I DT (CHEIMFERED
HEE (ZOWXNTERSND z A7 EUTHSNTNWET) DTEDERICHDIERDTE
(FD UMD F TN FWCHEzZ ROATREBLLKAHESNTED, A2 SA B
BHRATEFT, LEVR, ZITE —BHICEASNTVDIT - EXLNLORARFE
(CXIET DN DDz AOAT7EZBITLET .
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https://en.wikipedia.org/wiki/Service_level
https://measuringu.com/zcalcp/
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B—EALRNIIEFE Z (zAX37)

80.00% 0.8416
85.00% 1.0364
90.00% 1.2816
95.00% 1.6449
97.00% 1.8808
98.00% 2.0537
99.00% 2.3263
99.90% 3.0902
99.99% 3.7190

REIC. B2EE (JPCT) ZtELTWB U UILOBEERIIECTZEDEETET,
EARSTENMMERIEHIESTHE. CNHIRXOREBEMRERTHDICEZIBRELTL
&0, POUTIE. BEEEZSTEL TV B UILOEEZERLUTVWET. TICKDBR
B BEREMBOFTE(CHERASNIEMEBUEMNTCOBEZERIRT I2NEN DD
EEBOWHSETNBZEDTY, HIXE 7B OILORZEEEZTE LU TULDEA.
AXBEEREZFA LU CREDIZEREZTELUTVWBIRD., COHMIE 7 DESEBZED
CENTEFET,

EEDEISDODETZRIEEDIDIFE UL

KEM(CF, BREBEDTOLERGOHEGIFECHETT., YTSAFI—2IRD
A bOEETEF. ZEEFUFUIETEEOBEDEZRH SN, TN SHERDRER
ERDETABEITDIENTEFT, U—EXLNILOHFHENSZ 5N E. I<ICzX
OA7ZESHU. TOERLANLVEBIZICODRETEDEH 2T EHDIENTEE
9. LU, INSOEFERES> TLDM PR<EE BEAEBRMTE>RVNENDS
BARMREDI TEMED TVET,

< databricks
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ZEAEDNETHEELRDDE. FEOFRERETHD. HER(E. FANFTELTN
DIROHEDORZE(CEAEULEBZMD C E(TRFLTWET . KERIIDOZENREL
TR EFBHTHTT . TDRODIC, ZNURIULIEUET—HD > ROOZEEIRR
JNF=2TEELET . AR MOSEIEIRERFERRICEBE DR EZRFUET .

COMBEERIRTDIEHIC. BTSAFT—> - VIRIDTT - )\wo—(3UIEUIE.

FEDERREDOAN D (CZHEFIYEZE (RMSE) ™IHITHETEE (MAE) DXSAFHIEE
ZDOREZRBUEIN. CNSDEFERD (BEIDIMETEHDEITN) #lerex
ULTWEY, CNEFULIFUEEERTEEOEHZE/NHE T D E(CDRMNDFEIMN. D
F v — N TlE 95% DEAFFEZRE U2 ICEMINDS T, 92.7% DY —EXLN)LONER S
NTWBZENRESNTNET,

Fle. BEALDOTFRAETIVE, FRFIHEZSTEURNSIREZR/IMET DK D (CHEEE
LTWBTzsh, KRR EIC, EFTILDINT A =X > ADE LA/ NHi D EZ BbE
BCUERSIZEN KL HBDFET . ZLDNBERENRRSN VDT —EXLANILOERRF
BICAN > TEALTUVRICEMNNDST . ZDIFEAENTDEIZRZER TETLVRL
EVWDSRHEDILED (F. COZTENERICHDEEZSNFT,
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https://medium.com/focal-systems/because-of-click-and-pick-retailers-now-realize-their-on-shelf-availability-scores-are-incorrect-1e21c94247ab
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SEROBRLES LT —HF TV IIANTEDXIE

BIRE(CHIL T DIZHDEERE . TEHERA MY IDIETEDRRZEH#HMIT D ET
J. ST TIIBETCEDZLIFEFEALELDFEA.

FIANDHAFTED. BEHR MY THEZNET DLV SIHELZERNDIZH(C. FEDE
ZLORHEET DRIMETERT DIZHCMDHATNETIN, TNZEDKSTITIN
SENEDNTEIOZEIHINMEESNTVERA. Fo. INSDORIZE K DR (CER
TEBRDCTBHDYIT RITT . ILKFHHATEDIEDTEHDFEA

SDECBF. YTSAFI—DEREDERCE. BEDOY—EXLN)LOEREZIEE
(CAREFEL. BIEMNERSN TLWDINE DN EHEET D LZM<HEIDULITVNERNE T,
NI BEOEBEELEFRCBEDTFRAZEE(CHAENDEDI I ENVETH D, K
DT —HINR—=X + TSV R ITA—=ALCT—FZREFITDICETX N IND 8D, <D
HETEBEOFAPRFLANILDY—X - T—=FZ2FRFLTVWEEAN, 75T v
DADKSIRTSY b T — LB U TR SN A T REtERbtiaFIA L TP o
TATEIRMETEMSNIZER TRESNZT —YZ/F DTS RR—IADA hL—
TEERITDILET, ARMIENEMLEL, Z<L0E#TITY - JITA -T2 ADME E
ZREITDZENTEFT,

BEMEEETZIIUESNIZTILT A ILAS AT LREASTN, Z<DOBAA>S

A>BEVOT7YTIA> KT (BOPIS) EFILICMHEBLEENDLDICKED., FXIILI«IL

A2 MIEATBUTIVIA LDT —F2EpUindd & BEEF>IDT—FZERALTE
EYINORIREZIRE U, BiIfFeNDd Y —EXLNIERHAD >R NUBRSEZB
Ml I DWEMERT CEZLEBOLDCTIADETT, CNSDODHOERITICHIBR=NTLE
HEEEE. LTOXSIBDHZEITOTNET,
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BHDIL—F>TE. TR ECHMUTRELEWVGENSHDFET, T—FTUv D
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import pandas as pd
from fbprophet import Prophet

# instantiate the model and set parameters
model = Prophet(
interval_width=0.95,
growth="'Tinear"',
daily_seasonality=False,
weekly_seasonality=True,
yearly_seasonality=True,
seasonality_mode="multiplicative'

)

# fit the model to historical data
model . fit(history_pd)

EFINET—FICHTIEHDZENTEEDT,. TNZEFED>TI0 HEDFRIZII TTHE
UL D, UXTFDOO—RTIE. prophet D make_future_dataframe XVw RZEFERA LT, BE
DBRftE 0 BUEOBRMOmAZSOT—IY MEEELTLET,

future_pd = model.make_future_dataframe(
periods=90,
freq="d",
include_history=True

)

# predict over the dataset
forecast_pd = model.predict(future_pd)
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predict_fig = model.plot(forecast_pd, xlabel="date', ylabel='sales")
display(fig)
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@pandas_udf(result_schema, PandasUDFType.GROUPED_MAP)
def forecast_store_item(history_pd):

# instantiate the model, configure the parameters
model = Prophet(
interval_width=0.95,
growth="'Tinear"',
daily_seasonality=False,
weekly_seasonality=True,
yearly_seasonality=True,
seasonality_mode="multiplicative'

)

# fit the model
model . fit(history_pd)

# configure predictions

future_pd = model.make_future_dataframe(
periods=90,
freg="d",
include_history=True

)

# make predictions
results_pd = model.predict(future_pd)

# .

# return predictions
return results_pd
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from pyspark.sqgl.functions import current_date

results = (
store_item_history
.groupBy('store', 'item')
.apply(forecast_store_item)
.withColumn('training_date', current_date())

)
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step maps a unit of time in the real world. In this case 1 step is 1 hour of time. Total steps 744 (30 days simulation).

Column Name Description

type CASH-IN, CASH-OUT, DEBIT, PAYMENT and TRANSFER.
amount amount of the transaction in local currency.

nameQrig customer who started the transaction

oldbalanceQrg initial balance before the transaction
newbalanceOrig new balance after the transaction
nameDest customer who is the recipient of the transaction

oldbalanceDest  initial balance recipient before the transaction. Note that there is not information for customers that start with M (Merchants).
newbalanceDest new balance recipient after the transaction. Note that there is not information for customers that start with M (Merchants).

T —HEIRD

DataFrame OD{ERK : Databricks File System (DBFS) (CF—4%77w JO— RUIEDT.

Spark SQL Z{#> THRE < i (C DataFrames Z{FR I D ENTEE T,

# Create df DataFrame which contains our simulated financial fraud

detection dataset

df = spark.sqgl (“select step, type, amount,
oldbalanceOrg, newbalanceOrig, nameDest,

< databricks

nameOrig,
oldbalanceDest,
newbalanceDest from sim  fin fraud detection”)

DataFrame Z{ERL UT=DT. AF—TERFIID 1,000 1728 B TCT— 95 HRELUTHEL L

Do

COERHIRIIRE AT LATHRLIZEDTY

# Review the schema of your data

df .printSchema ()

root

step

b | | | [ || et [

step: integer (nullable = true)

type: string (nullable = true)

amount: double (nullable = true)
nameOrig: string (nullable = true)
oldbalanceOrg: double (nullable = true)
newbalanceOrig: double (nullable = true)
nameDest: string (nullable = true)
oldbalanceDest: double (nullable = true)

newbalanceDest: double (nullable = true)

type amount nameOrig oldbalanceOrg newbalanceOrig nameDest
PAYMENT 9839.64 1231006815 170136 160296.36 M1979787155
PAYMENT 1864.28 1666544295 21249 19384.72 M2044282225
TRANSFER 181 C1305486145 181 0 553264065
CASH_OUT 181 840083671 181 o 38997010
PAYMENT 11668.14 €2048537720 41554 29885.86 M1230701703
PAYMENT 7817.71 80045638 53860 46042.29 M573487274
PAYMENT 7107.77 154988899 183195 176087.23 M408069119
PAYMENT 7861.64 €1912850431 176087.23 168225.59 M633326333

nnnnnnnnnnnnnnn m4necn4nnnG e n A4 TonNNanA

cldbalanceDest
0

0

1]

21182

b | O (o | o
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https://www.kaggle.com/ntnu-testimon/paysim1
https://docs.azuredatabricks.net/user-guide/importing-data.html#import-data
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NS> YOS 3> DiEsE

T—AZEFRELUT. T—IHHER TUV\DEE| DIEE & £ARDEG I EN\DEIEZIEE U
THELL D,

%sql
-- Organize by Type
select type, count(l) from financials group by type

o
22% W TRANSFER

B CASH_IN
B CASH_OUT
B PAYMENT
W DEBT

Fle. EOLKBSVDOEEAIZONEIEET D2 (C. BBIOEAICIKE Uz —51°, IRED
BEE (RFDAT) (CHIIFSERLEEERIELTHEILL D,

%sql
select type, sum(amount) from financials group by type

sum@maunt)
5

DEB™

< databricks
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JL—=IR—=ZXDEFIL

EFI)ILVZINRT D72 BIRIDOARESHIDRIFEILT —F 2y b5t D Z &80
TL&D. FEAEDERNIRTTUT—23>Tld. RIERFSF—2(F RAA>D
HRICK D> THRILZSNTZE—EDIL—ILICK D> THEBIESNET. ZZTlE INs5SDIL—
JVICEDNWT [SNL] EENDFZERRLET .

# Rules to Identify Known Fraud-based
df = df.withcolumn("label",
F.when(
(
(df.oldbalanceorg <= 56900) & (df.type ==
"TRANSFER") & (df.newbalanceDest <= 105)) | ( (df.oldbalanceorg > 56900)
& (df.newbalanceorig <= 12)) | ( (df.oldbalanceorg > 56900) & (df.
newbalanceorig > 12) & (df.amount > 1160000)

), 1
) .otherwise(0))

IL=ILT I SOMIToONET—SDEIHRAE

ZDEDIIL—ILTE. DEDDEDARETRICTSTNITENDZENZNTY., T
SO SNEEBIOEZFUELTHEL & Do CDIL—ILT[E. T—XDF) 4%, #FILEE
DN% P ARETRELTISITNIZITENTVDZEN/DONDET,

%sql
select label, count(l) as ‘Transactions’, sun(amount) as ‘Total Amount’
from financials_labeled group by Tlabel

label
Transactions Total Amount R

4%
‘ 1% I L

96% o 5 0
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Z<DiHE. TSV IRy OIMNRFZITO—F TERERMNTEFEA. FI. RXA

SOBEFIRE. BEERBINARETATHD EHFESNTCONZIEFET D2HENHDFET.

ZUT. 7023 hmsndiza. sHUIEE TR ARSNRITNERD FEA. BEBR

ERSEHECAHERTETIETILTCHD, TOI—RT—ADHEFEEEUTCRETI ., T+
223> - WU—(CDWTIE. ZoTJ0OY [Thewiseoldtree] ZFHATHTLIEEL),
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o0 s 10 15 20 EDITDIEDEEETY
g [+] [¢] [e]
(a) ib}

N—Z20tw bDIERK

MLEFTILZHEBE LU TIRIEI D/28I(C, .randomsplit ZAL\T 80/20 DEIZITLVET,
ZNICED, bL—Z20DEDICT—HFD 8% HS A NTEIRL., FRDD20% s
BOMEEDIEDICHERUE T,

# Split our dataset between training and test datasets
(train, test) = df.randomsplit([0.8, 0.2], seed=12345)

< databricks
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WRFEBETILDINA TS > DIERK

EFILDT—I%#FITBIEH(C, £9'. .StringIndexer ZFERALTHTIUEE =
BUBICEBRURITNERDERFA. RIS, EFILICERLUEWETORHZ 7> TJ)LL
RITNUERBDFERA. REAETILICINZ T, CNSOFEERATY T Z2E20/)\(TS
A >&ERR L. BIRDT—FTY NTCINSDATY I ZRDIRT CENTEBRLDICL
9, BUCEBT A\ ATSA>mBEETE. BOXTYVITTIA N —SDEHE
(CEAITBCESERELTLEE0,

from pyspark.ml import Pipeline

from pyspark.ml.feature import StringIndexer

from pyspark.ml.feature import

VectorAssembler

from pyspark.ml.classification import DecisionTreeClassifier

# Encodes a string column of labels to a column of label indices
indexer = StringIndexer(inputCol = "type", outputCol = "typeIndexed")

# VectorAssembler is a transformer that combines a given Tist of columns
into a single vector column

va = VectorAssembler(inputCols = ["typeIndexed", "amount",
"oldbalanceorg", "newbalanceorig",

"oldbalanceDest", "newbalanceDest", "orgbDiff", "destDiff"], outputCol =
"features™)

# Using the DecisionTree classifier model
dt = DecisionTreeclassifier(labelcol = "label", featurescCol = "features",
seed = 54321, maxDepth = 5)

# Create our pipeline stages
pipeline = Pipeline(stages=[indexer, va, dt])

# View the Decision Tree model (prior to Crossvalidator)
dt_model = pipeline.fit(train)
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J— RTCERESNIEREEZFDPHI T4 v M EFTILERRIDCENTEET., Nl
I TUX LD EDKIDICUTHERDFAUBICRIE U\ ZIBfR T DDIC/IIBET,

display(dt_model.stages[-1])
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< databricks
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EFIIFa1—=—>7

BBV U —ETILNESNDC EZMER T DIZHIC. W<DHDINSA—=FD)NU T —
S ERAWTETINERERIVLET . HLDT—IN96% DEDT—A & 4% DIED
T—ATEMRENTVBDDT., NMNIFRDM7ZRAT D=8 Precision-Recall (PR) 5l
AN OZFBEALUET,

from pyspark.ml.tuning import Crossvalidator, ParamGridBuilder

# Build the grid of different parameters
paramGrid = ParamGridBuilder() \
.addGrid(dt.maxpepth, [5, 10, 15]) \
.addGrid(dt.maxBins, [10, 20, 30]) \
.buildQ

# Build out the cross validation

crossval = Crossvalidator(estimator = dt,
estimatorParamMaps = paramGrid,
evaluator = evaluatorPR,
numFolds = 3)

# Build the cv pipeline
pipelineCv = Pipeline(stages=[indexer, va, crossval])

# Train the model using the pipeline, parameter grid, and preceding
BinaryClassificationEvaluator
cvModel_u = pipelinecv.fit(train)
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T ) LI%EE DSADINS D REED

FBLyY hEFR My hOEE-U—)L (PR) & ROCBHFR FEAE (AUC) %LEET S CDEFTILE. TDIL—=ILOHBI LT —RKDE 2421152 < DT —REHBILTNB T
TET. BEFIVETHIIT B, PREAUC (FEBICIEEICH L MERTR U, ERDMDET, TNE. KDZLOBENRBAESHAERETIZEFRVTENEL

NIRVDT, ZNEELRITBEEDTETEBDERA. UNL. FILTUXAILED
# BL_Jﬂd the best model (training and_test datasets) t*ﬁtﬂén@b\')th\ 773’74%}:?3“_CL\7_«:7_173\‘58 {42350353_0 ﬂxﬁ:g(;\ 7\/@—
=Sl g e BTV IRBAUTISADINS S A% EZTET, FAIERSSICHELLISELT
o N . WET, DFED. 2 TORESHZELTHEE. TORCTEDE TIFRESH=ZSF I Y
D = TR, AR e BT S TUSIUT, NSZRADENET Y MEBBDTY., HLLT—5ty T
aue_train = FULITDE AIRES —DT—ZANEL([LIRDTVBR T ENDONDET,

evaluatorAuC.evaluate(train_pred)

# Evaluate the model on test datasets
pr_test = evaluatorPR.evaluate(test_pred)
auc_test =

# Reset the DataFrames for no fraud ( dfn’) and fraud ( dfy’)
dfn = train.filter(train.label == 0)

evaluatorAuC.evaluate (test_pred) dfy = train.filter(train.label == 1)
# Print out the PR and AUC values z Ealcu1ate Sugﬁiry metrics
print("PR train:", pr_train) = d;a126C2:2)

print("AuC train:", auc_train) g - y/ﬁ' u

print("PR test:", pr_test)
print("AUC test:", auc_test)

# Create a more balanced training dataset
train_b = dfn.sample(False, p, seed = 92285).union(dfy)

# Output: # . .
# PR train: 0.9537894984523128 Jrintoout metrics . . o
# AUC train: 0.998647996459481 print("Total count: %s, Fraud cases count: %s, Proportion of fraud cases: %s" % (N, vy,
# PR test: 0.9539170535377599 p)) print("Balanced training dataset count: %s" % train_b.count())
# AUC test: 0.9984378183482442
# Output:
_ ; # Total count: 5090394, Fraud cases count: 204865, Proportion of fraud cases:
Confusion Matrix (Unbalanced Test) e 0.040245411258932016
# Balanced training dataset count: 401898
) 105000¢ T
EFILDEDLD ([CHERZ . -
~ y Fraud [ 50717 58 1 900000 # Display our more balanced training dataset
Eﬁﬁ;ﬁ btb"i’%ét&)(:\ display(train_b.groupBy("label™).count())
. 750000
Matplotlib & pandas & {#F 3
= —— o
UCRAFIETIRELT ¢ 500000
=
FHELEL D, | 0000
Mo Fraud 2421 1219030 {300000 label
N 1
1150000 H o

53

< databricks



F—AYATI O RA—RAT—ADEYVI T v

INATSA > DOEH

ZNTE. MLI\ATSA>%#FBHUT, HTuWIORI\UF—I%ERLTHELL D,
MLINA TSA > FRALTVNBDT. LW —Fty RTEHIDEITT,. I<ICAL
INATSA > DFIEEEDRIT CENTEET,

# Re-run the same ML pipeline (including parameters grid)
crossval_b = Crossvalidator(estimator = dt,
estimatorParammaps = paramGrid,

evaluator = evaluatorAuc,

numrFolds = 3)

pipelineCv_b = Pipeline(stages=[indexer, va, crossval_b])

# Train the model using the pipeline, parameter grid, and
BinaryClassificationEvaluator using the train_b  dataset
cvModel_b = pipelinecv_b.fit(train_b)

# Build the best model (balanced training and full test
datasets)

train_pred_b = cvModel_b.transform(train_b)

test_pred_b = cvModel_b.transform(test)

# Evaluate the model on the balanced training datasets
pr_train_b = evaluatorpPR.evaluate(train_pred_b)
auc_train_b = evaluatorAucC.evaluate(train_pred_b)

# Evaluate the model on full test datasets
pr_test_b = evaluatorPR.evaluate(test_pred_b)
auc_test_b = evaluatorAuC.evaluate(test_pred_b)

# Print out the PR and AUC values
print("PR train:", pr_train_b)
print("AuC train:", auc_train_b)
print("PR test:", pr_test_b)
print("AuC test:", auc_test_b)

# Output:

# PR train: 0.999629161563572

# AUC train: 0.9998071389056655
# PR test: 0.9904709171789063

# AUC test: 0.9997903902204509

< databricks
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fakx RIEY

Tld. HFUWRELY MUY OXDEREZRTHFELLD. TOEFTIVUE. RIERT—X%Z 1
DREFERFEBLULTWELUZ, ISRDINS2RAZEDZET, EFIILERE=NZLD T,

Confusion Matrix (Balanced Test)
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1050000

Fraud | 50774 1 1 900000

750000
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4150000

&
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HEDZHICETIVIER=NZS. ETIUDELEELDHDITEHZH#HII L TLD L7
HE(CTDZHIC, MEHCT«— RNy IZIRELTZVWEEXTNET ., JIL—ILR—X
DSNILDBSIEHTNDBDT, ABDT +« — R\ DICEDNWTHRIEESNTZEED SN LZ
FEROEFIVICRHEUIZWVWEER TVWET ., CORKIIE, #RFETOXDEREEE
MM I DEHICHECEECTT, VFIRXMNIETCDT—RZLE2I -T2 &F
TERVDT, EFIIDHEDZIREET DEHICIBE(SEEINZT —AZIRRIDELDICL
TEWEBRTVWET, HIXIE. ET/ILOEEEMENTFAIE. 7FUXMMILEZ—-T3
DISBUARHEIRDEF T, COXDIRT« — RN INEBMENDZET, EFILFE
LT DRR(CEDETHESN. EEUKITD T EARIESNE T,

MLflow (&, ERBEFILD/N—3>ZFBIIRIC. COYAUIL2kzEL CTIhzb
ZANFTTNE T, BRIDIETIVERNA/ (SA—SFDERELLE LRANS, KERZIBIN T
BDTENTEFEY, HIXE. Tl MLflowUl ZES T, /NS> ROENTET—FZY
NEINSORDENTUWVRWT—F1Y RTEEBUREETILDOPR EAUCZLER T D&
MNTEXI, T—FHATIT>FT 0 A NI MLflowZEFERAULU T, BLRBREFTILOAKNIIX
o, EBIMDERIEREZEI T 2 ENTE, EOTETIVEABRIB(CEAIARAETN
O¥IZNT B ENTEET, T—HFIOF(E, BRUEETILE L —Z2T(C
FERULESAISUDN—>3>ZjarJ7(ILEUTRHBEICEELT. ABOHLWT—
SDICEBHAITDICENTEEI ., COLDIC. EFIDERZLEDI—-TB3RAAM>ITFX
IN=b. EFINZEFHITZDT—HFYAI T A b KETEFTIZERHIZT—FI>
ST OROEEE. COREITOCAZBEL TE#EENET.

< databricks

MLfiw
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/Users/denny.lee@databricks.com/SA Blogs/Fraud-Detection

Expariment I0: 866112 Artifact Location: dbfsidatabrcksimifiowiB66112
Saarch Runs: H | Stats
Fiser Params: Filter Metrics:
Download CSV & = B
[
2019-03-18 17:38:24 denmy.lea Fiman. .. baanced: yes
2019-09-18 164539 denny.les Firean, .. balanced: o

Agtive -

Clear

IC tast: 09560023758
JC wain:  0.99980460125...
tesl: 0.9804B046348. .

ain: 0.DP96242E304. ..

AL fesd:  0.85820835378...

i 0.9G86XI22595,

Fotest:  0.95389585195...

PH raln: 095428742388,
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w5
JIL—=IIR—=ZADAREMRIN SNV ZFER L. Databricks with MLflow Z{#EH U T EZ €S
JVCERI B EDFIZELEa—UFE U, COFTO—F(CKID, RT—ZTILTE
Ta-IUEENEV VU1 -3 FBEIDICENTE. BICELUKRITBAIRETEDIN
H—2(CHET D ENTEET, FNETAEIFET DIZODMIRFEZEST )L ZEETD
CET. BEFI)IVEELSE. FTEBAREITROUIREMEDH D/)\F— 2 ZFET DI2HD
T4 — RN OI—T&EKTDZENTEET, FITREARAETILIE. TDEIRD U
ITEEBNIZRBEDIESD. MMFBZAETARINTOIS AICEATIBEOEREREL
TRECHDIZEMDMDELUE.

COBMDHEAHCT =TIV IRDTSY NI A —LZFERATDIARETRBRAUY ME, T—
FHATIT T4 AN I22Z7, EZSRRA Y-S —ALRGEEUTEETES
CETY, JOBRZEERULET. 7—FDHEE. EFILOWEE, EROEE. EFILD
ABEANDIEAZR U TSY R IA—LLTITSIZENTEDRSCRAD., INETITRWL
OSSR —2 3> egiliRRDFELE, CO7TO-FICLD. TNETHOELTWL
feF— ABOEFERMRENBEIN. RN THAFIVIRRERINTOT S AICDRH
NEI,

DINED TER NSATILICEWLIAAT. D Notebook ZiHUTHT. BDDETI)LAE
YEDRRSD THTIELIMTUL L DHY.

F—A T 1w DRI Notebook & {F > TEEREIEDH D

< databricks
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558E  Virgin Hyperloop One #ht
Koalas Z & A U TR 2
HESEbSHO (CEELIESE

Pandas D _1— K% Apache
Spark™ (C=— AL X(CHIDEX
BDIEHDT 1 —ILRHA R

bl iR

Patryk Oleniuk

Sandhya Raghavan

20194 8 H 22 H

< databricks
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Virgin Hyperloop One T(&. Hyperloop ZIREDEDE L. MESHDRAE— RTEEDPEY ZBHIEDIZENTED
KSCUTWEITN, ZOOX MIMZEFRITOMRZD—HTY . EHENICEITARRI AT LAZBEITDEHC. Fhe
5(E Devioop TA N RS WOIDFEIT, ZEDTAKNIT, HLRBEIZaL—23>, 41275, #a2BB&T -1 E.
EATEZHERBEDT —FZREL. DPHLTVET, CNBSDFT—FEIRDRIUT bDIFEAE. pandas A1 >
DT =LY —)LEUT, PythonSAITSUZRED TENMTED, 2 TEZRNATVNEYT., CDITOJEETIE.
Koalas Z{#> T —ADMERT—U>T0 U, D3N — REETARERRAE—- RV IZRRUIBRBRZHEL
TEWERBWET,

=B EUST. TUWBDZEEDKRITDE. T—FUWBD—_—XEF/FEDFET ., T —FUIBDIMIEEEBH NS
LTEefes. pandas RX—XXD Python ATV T K TlE. ESRRADZ—XZMEET (CEFR_ANMND TETTLE U,
TCT. BRQLIBRE EFZFRRT IR —2, AFTIYORTORT—-SEUFT 1 ZRAF LT Spark ZHAUE
Ufze UM U. pandas ANR—ZADT— RAR—X % PySpark [CHATIBIEHICE. Z<DAHREY LAEBEITORTNI
DFEHATUR. KDERRZITTRL, BENCEI - ROEESMAZLELE LW U I -3 > MR EBTUR,
CHOEORBAECEMULILIESE. MMOEBRBEZEABIT D E(CRDELEN. COLIRERIRATY I ZXF WY
TIDHERFENSDDZEZREL. IFERBICEULCBRVELR,

Koalas @ Readme [CAT DL D CEEEH N TULET

Koalas 7O=x %7 (&, Apache Spark ®M_E(C pandas DataFrame APl &E&EIT D ETEYVIFT—IEIRSED
T—APAIT T4 A NDEERZZHTNET,

(...)
9 CIC pandas ([CHBBEL CTL\BIHE (L. FHBER/ALU T Spark Z{E> T S (CEEMZ LT ENTEFET,

Pandas (X b, KD/INERF—Ftzw ) & Spark (DRI —FtwY N OmMATENEIT DE—DI— RR—IX%Z
BOoTLWET,
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CDFEEETIE. NN (FEAEDHE) EEXTHDZEE. 1t Koalas K5 U TH DA
BIH DD ZERUTHEZWERBUET, Pandas D 1% KBDITICEEZNMZDZ LT,

Koalas & Spark Zff> CO— RZEFEITI D ENTETH Ue. ETHRHE (SEFR N 550
E0MBMEICERTEELREL. KEABADIT —)UNaEERIRIELRD T, 5(C%<
DT —FICHIETEDLDICIRDFE LS.

DAYVIRXT— b

Koalas Z-1 > XA b—J)L 9 BAEIIC. Spark IS AAIMKESNTULT, PySpark TERTE3
CEEERUTLSESV. ZTDE, FITIBEIFTT,

pip install koalas

F/z(F. condadD1—HF—DfzIC

conda install koalas -c conda-forge

¥ U <& Koalas MReadme ZSBB LT ZE0)\,

import databricks.koalas as ks

kdf = ks.pataFrame({'columnl':[4.0, 8.0]1}, {'column2':[1.0, 2.0]})
kdf

< databricks
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: . P [l v = X%
1 import databricks.koalas as ks
2 kdf = ks.DataFrame({'columnl':[4.0, 8.0], 'column2':[1.0, 2.08]})
3 kdf
v (2) Spark Jobs
columnl  column2
1 a0 2.0
a 4.0 1.0
4
Command toock 2.13 seconds oy patryk.oleniukiehyperloop-one.com at 8/87201%, 12:48:05 PH on ML Analytics
Cluster

BTDOEBD., KoalasEpandas DL SRRA ST TRFT—T)L&EL AU TTS
CENTEXET, IEECEHTT,

EARIBEDH

CDEEFEDHIC, 4IITHERK. 1782/ \(SA—FLUIET AN —FZERLFEL,

import pandas as pd

## generate 1M rows of test data

pdf = generate_pd_test_data( le6 )
pdf.head(3)

>>> timestamp pod_id trip_id speed_mph
0 7.522523 pod_13 trip_6 79.340006

1 22.029855 pod_5 trip_22 65.202122

2 21.473178 pod_20 trip_10 669.901507

®REFER

CNUINT A = > AFHICERETND S A LACERESNIET A NI 7A)ILT.
Hyperloop D REW O (CEHELTWEITH, HHDFT—FZ2XRIEDTEHDERA. D
EBIFEHAINETARRIUT FOEX(ITBESHSTEWZEITET.
https://qgist.qgithub.com/patryk-oleniuk/043f97 ae9c405cbd13b6977e7e6d6fbc
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BIZ (L, £TORY REUYWTT, WD DOEERE RO ZTHMECZWEBOET,
Ry RN w1 [EldG e D OREHIER(F ?

RDOARL -3 > ETY,
1. ['pod_id' 'trip_id'] TTIL—F{LLZE T,

2. NUwITZ &L, REDIALREI 2T -BIIDTA LRAF > T EUT trip_time Z5tE
L/asg_o

3. Ry RNDw TREION M (FE19, stddev) DEtE
58 <TEL (Pandas) - A=Y b #1

import pandas as pd

# take the grouped.max (last timestamp) and join with grouped.min (first
timestamp)

gdf = pdf.groupby([‘pod_id’,’trip_id’]).agg({‘timestamp’: [‘min’, ’max’]})
gdf.columns = [‘timestamp_first’,’timestamp_last’]

gdf[‘trip_time_sec’] = gdf[‘timestamp_last’] - gdf[‘timestamp_first’]
gdf[ ‘trip_time_hours’] = gdf[‘trip_time_sec’] / 3600.0

# calculate the statistics on trip times

pd_result = gdf.describe()

< databricks

COERHIRIIRE AT LATHRLIZEDTY

R < T&EL (PySpark) - A=Y b #2

import pyspark as spark

# import pandas df to spark (this 1line is not used for profiling)

sdf = spark.createbataFrame(pdf)

# sort by timestamp and groupby

sdf = sdf.sort(desc('timestamp'))

sdf = sdf.groupBy("pod_id", "trip_id").agg(F.max('timestamp').
alias('timestamp_last'), F.min('timestamp').alias('timestamp_first'))

# add another column trip_time_sec as the difference between first and
Tast

sdf = sdf.withColumn('trip_time_sec', sdf2['timestamp_Tlast'] -
sdf2['timestamp_first'])

sdf = sdf.withColumn('trip_time_hours', sdf3['trip_time_sec'] / 3600.0)
# calculate the statistics on trip times
sdf4.select(F.col('timestamp_Tlast'),F.col('timestamp_first'),F.col('trip_
time_sec'),F.col('trip_time_hours')) .summary().toPandas()

5H< TR (Koalas) - A=Y N #3

import databricks.koalas as ks

# import pandas df to koalas (and so also spark) (this 1ine is not used
for profiling)

kdf = ks.from_pandas(pdf)

# the code below is the same as the pandas version

gdf = kdf.groupby(['pod_id', "trip_id']).agg({'timestamp':
['min','max']})

gdf.columns = ['timestamp_first','timestamp_last']
gdf['trip_time_sec'] = gdf['timestamp_last'] - gdf['timestamp_first']
gdf['trip_time_hours'] = gdf['trip_time_sec'] / 3600.0

ks_result = gdf.describe().to_pandas()

AZRY b1 E#3([EDNTE. O—RAE<EURDT, [Spark DUIDEZ] (F>—A
LATHDZEISEFRUTLIZEE, (FEAED pandas XTUT MMIDWLTIE,. import
pandas databricks.koalas Z pd EUCEBE U TCHDZCEBTEFXEI L. LW DHDATY
7 & TSR DHIRBENSDDEIN, WHABRZINI CERBR<EEITDED
EHDFT,
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S =BI(CERERM : UDF CEM7M IR/

P2TDRZNRY ~ME. BU pod-trip-times DFERZIR T & EQER SN TLVE I, Pandas SE(XE U DataFrame Z{E > TS (CHEMIRRERECHKEK L. pandas &Koalas DEFRDIEL)
& Spark DEEIRAE E BRI AEE. S THBURKDICEFTERDEIN NNTOA—-< ZRTHELL D,

SRICEHERDRELRNETTY,
BE : Ry RV Y TEISHZO DFEGREZ DT D

B> I)IiER 1. [pod_id'trip id'] T IL—F1t
2. R RENUWTZTE(C, BE () Fv— MOTOMEIEERSD T, ez itE

9B (CCTHIAULEAE)
1 ks_result[['summary', "trip_time_hours']] Wi e "
- - 3. J)IL—F{tE=nN/zdf%z timestamp B TY — K93
PeEbbeal: 4 A LRI TDENEFETS
summa rip_time_hour .
; : o tme 52: 5. REEDENERET B —TORMOESD TR LIZIERICRDET,
cou
1 mean  0.5751789650162432 6. distance_travelled F)& &5t D —Rw R NUwW T EDOBEIERIODSETH R RSNE T,
4 (enker JD00s6rIRIGES/ I 7. KRiTEEME % timestamp.last - timestamp.first & U CEtE& 9 B,
3 min 0.5539411 756993352 (WEQSEODJ:'B (:)
4 25% 0.5739794243951338
2 Wi R 8. average_speed % distance_travelled /trip time & U CETEI D
6 2ok DarRhdnanisnain 9. ARw R hNUWTBRIDDM (F9, stddev) ZEtE TS
7 max  0.5831203330956781 . " . "
CDAIRDE, WAL LNERBEEEI—Y —TFEEFBE (UDF) ZF>TEEIDEICL
{ took 8.82 secands —- by patryk.olendiuk@Ehyper loop—on ~om at BfR/20189 sBE-14 PM pn ML ’ EL/?_CO
Analytics Cluster
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https://www.kdnuggets.com/2016/01/python-data-science-pandas-spark-dataframe-differences.html
https://www.quora.com/How-do-I-find-the-total-distance-covered-from-a-velocity-time-graph
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Pandas- A=Y b #4

import pandas as pd
def calc_distance_from_speed( gdf ):
gdf = gdf.sort_values('timestamp')
gdf['time_diff'] = gdf['timestamp'].diff()
return pd.DataFrame({
'distance_miles':[ (gdf['time_diff']*gdf['speed_mph']).sum()],
"travel_time_sec': [ gdf['timestamp'].iloc[-1] - gdf['timestamp'].iloc[0] ]
b
results = df.groupby(['pod_id", "trip_id']).apply( calculate_distance_from_speed)
results['distance_km'] = results['distance_miles'] * 1.609
results['avg_speed_mph'] = results['distance_miles'] / results['travel_time_sec'] / 60.0
results['avg_speed_kph'] = results['avg_speed_mph'] * 1.609

results.describe()

PySpark- AZNRY N #5

import databricks.koalas as ks
from pyspark.sql.functions import pandas_udf, PandasUDFType
from pyspark.sql.types import *
import pyspark.sql.functions as F
schema = StructType([
StructField("pod_id", StringType()),
StructField("trip_id", StringType(Q)),
StructField("distance_miles", DoubleType()),
StructField("travel_time_sec", DoubleType())
D
@pandas_udf(schema, PandasUDFType.GROUPED_MAP)
def calculate_distance_from_speed( gdf ):
gdf = gdf.sort_values('timestamp')
print(gdf)
gdf['time_diff'] = gdf['timestamp'].diff()
return pd.DataFrame({
'pod_id"':[gdf['pod_id'].iloc[0]],
"trip_id':[gdf['trip_id'].iloc[0]],
'distance_miles':[ (gdf['time_diff']*gdf['speed_mph']).sum()],
"travel_time_sec': [ gdf['timestamp'].iloc[-1]-gdf['timestamp'].iToc[0] ]

b
sdf = spark_df.groupby("pod_id","trip_id").apply(calculate_distance_from_speed)
sdf = sdf.withColumn('distance_km',F.col('distance_miles') * 1.609)

sdf = sdf.withcolumn('avg_speed_mph',F.col('distance_miles')/ F.col('travel_time_sec') /
60.0)

sdf = sdf.withColumn('avg_speed_kph',F.col('avg_speed_mph') * 1.609)

sdf = sdf.orderBy(sdf.pod_id,sdf.trip_id)

sdf.summary() .toPandas() # summary calculates almost the same results as describe

< databricks

COERHIRIIRE AT LATHRLIZEDTY

Koalas- AZ=~WY |~ #6

import databricks.koalas as ks

def calc_distance_from_speed_ks( gdf ) -> ks.pataFrame[ str, str, float , float]:
gdf = gdf.sort_values('timestamp')
gdf['meanspeed'] = (gdf['timestamp'].diff(*gdf['speed_mph']).sum(Q)
gdf['triptime'] = (gdf['timestamp'].iloc[-1] - gdf['timestamp'].iloc[0])
return gdf[['pod_id', 'trip_id', 'meanspeed', 'triptime']].iloc[0:1]

kdf = ks.from_pandas(df)

results = kdf.groupby(['pod_id', "trip_id']).apply( calculate_distance_from_speed_ks)

# due to current limitations of the package, groupby.apply() returns cO .. c3 column names
results.columns = ['pod_id', '"trip_id', 'distance_miles', 'travel_time_sec']

# spark groupby does not set the groupby cols as index and does not sort them

results = results.set_index(['pod_id', 'trip_id']).sort_index()

results['distance_km'] = results['distance_miles'] * 1.609

results['avg_speed_mph'] = results['distance_miles'] / results['travel_time_sec'] / 60.0
results['avg_speed_kph'] results['avg_speed_mph'] * 1.609

results.describe()

Koalas @ apply (D32 (4 PySpark @ pandas_udf ZRX—X(CLTH D, XAF—TIEREZNHE
EFBEH. ABOEETEEES FMBEEEULRITNERDERA. \Vo—fEE
FTUWHRS LB, ks.DataFrame & ks.SerieszbE> hEEAULFE U, KNS, 1]
TED apply XAV W ROERFINMRDEEFT. BURBRICTZEEDEBLDIIVUEFSLELE

GIENZEDD =D, groupby F—HR> TR ZD) . LML, £ TOEMEL/ Cw
T—ORFIAS NTHEYICHBESNTLET,

61


https://koalas.readthedocs.io/en/latest/reference/api/databricks.koalas.groupby.GroupBy.apply.html#databricks.koalas.groupby.GroupBy.apply
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INTOA =YX UDF

Koalas D)\ T A —<Y > A& FHI I BzdIC. BRBDITHOOI—RIAZRY cEaJOT7A
U>JuEUR.

JOJ7AUIREE. UTDOSAIEZFRLUT, T—9TVVIORDTSY ~ 150
JA—LETITIONZELUR,
- Spark RS+/{J—R (pandas XU T ROETICHERAENET) : 8CPUTT. = e

61GB RAM =
« 1580 Spark D—H—_— R, 4CPUT7. & 30.56BRAM (&5t : 60 CPU/457.5GB #*
E*;i{’ﬁ G BT

F—ANNEWNEE(E. IR GIREDT — SEnE TR ICHERN TR K(CIR DTz, pandas
DEMNEBDNCERTY (N—H—a) « T—FENE RSB E. pandas DULIBEFR (T 5
Rz FEDET (XN—H—b) . RIC. KoalasDI\NTA X RADIEKTFERDCENTE
FIN, T—HEMEX B(CDNTPySpark (ADWTWEFT (¥W—H—c¢) &

pandas / pyspark / koalas profiling - basic func
(the lowear the battar)

B pavlas
B keozlas
B pyspark

tirr 5]

PN = e, = R —— ---
o

] 1esdl 1edh 1=8.1
af L) )
raves [#]

< databricks
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pandas / pyspark [/ koalas profiling - UDF & others
[the lower the better)

B pmrades
B koalss
B prsoaie

RS0
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2 A
oFcoff

DD — RTFBTERNKDIRAERT —FtY NCEISICRT—STIVICETT
EBRDICUIEWNBEICIE, Koalas hMBIL TWLWB LS T, Koalas (CREBK XDV I UTE
#%. Spark USRAZAT =D ITBEIFT. KDKRERFT—FtzY hEHFaIL. LR
Bz KIB(CE T DCENTEFET, NTA -T2 X(EPySpark DEDERF (J2fZU.
Tty hOHA XIS IAIICERIDEFITH, 5%HS0%EE (MRS RADET) (TR
3(F9TY,

—7 C. Koalas DAPI L 17—, $FICHRKAT 1 T D Spark&LEB LT, BICRX2/0
TA—NXADRTFZBIEFHRIUVET . ERDECS. T8/ DA - ANEERMES
EIETHNIE. Python 1S Scala NDYIDEX ZIRFTFINRETL L D,

PR ERE

Koalas ZfE L \IASO TEEFH DR, Hiafz(d 7 CNMAEEINTLVRLDHY EEEH (CE
SMBEUNERA. IRTE. CON\YT—DEEZHFED T, LS DHD pandas AP BEEEND
ARBUTWEIN, SEMSHDSBICEESINDFECTCT,

(51 %.(£ groupby.diff() X2 kdf.rename() 72 &)

Fle. 7O 120 bADEME E U TORBRNS. W DDHEREIE Spark AP | TRET
BICFEHIETEIN NN TA X ANKBIAR T I BDEHICAFYTENTNET, 4l
Z (. DataFrame.values (. 1DD_J — ROAFTYUNTEELY h2BEIFTUT7SA XY
DRENDDIEH. RETIFRNU. RARIMEEEHDET ., RSA/)DRMENRESR
HEVE I DN ENHDIHE(L. DataFrame.to_pandas() & /= (4 DataFrame.to_numpy() = {&E
AHUEI,

< databricks
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BEIOI—DEBERC E(E. Koalas DEITF T —>Mpandas EFEDSENWDZETYT, T—4
JL—ALLDBEFEZEERITIDRICIE. BEOF1—(CANSNFEITH, ETEESNEEA
FBRNABBIMGEDH. HIZ (L kdf.head() ¥ kdf.to_pandas() DIRIENEITINET, TN
(& Spark Z{FE > T=C ENTRVAIC ED TIEEEZIB < AB ULNERE A

i

Koalas MIHF T pandas DI— R%& [Spark-ify]l 9 B/cHDEIBEERIDCENTEE
UTz. BUHRIEE pandas I— RDRXT - 2T (CIKATNDDTHNUL, TOCBE56
HMUTHTLIEEL. EU. EDSUTEIMENRHZSRR. HBV\ I pandas EDFE%E
REUEBAE. =171 LT\ —hEEMh Dl (CESN TV S
EERFRIATEDLDIC. FOBBEZARALUTLIZEN, Fe, [ECEIMUL TS0,

Y —X

1. Koalas GitHub : https://github.com/databricks/koalas

2. Koalas® R3F1 X > |~ @ https://koalas.readthedocs.io

3. COEEEHNSDI— RXZARW I https://qgist.github.com/patryk-oleniuk/043f37ae9c
405chd13b6977e7ebd6fbc

F—TYUWIIDTINSD Notebook (pandas & Koalas) (FEEETTFIALEE
ES)
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https://databricks.com/glossary/spark-api
https://github.com/databricks/koalas/issues
https://github.com/databricks/koalas
https://koalas.readthedocs.io/
https://gist.github.com/patryk-oleniuk/043f97ae9c405cbd13b6977e7e6d6fbc
https://info.databricks.com/E0o0Y00gMy00C00S0n00h0s
https://info.databricks.com/HY000000C0h0nS00hsM00zo
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BIE F—HIUVYIXT
Apache Spark ZfER U=
>avESIHERD
N=VYVFS514X

55 & : Brett Bevers

20173 H 31H

< databricks
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Dollar Shave Club (DSC) (&, BHDS T —E>IWIIN—Z20DZ—X(CIHADFEEBRDCExFmETD. B
HEFTSAIRAFAINT S REKLVEINVN—ABETY ., T—FF REMDI—T -—TIOARUI>X=ZEIRT D
T TCREEBREETHDEEZIBNET, T —FEBUIE/I\—VFSAXNCBERARBROBE(CHE(FIZE D (C
PNWT, T—HFTVYVIOREEER/\— N F—ERDTWVWET, COEEETIR. T—HFTIUVIRDTSY N ITA— LA
M. BBAIRHRE LMREZINA TS+ > DFEERBEDETDERZ EDKS (CHR— MU ZRBLUETD .

DSCHERPT—EX(E. AZVUAL—KNIVZORZETS> T, SE(CERIGESINE T SEOBRKICIE. 1R—20
Web 7 TUEEERATa4T - B|INAIL « PTUTTARWEREE, 7HDOD hEEBEUTWERZWTHSDET., 28
DERR(C(E. THRIEDBR(IC, IIL—="T0BREW/\RIIV—LBROAIOT 2 ENZEKENTEET, £z, 2
BRET A MDBERICIE. HOSTDRHHRR A ILZEHRE UHWZIELTZHITER ESNZEA U2 FHILI S T2 WA
8B, HEREZHREUHWEREITET., PERRORBABSEHHESTIRVGESE T, BERPLEIZURACETDIF
FOEWIZUTWERITET, RPILMAE. ABBGROES hMEBE23ZEETEEI L, [HER EFOXBAFNDE
THESDON] EWVWDKOSRBRAREZTREE/MZ DSCHRERULED EfeitEzHiO s TEEI, £/, DSCEFY—2vI)L
AT AT « FYORITARZEZTADCE(CENZANTED., REEFBWCESINITBCENTEET. BHLDRE
(CEDTREEALDBEWVWIS T OVYPA T 7 —2REHDIZET. KDBEANTEIDEBVWASRERERIZHEITDZIZENT
=F9,

Dollar Shave Club (DSC) D7 —%4

DSC T (. REVTAREDPDED(CKD., ART—INEMREINET, COT—INEEDRERZEI LB
SHDEEERBDCEZEM>TULWERRS, HHDTI DT UIF—Ald. BFDT—F1> TSNS IFvICRH
(CEBULF U, HtooxzI7TUs—>3>, AEY—EX. =912 TS ANSIF (& 100% AWS T/RZ
RENTUWLWET ., Redshift JSAANFRDFT—IITT7/)\DIDRXEUTHEEL. SESFERIRTLANST—FEZT
BmDZEY, LO—RIE ABRT—IR—INSTTV/\DRATMENCLTVo—haNTWET., £, 523
A—TV—RADA NI —Z20TS5w NI A —/ATHD Apache Kafka LT, 7T U —3 3 2RI Redshift (CFE
BUET. BT BEICAHRIIAXAERA—T N —ADANRY N\ATSA > T3 Snowplow ZEAL T,
Web BRUVENAILISAT > SIBANRY b—FZIRELTVET, H—/\B1 ROD7TUS—>3>ZFHLT
WET, 547> ME R—ZEa1—. USo0Uwo, TSI T0EH., BRUOLTDOHZLDARST LAY
NEODFHEIREFERLTVET ., T—FH Redshift (CELS & EZAUY. TI#{b. SAROIED(ICHRLZ DTS
SV NIA =L T7IOTCAENET,
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ZDLANLDEEERSNE. T—INSFEV. TNICEDVWTTE T DHREFNST
EHDFT. UL, INSOEESEREL. AT —)LTERITIDEHICE By —
ILWETT, ETL. ABMU—LMIE, HRFBDIEOHDI > 2 ZRA ERTHDI S

AAAE1—FT 4> TL—LT—2THD Apache Spark (. HARDEIRTT, =5IC.

AT TIIDEHDT—F T U I ZDEFDRFEICKLD. Spark (FIFFE(C
I (CEUMADDCENTE., IDEESTTOARXR N\ ATSA>omAICEBLETSY b
IA—LZRBLUTVWET, T—FTUVIREFE S ERIDRIICE. FTLWLWISAD
F—ARB(CHIETETDILIICR>TVELU,

. Business
A
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L te

Second-party
Data

Amazon ’/\
RedShift

$@databricks

Enterprise
Cloud
Services

< databricks
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A—RT—X #EIT>>>

BN T —FT VY OIXTHEULRNIOTOS T O bO—DIF FAEFYU>J%E
RUT, FeEMER UIEHmOMRFIRZHREL TS 2B ELTNET ., ®m
RE(L T DIEHDET YT IRE REDERKICE. HED A—ILFv>FRIL,. REDAIC
(FAMEX )L BFEESNFT T, CNSDA—)LE. REDOEKRISEBROFETEZ HA]
SEIDELEEIC, FBICANDIENTEDENEREIIRELEFI. REDAHE. #HE
VY IITBETT. A—ILICERHE SN TVDHENDDEMZEMIT D ENTEET,
IEBEDBERIE. FHEDAZ)\—DeHIC, BADA—ILTEDEmE EDLSIMBIIE
fIcTJOE—>3>9dhZRELEBMI>F 2 IZERT DI ETUR,

zEd. BRECHITDIREDELEZRIEEDSD DITEIZMEN (CHERITDEx
STBEIUEURE. AN\=F=5Df12 DT A SIS ETELFRA NI TR EHE U,
TDTF—FZABEOHTII. 7033, 9UTERY U, BEBYEENIZRET
R RBEEDA NI DR %ZA 2TV IRIEUET, 2ERTIE. KFIERA >/ \—DI7R—
NMCDUWLWT. £910,000 ElD#eE = AREH CSHDIZENTETE U, KRETERTT
AIN=RIxF—Ftzwv bR STz6(C. SparkCore. Spark SQL. Mllib ZfE> TETL &5 —
OIIAZ2 07BN IT D EICUF U, RENRRRIE. EET—F L TIIER - FA%E
SNITREETIVDEERTHD. TNSEEFENDE TERS > F I ZFRT DI E
NTEET,
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Spark L CREBI LN/ A TS > =2 U T DR THRFEI D ECULEUE,

1. BEHNST—4%ZHmHE D (Redshift)
2. A )\—T DT —HDETEERY
3. RIRETILICEH DHEETIEIR

AFwIT 1 =S

IEBEET, Ub—33F)L - T—HIR—IADTEIFRT—4 - BIA MRS
CENBRHET ., BT —FTITAD NZIBREL. TNHEDKIS (RSN, EDKD
(COU—2T VT ENDRENDDDONZIERETDRENDDET . COEEE. 7—5
EZDTA THAD)VICEET DEPIFH EHIENRIHEZEE L TITOEEMEETHD
. TOBEIETEARCEZNEILUTHIRRDZENEETY ., 7 —F UV O
Spark = T )LD "Notebook "1 >AF—T T —X & UTWNET,

Spark DTOT S ZTEFTIVEFENRINS, A5 05 4 TICT—FZIRETDE
MNTEET, Spark D Notebook (E. AT 7ZEHULTHED., IICHREEEHBLED.
BTESBTEDRILIDIEEDRIFZER LU TCHLDICERBRS ENADODMNDELUE.

BT —HATEIA NIDWT, LO—ROOU—-—Z>J IRt FEEmBEES 21—
JWVCHTIUELET . Z<DIHA.
DT UZ4ER L. Spark SOL (CEBNUIRLNDTT,

< databricks

Redshift W57 —TJ )2 T XR— MU, BIY(CSOL

COERHIRIIRE AT LATHRLIZEDTY

WE(CISU T, Spark M DataFrames APl Z{E D Je#EEN R T OO0 S =2 J& ENUTEA
TRCENTEFET, ZTUTC. RAAMCEBDOAIFT—IDT7TIVT—3>(F, Mitigs
DRCBARRETHEELTWVET, EERDIE. FEDT—FIA> hEUIBT Bz
DERIIDATY TH., DI A> M)A TSA > DMDRAFT S ENNICHEES
NTWBZETY, MERREIMTIUTHRELU., TARNITDIZENTETFET, Fo. ME
FOEE/NATSAICBRATRZCEETEET,

def performeExtraction(
extractorClass, exportName, joinTable=None, joinKeyCol=None,

startCol=None, includeStartCol=True, eventStartDate=None
):

customerIdCol = extractorClass.customerIdCol
timestampCol = extractorClass.timestampCol

extrArgs = extractorArgs(

customerIdCol, timestampCol, joinTable, joinKeyCol,
startCol, includeStartCol, eventStartDate

)

Extractor = extractorClass(**extrArgs)

exportPath = redshiftExportPath(exportName)

return extractor.exportFromRedshift(exportPath)

F=AMBINNATSA>DO—RH : )\ATS5A>2(F. WD DOHMEISRAICEID>TE
HEINEAA—TTARA=ZERAL. 8FENRINAXITRIEDICEIHZEELET, /N
ATS54>(F. SHBOFEMICIHMKEFELUEE A
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def exportFromRedshift(self, path):
export = self.exportbDataFrame()
writeParquetwithRetry(export, path)
return sqglContext.read.parquet(path)
.persist(StoragelLevel.MEMORY_AND_DISK)

def exportbataFrame(self):
self.registerTempTables()
query = self.generateqQuery()
return sqlcContext.sql(query)

TORNSOI—A2HF—=TTAADI— R : Z2<DIHE. TOANSTFFEICSOL

DT U%ZARKL T SparkSQL (CIEITEIF T,

ATFw T2 &EitEERY b

DI VI)\DZANSHEENET —HE (FEAEDME L DR MOREGRML(ICE I D5
RERCTT. UL, IWEENERECHELLTVDD(EF. HDIRMEL(FRIORBAD
B ERTITEZENRN(CIRETEDLD(C, BREIDFEBE EBCENSNZIOT( E
A DFHATY . FEDANRY M T2BEATHRULTE. EDDHIEDNTEHD
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