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第 1 章 序章 データサイエンスの世界は急速に進化しているおり、自分が取り組んでいることに関連する実際
のユースケースを見つけるのは容易ではありません。そこで、業界のオピニオンリーダーによる
ブログから、今すぐに実践できる実用的なユースケースをご紹介します。コードサンプルを含む
必要情報を提供していますので、データブリックスのプラットフォームを実際に使ってみること
ができます。
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第 2 章 データブリックスによる
金融時系列分析の民主化

Databricks Connect と
Koalas による開発の高速化

投稿者：
Ricardo Portilla

2019 年 10 月 9 日

金融機関におけるデータサイエンティスト、データエンジニア、アナリストの役割には、数千億ドル規模の資産を守り、
フラッシュクラッシュなどの数兆ドル規模の影響から投資家を守ることが含まれます（ただし、これに限定されませ
ん）。これらの問題の根底にある最大の技術的課題の1つは、時系列操作のスケーリングです。ティックデータ、地理空
間データやトランザクションデータなどの代替データセット、ファンダメンタルズデータなどは、金融機関が利用でき
る豊富なデータソースの一例です。これらは全てタイムスタンプでインデックス化されています。リスク、不正行為、
コンプライアンスなどの金融におけるビジネス上の問題を解決するには、最終的には何千もの時系列を並行して集計し、
分析できるかどうかにかかっています。RDBMS ベースの古いテクノロジーは、取引戦略を分析したり、何年も前のデー
タを使って規制分析を行ったりする場合には、簡単にはスケールできません。さらに、多くの既存の時系列技術は、標
準 SQL や Python ベースの API ではなく、特殊な言語を使用しています。

幸いなことに、Apache Spark™には、時系列処理を自然に並列化するウィンドウ機能など、多くの組み込み機能が搭載
されています。さらに、おなじみのpandas 構文を使ってApache Spark 経由で分散機械学習クエリを実行できるオープ
ンソースのプロジェクト Koalasは、データサイエンティストやアナリストにこの機能を拡張するのに役立っています。

このブログでは、何十万ものティッカーに対して時系列関数を並列に構築する方法を紹介します。次に、ローカル IDE 
で関数をモジュール化し、Databricks Connect でリッチな時系列機能セットを作成する方法を実演します。最後に、金融
異常検知やその他の統計分析にフィードするデータ準備をスケーリングしようとしているpandas のユーザーの方に、市
場操作の例を使って、Koalas がどのように典型的なデータサイエンスのワークフローにスケーリングを透明化するかを
お見せします。

https://databricks.com/blog/2020/06/24/introducing-koalas-1-0.html#%3A%7E%3Atext%3DIntroducing%20Koalas%201.0%26text%3DKoalas%20was%20first%20introduced%20last%2Cthe%20release%20of%20Koalas%201.0
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時系列データソースの設定
まず、伝統的な金融時系列のデータセットであるトレードと気配値を摂取することから始
めましょう。このブログのためにデータセットをシミュレートしました。このデータセッ
トは、取引報告施設（トレード）とナショナルベストビッドオファー（NBBO）フィード
（ニューヨーク証券取引所などの取引所）から受け取ったデータをモデルにしています。
データの例はこちらからご覧いただけます。

www.tickdata.com/product/nbbo/

この記事では、一般的に基本的な財務用語を想定しています。インベストペディアのド
キュメントを参照してください。以下のデータセットから注目すべきことは各タイムスタ
ンプに TimestampTypeを割り当てたので、トレードの約定時間はと引用符の変更時間は、
正規化のためにevent_ts にリネームされました。さらに、この記事に添付されている完
全なNotebook に示されているように、最終的には これらのデータセットをデルタ形式に
変換することで、データの品質を確保し、柱状体を維持します。形式で、以下のような対
話型のクエリに対して最も効率的です。

Apache Spark を使った時系列のマージと集計
今日の金融市場では、世界全体で 60 万以上の株式が公開されています。取引や気配値の
データセットがこれだけの量の証券にまたがることを考えると、簡単に拡張できるツール
が必要になります。Apache Spark は ETL のためのシンプルな API を提供しており、並列化
のための標準エンジンでもあるので、標準的なメトリクスをマージして集約するための
ツールとして、流動性、リスク、不正行為の理解に役立ちます。まず、取引と気配値の
マージから始め、取引データセットを集約して、データをスライスする簡単な方法を紹介
します。最後に、このコードをクラスにパッケージ化して、Databricks Connect を使った
反復開発を高速化する方法を紹介します。次のページのメトリクスに使用したフルコード
は、添付のNotebook にあります。

trade_schema = StructType([  StructField("symbol", 

StringType()),  StructField("event_ts", 

TimestampType()),  StructField("trade_dt", 

StringType()),  StructField("trade_pr",

DoubleType())

])

quote_schema = StructType([  StructField("symbol", 

StringType()),  StructField("event_ts", 

TimestampType()),  StructField("trade_dt", 

StringType()),  StructField("bid_pr", 

DoubleType()),  StructField("ask_pr",

DoubleType())

])

http://www.tickdata.com/product/nbbo/
https://www.investopedia.com/
https://databricks.com/product/databricks-delta
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As-of join
As-of join は、左のタイムスタンプの時点で有効な最新の右の値を返す、一般的に使用され
る"マージ"手法です。ほとんどの時系列分析では、複数のタイプの時系列がシンボル上で結
合され、別の時系列（トレードなど）に存在する特定の時間における 1 つの時系列（例：
NBBO）の状態を理解します。下の例では、全てのシンボルについて、全ての取引について
NBBO の状態を記録しています。下の図に示すように、最初のベースとなる時系列（取
引）から始め、NBBO データセットをマージして、各タイムスタンプに「取引の時点での
最新のビッドとオファー」が記録されるようにしました。最新のビッドとオファーがわか
れば、次のように計算できます。

このような指標は、どの時点で流動性が低下しているか（大きなスプレッドで示されてい
る）を理解するために、その差（スプレッドとして知られています）を測定しています。
この種の指標は、アルファ値を高めるために取引戦略をどのように編成するかに影響を与
えます。

まず、組み込みのウィンドウ関数 last を使って、時間順に並べた後の最後の非NULL 引用
符の値を探してみましょう。

データをマージして引用符を添付するためにカスタムジョインを呼び出します。フルコー
ドは添付のNotebook を参照してください。

# sample code inside join method

#define partitioning keys for window  
partition_spec = Window.partitionBy('symbol')

# define sort - the ind_cd is a sort key (quotes before trades)  
join_spec = partition_spec.orderBy('event_ts'). \

rowsBetween(Window.unboundedPreceding, Window.currentRow)

# use the last_value functionality to get the latest effective record  
select(last("bid", True).over(join_spec).alias("latest_bid"))

# apply our custom join
mkt_hrs_trades = trades.filter(col("symbol") == "K")  
mkt_hrs_trades_ts = base_ts(mkt_hrs_trades)  
quotes_ts = quotes.filter(col("symbol") == "K")

display(mkt_hrs_trades_ts.join(quotes_ts))
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トレードパターンに対してVWAP をマークする
上記ではマージ手法を示しましたが、ここでは標準的な集計、すなわち出来高加重平均価
格（VWAP）に焦点を当ててみましょう。この指標は、一日を通しての証券のトレンドと価
値の指標となります。ラッパークラス内のVWAP 関数（添付のNotebook）は、VWAP が証
券の取引価格を上回ったり下回ったりする場所を示します。特に、VWAP（オレンジ色）が
取引価格を下回るウィンドウを特定することができ、その銘柄が買われすぎていることを
示しています。

Databricks Connect を使用した反復開発の高速化
ここまでのところ、単発の時系列メトリクスのための基本的なラッパーをいくつか作成し
てきました。しかし、コードの本番化にはモジュール化とテストが必要で、これは IDE で
行うのがベストです。今年、私たちはDatabricks Connect を導入しました。これにより、
ローカル IDE での開発が可能になり、ライブのデータブリックスクラスタに対するテスト
の経験が向上しました。Databricks Connect の財務分析におけるメリットとしては、小規
模なテストデータに時系列の機能を追加することができ、機能を検証するために何年もの
過去のティックデータに対してインタラクティブな Spark クエリを実行できる柔軟性が追
加されたことが挙げられます。

PyCharm を使って、リッチな時系列フィーチャーセットを生成するための PySparkの機能
をラップするために必要なクラスを整理しています。この IDE は、コードの補完、フォー
マットの標準化、コードを実行する前にクラスやメソッドを素早くテストするための環境
を提供してくれます。

trade_ts = base_ts(trades.select('event_ts', symbol, 'price', lit(100).  
alias("volume")))
vwap_df = trade_ts.vwap(frequency = 'm')

display(vwap_df.filter(col(symbol) == "K") \
.filter(col('time_group').between('09:30','16:00')) \
.orderBy('time_group'))
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ローカルクラスをロードし、スケーラブルなインフラストラクチャでインタラクティブな
クエリを実行する Jupyter Notebook を使って、ラップトップから直接Spark コードを実行
しています。コンソールペインには、ライブクラスタに対してジョブが実行されている様
子が表示されています。

最後に、ローカル IDE を使用して、同時に最大の時系列データセットのマテリアライズさ
れた時系列ビューに追加することで、両方の利点を得ることができます。

Koalas を市場操作に活用
pandas API は Python でのデータ操作や分析のための標準ツールであり、NumPy、SciPy、
Matplotlib などの Python データサイエンスのエコシステムに深く統合されています。
Pandas の欠点としては、大量のデータに簡単にスケールできないことが挙げられます。財
務データには常に何年分ものヒストリカルデータが含まれており、これはリスク集計やコ
ンプライアンス分析には非常に重要です。

これを簡単にするために、バックエンドでSpark を実行しながら pandas の API を活用する
方法として Koalas を導入しました。Koalas の API は pandas にマッチしているので、使い
やすさを犠牲にすることはなく、スケーラブルなコードへの移行は1行のコード変更で済み
ます（次項の Koalas のインポートを参照）。Koalas の金融時系列問題への適合性を紹介す
る前に、金融詐欺における特定の問題、つまりフロントランニングについてのコンテキス
トから始めてみましょう。

以下のシーケンスが発生するとフロントランニングが発生します。

1. 取引会社は、証券の価格に影響を与える可能性のある非公開情報を認識しています。

2. 会社は、大規模な大量注文（または大規模な総量を合計した注文の大規模なセット）を
購入します。

3. 流動性がなくなると、証券価格が上昇します。

4. 会社は投資家に証券を販売し（これは以前の購入から上向きに駆動されている）、投資
家は証券が取引された情報が非公開であったにもかかわらず、より大きな価格を支払う
ことを余儀なくされ、大きな利益を上げています。

出典：CC0 パブリックドメイン画像 https://pxhere.com/en/photo/1531985, https://pxhere.com/en/photo/847099



データサイエンスユースケースのビッグブック この資料は機械翻訳システムで翻訳したものです

9

説明のために、ファーマーズマーケットとアップルパイのビジネスを使った簡単な例がこ
こにあります。この例では、全国のアップルパイ事業に必要なリンゴの需要が迫っている
ことを知っているランナーのフレディが、その後、全てのファーマーズマーケットでリン
ゴを購入していることを示しています。これは、実質的には、フレディが前に購入するこ
とによって大きな影響を与えたので、フレディは買い手にプレミアムで彼のリンゴを販売
することができます。

フロントランニングの検出には、オーダーフローの不均衡を理解する必要があります（下
図参照）。特に、オーダーフローの不均衡の異常は、フロントランニングが発生している
可能性のあるウィンドウを特定するのに役立ちます。

それでは、市場操作問題を解決しつつ、生産性を向上させるためにKoalas パッケージを
使ってみましょう。具体的には、次のようなことに注目して、オーダーフローの不均衡の
異常を見つけていきます。

• イベントの重複排除を同時に行う

• 需給の増加を評価するためのラグウィンドウ

• データフレームをマージしてオーダーフローの不均衡を集約する

時系列の重複排除
一般的な時系列データのクレンジングには、インプットと重複排除があります。高頻度の
データ（気配値データなど）では、重複した値が見つかることがあります。シーケンス番
号のない時間ごとに複数の値がある場合、後続の統計分析が意味をなすように重複排除す
る必要があります。以下のケースでは、1 回ごとに複数のビッド/アスク株の数量が報告さ
れているので、オーダーの不均衡を計算するためには、1回ごとの最大深度の値を1つの値
に頼りたいと思います。

import databricks.koalas as ks

kdf_src = ks.read_delta("...")
grouped_kdf = kdf_src.groupby(['event_ts'], as_index=False).max()  
grouped_kdf.sort_values(by=['event_ts'])
grouped_kdf.head()

https://www.youtube.com/watch?v=BXiFKCjc6Rw
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Koalas を使った時系列ウィンドウイング
時系列の重複を排除したので、需要と供給を見つけるために窓を見てみましょう。時系列
のウィンドウは、一般的に時間のスライスや間隔を見ることを意味します。ほとんどのト
レンド計算（例えば、単純移動平均など）は、計算を行うために時間窓の概念を使用して
います。 Koalas は、以下のように shift を使ってウィンドウ内のラグやリードの値を取得す
るためのシンプルな pandas のインターフェイスを継承しています（Spark のラグ関数に似
ています）。

タイムスタンプでマージし、
Koalas の列の演算で不均衡を計算する
遅延値が計算できたので、このデータセットを元の相場の時系列とマージしたいと思いま
す。以下では、Koalas のマージを使って、時間インデックスとのマージを行っています。
これにより、需給計算に必要な統合されたビューが得られ、注文の不均衡指標につながり
ます。

Koalas からNumPy で分布をフィットさせる
最初の準備が終わったら、Koalas のデータフレームを統計分析に役立つフォーマットに変
換します。この問題では、先に進む前に、不均衡を分単位や他の時間単位で集計すること
ができますが、説明のために、我々のティッカー "ITUB“ の完全なデータセットに対して実
行してみましょう。以下、我々はKoalas 構造体をNumPy データセットに変換し、SciPy ラ
イブラリを使用してオーダーフローの不均衡の異常を検知できるようにしています。
to_numpy() 構文を使用するだけで、この分析をブリッジすることができます。

grouped_kdf.set_index('event_ts', inplace=True, drop=True)  
lag_grouped_kdf = grouped_kdf.shift(periods=1, fill_value=0)

lag_grouped_kdf.head()

lagged = grouped_kdf.merge(lag_grouped_kdf, left_index=True, right_  
index=True, suffixes=['', '_lag'])
lagged['imblnc_contrib'] = lagged['bid_shrs_qt']*lagged['incr_demand'] \

- lagged['bid_shrs_qt_lag']*lagged['decr_demand'] \
- lagged['ask_shrs_qt']*lagged['incr_supply'] \
+ lagged['ask_shrs_qt_lag']*lagged['decr_supply']

from scipy.stats import t  
import scipy.stats as st  
import numpy as np

q_ofi_values = lagged['imblnc_contrib'].to_numpy()
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下の図は、オーダー・フローの不均衡の分布を、不均衡の異常が発生したイベントを特定
するために、5% と 95% のマーカーとともにプロットしたものです。分布をフィットさせ、
このプロットを作成するコードについては、Notebook 全体を参照してください。
Koalas/SciPy ワークフローで計算した不均衡の時間は、私たちが探していた市場操作ス
キームであるフロントランニングの潜在的なインスタンスと相関しています。

下の時系列の可視化では、上記の異常値として抽出された異常値がオレンジ色で強調され
ています。最後の可視化では、plotlyライブラリを使用して、時間窓と異常値の頻度をヒー
トマップの形でまとめています。具体的には、10:50:10-10:50:20 の時間枠を、フロントラ
ンニングの観点から潜在的な問題領域として特定します。
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結論
この記事では、Apache Spark とデータブリックスを時系列分析に活用する方法を、ウィン
ドウやラッパーを使った直接的な方法と、Koalas を使った間接的な方法の両方で紹介して
きました。ほとんどのデータサイエンティストはpandas API に依存しているので、Koalas
は Apache Spark のスケールを可能にしながら pandas の機能を利用するのに役立ちます。
時系列分析に Spark と Koalas を使うメリットは以下のとおりです。

• リスク、不正、コンプライアンスのユースケースでの時系列分析を、as-of join とシンプ
ルな集計で並列化します。

• Databricks Connect を使用した高速な反復処理とリッチな時系列機能の作成

• データサイエンスやクオンツのチームをKoalas で武装させ、pandas の使いやすさや API 
を犠牲にすることなく、データ準備をスケールアップさせます。

今すぐデータブリックスのこのNotebookを試しください。金融時系列のユースケースでお
客様をどのようにサポートするかについては、こちらからお問い合わせください。

データブリックスの無料の Notebook を使って実験を始める

https://pages.databricks.com/rs/094-YMS-629/images/Democratizing%20Financial%20Time%20Series%20Analysis.html?_ga=2.34224418.2091689691.1591215417-566957636.1584739382&_gac=1.27662030.1589579628.Cj0KCQjw-_j1BRDkARIsAJcfmTFmZ1FrPnLWn4a6NsA_7M8Sc8-1KbOXqjgUhC_B7LqzO78jU8PyzusaAlt2EALw_wcB
https://pages.databricks.com/rs/094-YMS-629/images/Democratizing%20Financial%20Time%20Series%20Analysis.html?_ga=2.92913178.629507392.1589211892-2105806216.1585857288
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第 3 章 Part 1：
動的タイムワープの概要

動的タイムワープとMLflowを
利用した販売傾向の把握 Part 1

投稿者：
Ricardo Portilla
Brenner Heintz
Denny Lee 

2019年 4 月 30 日

「ダイナミック・タイム・ワープ」（DTW：動的タイムワープ）という言葉を最初に読むと、「バック・トゥ・ザ・
フューチャー」シリーズの中で、マーティ・マクフライが時速 88 マイルでデロリアンを運転しているイメージを思い浮
かべるかもしれません。しかし、動的タイムワープはタイムトラベルではなく、比較データポイント間の時間指標が完
全に同期していない場合に、時系列データを動的に比較するために使用される技術です。

以下で説明するように、動的タイムワープの最も顕著な用途の 1 つは音声認識です。これは、Google Home や Amazon 
Alexa デバイスを起動するための「目覚めの言葉」を識別するのに便利であることが想像できます。

動的タイムワープは、多くの異なる領域に適用できる便利で強力なテクニックです。動的タイムワープの概念を理解す
ると、日常生活での応用例や、将来的な応用例を簡単に見ることができます。以下の用途を考えてみてください。

• FINANCIAL MARKETS：完全に一致していなくても、似たような期間の株式売買データを比較すること。例えば、2 月
（28日）と 3 月（31 日）の月次取引データを比較する。

• WEARABLE FITNESS TRCKERS：歩行者の速度が時間の経過とともに変化した場合でも、歩行者の速度と歩数をより
正確に計算できるようになりました。

• ROUTE CALCULATION：ドライバーの運転習慣について何か知っていれば、ドライバーのETA に関するより正確な情
報を計算することができます（例えば、彼らは直線道路を素早く運転しているが、左折するのに平均よりも時間がか
かるなど）。

データサイエンティスト、データアナリスト、時系列データを扱う人なら誰でもこのテクニックに精通しているはずで
す。完全に整列された時系列比較データは、完全に「整頓された」データと同じように野生で見ることができないこと
があるからです。

このブログシリーズでは、以下のことについて探っていきます。

• 動的タイムワープの基本原理

• サンプルオーディオデータで動的タイムワープを実行する

• MLflowを用いたサンプル販売データの動的タイムワープの実行
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動的タイムワープ
時系列比較法の目的は、2つの入力時系列間の距離メトリックを生成することです。2つの
時系列の類似性または非類似性は、通常、データをベクトルに変換し、ベクトル空間内の
それらの点間のユークリッド距離を計算することによって計算される。

Dynamic time warping は、1970 年代から音波を音源として音声認識や単語認識に用いられ
てきた時系列比較技術であり、よく引用されている論文にDynamic time warping for 
isolated word recognition based on ordered graph searching techniquesがあります。

背景
この技術はパターンマッチングだけでなく、異常検知にも利用可能です（例：2 つの不連
続な期間の時系列を重ね合わせて、形状が大きく変化した場合や、外れ値を調べる場合）。
例えば、下のグラフの赤と青の線では、伝統的な時系列マッチング（ユークリッドマッチ
ング）が非常に制限的です。一方、動的な時系列ワープを使用すると、X 軸（すなわち時
間）がずれていても、2 つの曲線を均等に一致させることができます。は必ずしも同期し
ているとは限りません。もう一つの方法は、これをロバストな非類似性スコアとして考え
ることです。この場合は、数字が小さいほどシリーズの類似性が高いことを意味します。

二時系列（基準時系列と新時系列）は、以下のルールに従って関数 f(x) を用いて、最適
（ワープ）パスを用いて大きさを一致させるように写像することができれば、似たような
ものとみなされます。

ユークリッドマッチング 動的タイムワープマッチング

出典：Wiki Commons（Euclidean_vs_DTW.jpg）

https://ieeexplore.ieee.org/document/1171695
https://commons.wikimedia.org/wiki/File:Euclidean_vs_DTW.jpg
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サウンドパターンマッチング
伝統的に、動的タイムワープは、オーディオクリップに適用され、それらのクリップの類
似性を判断します。この例では、"The Expanse“ というテレビ番組からの 2 つの異なる引用
に基づいて、4 つの異なるオーディオクリップを使用します。4 つのオーディオクリップ
（以下で聞くことができますが、これは必須ではありません）があり、そのうちの 3 つ
（クリップ 1、2、4）は引用文に基づいています。

そして、1 つのクリップ（クリップ 3）が引用です。

以下は、4 つのオーディオクリップのmatplotlib を使用した可視化です。

• クリップ 1：これは名セリフに基づく時系列です "Doors and corners, kid. That’s where 
they get you"

• クリップ 2：イントネーションや発話パターンが極端に誇張されているクリップ 1 を
ベースにした新しい時系列 [v2] です。

• クリップ 3：これもクリップ 1 と同じイントネーションとスピードで "You walk into a 
room too fast, the room eats you."

• クリップ 4：イントネーションや発話パターンがクリップ1と類似しているクリップ 1 を
基にした新しい時系列 [v3] です。

Clip1 Doors andcorners, kid.

Clip3 Youwalkinto aroom too fast,|the room eats you.

Clip2 Doors andcorners, kid.|That’s where they get you. [v1] |That’s where they get you. [v2]

Clip4 Doors andcorners, kid.|That’s where they get you. [v3]

出典：“TheExpanse”

Clip1 Doors andcorners, kid.|That’s where they get you. [v1]

Clip3 Youwalkinto aroom too fast,|the room eats you.

Clip2 Doors andcorners, kid.|That’s where they get you. [v2]

Clip4 Doors andcorners, kid.|That’s where they get you. [v3]

“Doors and corners, kid. That’s where they get you.”

" You walk into a room too fast, the room eats you.” 

https://www.imdb.com/title/tt3230854/
https://www.amazon.com/The-Expanse-Season-1/dp/B018BZ3SCM
https://dennyglee.files.wordpress.com/2019/03/doors-and-corners-kid_thats-where-they-get-you.wav
https://dennyglee.files.wordpress.com/2019/03/doors-and-corners-kid_thats-where-they-get-you-2.wav
https://dennyglee.files.wordpress.com/2019/03/you-walk-into-a-room-too-fast_the-room-eats-you.wav
https://dennyglee.files.wordpress.com/2019/03/doors-and-corners-kid.wav
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これらのオーディオクリップを読み込み、matplotlib を使って可視化するコードは、以下の
コードスニペットにまとめられています。

完全なコードベースは、Notebook 「Dynamic Time Warping Background」にあります。

後述するように、2 つのクリップ（この場合はクリップ１とクリップ4）が同じ引用文に対
してイントネーション（振幅）とレイテンシーが異なる場合。

from scipy.io import wavfile
from matplotlib import pyplot as plt  
from matplotlib.pyplot import figure

# Read stored audio files for comparison
fs, data = wavfile.read(“/dbfs/folder/clip1.wav”)

# Set plot style  
plt.style.use(‘seaborn-whitegrid’)

# Create subplots
ax = plt.subplot(2, 2, 1)  
ax.plot(data1, color=’#67A0DA’)
...

# Display created figure  
fig=plt.show()  
display(fig)

https://pages.databricks.com/rs/094-YMS-629/images/dynamic-time-warping-background.html?_ga=2.26621182.2112692442.1591844546-225663068.1585060489
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伝統的なユークリッドマッチング（以下のグラフ）に従うと、振幅を割り引いても、元の
クリップ（青）と新しいクリップ（黄）の間のタイミングは一致しません。

動的な時間ワープを使用して、これら2つのクリップ間の時系列比較を可能にするために時
間をシフトさせることができます。

ユークリッドマッチング 動的な時間ワーブ
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時系列比較には、fastdtw PyPiライブラリを使用します。データブリックスのワークスペー
スに PyPiライブラリをインストールする方法は、Azure | AWSにあります。 fastdtwを使う
ことで、異なる時系列間の距離を素早く計算することができます。

完全なコードベースは、Notebook 「Dynamic Time Warping Background」にあります。

簡単な観察：

• 前述のグラフにあるように、音声クリップが同じ単語とイントネーションであるため、
クリップ 1 と 4 の距離が最も短くなっています。

• クリップ 1 とクリップ 3 の間の距離もかなり短く（クリップ 4 と比較すると長いです
が）、言葉は違ってもイントネーションやスピードは同じです。

• クリップ 1 と 2 は、同じ引用文を使っているにもかかわらず、イントネーションとス
ピードが極端に誇張されているため、最も距離が長くなっています。

ご覧のように、動的な時間ワープでは、2 つの異なる時系列の類似性を確認することがで
きます。

次章では
ここまで動的タイムワープについて説明してきましたが、このユースケースを販売傾向の
把握に適用してみましょう。

from fastdtw import fastdtw

# Distance between clip 1 and clip 2
distance = fastdtw(data_clip1, data_clip2)[0]
print(“The distance between the two clips is %s” % distance)

ベース クエリ 距離

Clip 1 Clip 2 480148446.0

Clip 3 310038909.0

Clip 4 293547478.0

https://pypi.org/project/fastdtw/
https://docs.azuredatabricks.net/user-guide/libraries.html#pypi-libraries
https://docs.databricks.com/user-guide/libraries.html?_ga=2.202207314.2112692442.1591844546-225663068.1585060489#pypi-libraries
https://pages.databricks.com/rs/094-YMS-629/images/dynamic-time-warping-background.html?_ga=2.266370253.2112692442.1591844546-225663068.1585060489
https://databricks.com/blog/2019/04/30/using-dynamic-time-warping-and-mlflow-to-detect-sales-trends.html
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第 3 章 Part 2：
動的タイムワープと MLflow
を利用した販売傾向の把握

動的タイムワープとMLflowを
利用した販売傾向の把握Part 2

投稿者：
Ricardo Portilla 
Brenner Heintz
Denny Lee 

2019 年 4 月 30 日

背景
あなたが 3D プリント製品を作る会社を経営していると想像してみてください。昨年は、ドローンのプロペラが非常に安
定した需要があることを知っていたので、それを製造して販売し、一昨年は携帯電話のケースを販売していました。新
しい年がすぐそこまで来ているので、製造チームと一緒に来年の生産物を考えようとしています。あなたの倉庫のため
に 3D プリンタを購入することは、借金に深くあなたを入れたので、あなたのプリンタは、それらの支払いを行うために、
全ての回で 100% の容量で実行されていることを確認する必要があります。

あなたは賢明なCEO として、来年の生産能力が変動することを予測しています。例えば、次のような週には生産能力が
高くなるかもしれません。夏場（季節労働者を雇用する場合）、毎月第 3 週目に低くなります（3D プリンタのフィラメ
ントのサプライチェーンに問題があるため）。下のチャートを見て、あなたの会社の生産能力の見積もりを見てみま
しょう。
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あなたの仕事は、毎週の需要があなたの生産能力をできる限り満たす製品を選択すること
です。各製品の昨年の販売数を含む製品カタログに目を通していますが、今年の販売数は
似たようなものになると考えています。

生産能力を超えた週単位の需要がある商品を選ぶと、顧客からの注文をキャンセルしなけ
ればならなくなり、良くないビジネスのために。一方で、毎週の需要が十分にない商品を
選んでしまうと、プリンターをフル稼働させることができず、借金の支払いに失敗する可
能性があります。

ここでは、動的なタイム・ワープが有効に機能します。選択した製品の需要と供給が若干
ずれてしまうことがあるからです。需要を全て満たすのに十分な生産能力がない週もある
でしょうが、その前の週や後の週にもっと多くの製品を生産することで埋め合わせができ
るのであれば、顧客は気にしません。もし、ユークリッドマッチングを使って販売データ
と生産能力を比較することに限定すると、このことを考慮していない製品を選択してしま
い、お金を置いていくことになるかもしれません。その代わりに、動的タイムワープを使
用して、今年の貴社に最適な製品を選択します。

製品の販売データセットを読み込む
UCI データセットリポジトリにある週次売上高取引データセットを使用して、売上高ベー
スの時系列分析を行います。（出典：James Tan、jamestansc@suss.edu.sg、シンガポー
ル社会科学大学）

各製品は行で表され、年間の各週は列で表されます。値は週ごとに販売された各製品の単
位数を表しています。データセットには 811 個の製品があります。

import pandas as pd

# Use Pandas to read this data
sales_pdf = pd.read_csv(sales_dbfspath, header='infer')

# Review data  
display(spark.createDataFrame(sales_pdf))

https://archive.ics.uci.edu/ml/index.php
https://archive.ics.uci.edu/ml/datasets/Sales_Transactions_Dataset_Weekly
mailto:jamestansc@suss.edu.sg
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プロダクトコードで最適時系列までの距離を計算

計算された動的時間ワープの「距離」列を使用すると、ヒストグラムでDTW 距離の分布を
見ることができます。

そこから、最適な販売動向に最も近い商品コード（計算されたDTW 距離が最も小さいも
の）を特定することができます。データブリックスを使っているので、SQLクエリを使っ
て簡単に選択することができます。最も近いものを表示してみましょう。

このクエリを、最適な販売トレンドから最も遠い製品コードの対応するクエリとともに実
行した結果、トレンドに最も近く、トレンドから最も遠い 2 つの製品を特定することがで
きました。これら 2 つの製品をプロットして、それぞれの違いを見てみましょう。

%sql
-- Top 10 product codes closest to the optimal sales trend
select pcode, cast(dtw_dist as float) as dtw_dist from distances order 
by  cast(dtw_dist as float) limit 10

# Calculate distance via dynamic time warping between product code and  
optimal time series
import numpy as np  
import _ucrdtw

def get_keyed_values(s):  
return(s[0], s[1:])

def compute_distance(row):
return(row[0], _ucrdtw.ucrdtw(list(row[1][0:52]), list(optimal_  

pattern), 0.05, True)[1])

ts_values = pd.DataFrame(np.apply_along_axis(get_keyed_values, 1, sales_  
pdf.values))
distances = pd.DataFrame(np.apply_along_axis(compute_distance, 1, ts_  
values.values))
distances.columns = ['pcode', 'dtw_dist']



データサイエンスユースケースのビッグブック この資料は機械翻訳システムで翻訳したものです

22

ご覧のように、製品#675（オレンジ色の三角形）は、週次売上高の絶対値が思ったよりも
低いものの、最適な販売トレンドに最もよくマッチしています（これについては後ほど修
正します）。この結果は、DTW 距離が最も近い製品には、比較対象としているメトリクス
を多少反映したピークとバレーがあると予想されるため、理にかなっています。（もちろ
ん、製品の正確な時間指標は、動的な時間ワープのため、週ごとに異なります。）逆に、
製品#716（緑の星）は、最悪の一致を示す製品であり、ほとんど変動はありません。

最適な商品を探す― DTW の距離が小さく、
絶対販売数が似ている場合
これで、工場の予想生産量（当社の「最適販売動向」）に最も近い製品のリストができた
ので、DTW 距離が小さい製品や絶対数が似ている製品に絞り込むことができるようになり
ました。候補としては、次のようなものが考えられます。製品#202 は、DTW の距離が
6.86 であるのに対し、人口の中央値の距離は 7.89であり、当社の最適なトレンドに非常に
密接に追従しています。

# Review P202 weekly sales
y_p202 = sales_pdf[sales_pdf['Product_Code'] == 'P202'].values[0][1:53]
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MLflowを使用してアーティファクトとともにベスト・
ワーストの製品を追跡する
MLflowは、実験、再現性、展開を含む機械学習のライフサイクルを管理するためのオープ
ンソースのプラットフォームです。データブリックスのNotebook は、完全に統合された
MLflow環境を提供しており、実験の作成、パラメータやメトリクスのログ、結果の保存な
どを行うことができます。MLflowを使い始めるための詳細については、ドキュメントをご
覧ください。

MLflowの設計の中心は、各実験のインプットとアウトプットの全てを、体系的で再現性の
ある方法で記録できることにあります。データを通過するたびに、“Run“ として知られる、
実験のログを記録することができます。

• PARAMETERS：モデルへの入力

• METRICS：モデルの出力、またはモデルの成功の尺度

• ARTIFACTS：モデルによって作成された全てのファイル – PNG プロットや CSV データ
出力など

• MODELS：モデルそのものであり、後にリロードして予測値を提供するために使用する
ことができます。

私たちの場合は、これを使用して、時系列データに適用できる最大のワープ量である「ス
トレッチファクター」を変化させながら、動的な時間ワープアルゴリズムをデータ上で数
回実行することができます。MLflowの実験を開始し、 mlflow.log_param()、
mlflow.log_metric()、mlflow.log_artifact()、mlflow.log_model() を使っ
て簡単にロギングできるようにするために、メイン関数を以下のようにラップします。

下の省略コードにそれを示します。

データを実行するたびに、使用されている「ストレッチファクター」パラメータのログと、
DTW 距離メトリックの z スコアに基づいて外れ値として分類した製品のログを作成しまし
た。さらに、DTW 距離のヒストグラムの成果物（ファイル）を保存することもできました。
これらの実験実行は、データブリックスにローカルに保存されており、後日実験結果を見
ることになってもアクセスできるようになっています。

with mlflow.start_run() as run:
...

import mlflow

def run_DTW(ts_stretch_factor):
# calculate DTW distance and Z-score for each product  
with mlflow.start_run() as run:

# Log Model using Custom Flavor
dtw_model = {'stretch_factor' : float(ts_stretch_factor),  

'pattern' : optimal_pattern}
mlflow_custom_flavor.log_model(dtw_model, artifact_path="model")

# Log our stretch factor parameter to MLflow  
mlflow.log_param("stretch_factor", ts_stretch_factor)

# Log the median DTW distance for this run  
mlflow.log_metric("Median Distance", distance_median)

# Log artifacts - CSV file and PNG plot - to MLflow  
mlflow.log_artifact('zscore_outliers_' + str(ts_stretch_factor) +

'.csv')
mlflow.log_artifact('DTW_dist_histogram.png')

return run.info

stretch_factors_to_test = [0.0, 0.01, 0.025, 0.05, 0.1, 0.25, 0.5]  
for n in stretch_factors_to_test:

run_DTW(n)

https://mlflow.org/
https://mlflow.org/
https://www.mlflow.org/docs/latest/index.html
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MLflowが各実験のログを保存したので、結果を調べてみましょう。データブリックス
Notebook から、右上の “Runs“ アイコンを選択し、

それぞれの実験の結果を表示して比較してみましょう。

驚くことではありませんが、「ストレッチ・ファクター」を増やすと、距離測定値は減少
します。直感的には、これは理にかなっています。アルゴリズムに時間指標を前方または
後方にワープさせる柔軟性を与えると、データに近いフィットを見つけることができます。
本質的には、我々は分散のためにいくつかのバイアスを交換したのです。

MLflowでのロギングモデル
MLflowは、実験パラメータやメトリクス、成果物（プロットやCSV ファイルのようなも
の）をログに記録するだけでなく、機械学習モデルをログに記録する機能を持っています。
MLflowのモデルは、一貫したAPI に適合するように構造化されたフォルダであり、他の
MLflowツールや機能との互換性を確保しています。この相互運用性は非常に強力で、どの
ようなPythonモデルであっても、多くの異なるタイプの本番環境に迅速に展開することが
できます。

MLflowには、scikit-learn、Spark MLlib、PyTorch、TensorFlow などを含む、最もポピュ
ラーな機械学習ライブラリの多くに共通のモデルフレーバーがプリロードされています。
これらのモデルフレーバーは、このブログ記事で実証されているように、モデルが最初に
構築された後にログを記録したり、再ロードしたりすることを容易にしてくれます。例え
ば、MLflowを scikit-learn で使用する場合、モデルのロギングは、実験の中から以下のコー
ドを実行するのと同じくらい簡単です。

これにより、サードパーティのライブラリ（XGBoostや spaCyなど）やシンプルなPython 
関数そのものからのモデルを、MLflowモデルとして保存することができます。Python 関
数フレーバを使用して作成されたモデルは、同じエコシステム内に存在し、Inference API 
を通じて他のMLflowツールと相互作用することができます。全てのユースケースに対応す
ることは不可能ですが、Python 関数モデルフレーバーは可能な限り普遍的で柔軟性の高い
ものになるように設計されています。カスタム処理やロジック評価を可能にし、ETLアプ
リケーションに便利です。偶数のより多くの「公式」モデルのフレーバーがオンラインに
なっても、ジェネリックなPython 関数フレーバーは重要な「キャッチオール」としての役
割を果たし、あらゆる種類のPython コードとMLflowの堅牢なトラッキングツールキット
との間の橋渡しをしてくれます。

mlflow.sklearn.log_model(model=sk_model, artifact_path="sk_model_path")

https://databricks.com/blog/2018/09/21/how-to-use-mlflow-to-reproduce-results-and-retrain-saved-keras-ml-models.html
https://databricks.com/wp-content/uploads/2019/04/dtw-mlflow-1.2019-04-27-20_46_35.gif
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Python の関数フレーバーを使ってモデルをログに記録するのは簡単なプロセスです。どん
なモデルや関数でもモデルとして保存することができますが、1 つの条件があります。それ
は pandas の DataFrameを入力として受け取り、DataFrameまたはNumPy 配列を返さなけ
ればなりません。この要件が満たされたら、関数をMLflowモデルとして保存するには、
PythonModelを継承した Python クラスを定義し、ここで説明するようにカスタム関数
で .predict() メソッドをオーバーライドする必要があります。

ある実行からログに記録されたモデルをロードする
いくつかの異なるストレッチファクターを用いてデータを実行したので、次のステップは
当然のことながら、結果を検証し、ログに記録したメトリクスに応じて特に優れたモデル
を探すことになります。MLflowを使うとログモデルを作成し、それを使用して新しいデー
タでの予測を行うには、次の手順を使用します。

• モデルをロードしたい runのリンクをクリックしてください。

• 「実行 ID」をコピーします。

• モデルが保存されているフォルダの名前をメモしておきます。私たちの場合は、単に
"model“ という名前です。

• 以下のようにモデルフォルダ名と run ID を入力してください。

モデルが意図したとおりに動作していることを示すために、モデルをロードし、変数
new_sales_units で作成した 2 つの新製品のDTW 距離を測定するために使用すること
ができます。

次のステップ
ご覧のように、私たちのMLflowモデルは、新しい値や見たことのない値を簡単に予測して
います。また、Inference API に準拠しているので、任意のサービングプラットフォーム
（Microsoft Azure ML や Amazon Sagemakerなど）にモデルをデプロイしたり、ローカルの
REST APIエンドポイントとしてデプロイしたり、Spark-SQLで簡単に使用できるユーザー定
義関数（UDF）を作成したりすることができます。

最後に、Databricks Unified Data Analytics Platform を使用して、動的タイムワープを使用し
て販売傾向を予測する方法を実演しました。今日は、Databricks Runtime for Machine 
Learning を使用した「売上動向を予測するための動的タイムワープとMLflowの使用」
Notebook をお試しください。

import custom_flavor as mlflow_custom_flavor

loaded_model = mlflow_custom_flavor.load_model(artifact_path='model', run_  
id='e26961b25c4d4402a9a5a7a679fc8052')

# use the model to evaluate new products found in ‘new_sales_units’  
output = loaded_model.predict(new_sales_units)
print(output)

データブリックスの無料の Notebookを使って実験を始める

https://pages.databricks.com/rs/094-YMS-629/images/dynamic-time-warping-background.html?_ga=2.233855382.983042554.1590516546-2105806216.1585857288&_gac=1.246744624.1590016694.EAIaIQobChMIpOWx38nD6QIVXx-tBh1JXASHEAAYASAAEgL8oPD_BwE
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第 4 章 新しい安全在庫分析による
インベントリの最適化

投稿者：
Bryan Smith
Rob Saker

2020 年 4 月 22 日

あるメーカーが顧客の注文を受けて作業をしているときに、重要な部品の納入がサプライヤーによって遅れていること
に気がつきました。小売店では、予期せぬ理由でビールの需要が急増し、供給不足のために売上を失うことになります。
需要を満たすことができないため、顧客はネガティブな経験をします。このような企業はすぐに収益を失い、あなたの
評判は損なわれます。聞き覚えがありませんか？

理想的な世界では、商品の需要は簡単に予測できるでしょう。しかし実際には、最良の予測であっても、予想外の出来
事によって影響を受けることがあります。混乱は、原材料の供給、貨物や物流、製造業の故障、予期せぬ需要などに
よって起こります。小売業者、流通業者、製造業者、サプライヤーは、顧客のニーズを確実に満たしつつ、過剰なイン
ベントリを抱えないようにするために、これらの課題に取り組まなければなりません。そこで、安全在庫分析の改善方
法が貴社のビジネスに役立ちます。

組織は、予想される需要を満たすために必要とされるところにリソースを配分することに常に取り組んでいます。当面
の焦点は、予測の精度を向上させることにあることが多い。この目標を達成するために、企業はスケーラブルなプラッ
トフォーム、社内の専門知識、洗練された新しいモデルに投資しています。

どんなに優れた予測でも将来を完全に予測できるわけではなく、突然の需要の変化によって棚が埋まったままになるこ
ともあります。これは、2020 年初頭に COVID-19の原因となるウイルスへの懸念から、トイレットペーパーの品切れが
広まったことに端を発しています。H-E-B の社長クレイグ・ボヤン氏のコメントによると、"通常 2か月で販売している
ものを 2 週間で販売した"とのことです。

生産量を拡大することは、この問題の単純な解決策ではありません。トイレットペーパーの大手メーカーであるジョー
ジア・パシフィック社は、パンデミックの期間中、人々が家に留まることで、アメリカの平均的な家庭ではトイレット
ペーパーの消費量が 40% 増える見積もりをしていました。これに対応して、同社はトイレットペーパーの生産用に構成
された14の施設で、生産量を 20% 増やすことができました。ほとんどの工場では、すでに 24 時間 365 日固定された生産
能力で稼働しているため、これ以上の増産には、追加設備の購入や新工場の建設による生産能力の拡大が必要となりま
す。

https://www.forbes.com/sites/brucelee/2020/03/06/how-covid-19-coronavirus-is-leading-to-toilet-paper-shortages/#9b204777a8dd
https://foxsanantonio.com/news/local/h-e-b-president-talks-toilet-paper-shortage-reassures-customers-there-will-be-enough
https://www.usatoday.com/story/money/2020/04/08/coronavirus-shortage-where-has-all-the-toilet-paper-gone/2964143001/


データサイエンスユースケースのビッグブック この資料は機械翻訳システムで翻訳したものです

27

このような生産量の増加は、上流側に影響を及ぼす可能性があります。サプライヤーは、
新たに規模を拡大して生産能力を拡大した場合に必要とされる資源を供給するのに苦労す
る可能性があります。トイレットペーパーは単純な製品ですが、その生産は、米国、カナ
ダ、スカンジナビア、ロシアの森林地域から出荷されるパルプと、地元で調達される再生
紙繊維に依存しています。初期埋蔵量が枯渇すると、メーカーが必要とする材料を収穫し、
加工して出荷するまでに時間がかかります。

ブルウィップ効果と呼ばれるサプライチェーンの概念が、このような不確実性を支えてい
ます。サプライチェーン全体の歪んだ情報は、インベントリの大幅な非効率化、運賃や物
流コストの増加、不正確な生産能力計画などを引き起こす可能性があります。在庫を正常
に戻そうとするメーカーや小売業者は、サプライヤーが生産を再開するきっかけとなり、
その結果、上流のサプライヤーが生産を再開するきっかけとなる可能性があります。慎重
に管理されていない場合、小売業者やサプライヤーは、需要が通常に戻ったときに過剰イ
ンベントリや生産能力を抱えていることに気づくかもしれませんし、消費者が自分の個人
的なインベントリのバックログを処理するために、通常よりもわずかに低下していること
に気づくかもしれません。

このブルウィップ効果を軽減するためには、我々が予測する需要の不確実性を精査しなが
ら、需要の動向を慎重に検討する必要があります。

安全ストック分析による不確実性の管理
COVID-19 パンデミックを取り巻く消費者需要の変化を予測することは難しいが、サプライ
チェーンを管理する全ての組織が対処しなければならない不確実性の概念の極端な例を浮
き彫りにしている。消費者活動が比較的正常な時期であっても、製品やサービスに対する
需要は変化し、それを考慮して積極的に管理しなければなりません。

最新の需要予測ツールは、週次や年次の季節性、長期トレンド、休日やイベント、天候、
プロモーション、経済、その他の要因などの外部要因の影響を考慮して、需要の平均値を
予測します。これらのツールは、予測された需要の単数値を作成しますが、半分はこの値
を下回り、残りの半分はこの値を上回ると予測しているため、誤解を招く可能性がありま
す。

平均予測値を理解することは重要であるが、それと同様に重要なのは、その両側の不確実
性を理解することである。この不確実性は、潜在的な需要値の範囲を提供していると考え
ることができます。このように予測を考えることで、この範囲のどの部分に対処すべきか
という会話を始めることができます。

https://sloanreview.mit.edu/article/the-bullwhip-effect-in-supply-chains/
https://www.kinaxis.com/en/blog/preparing-covid-19-and-bullwhip-effect-what-happens-supply-chain-when-you-buy-100-rolls-toilet
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統計的に言えば、潜在的な需要の全範囲は無限であり、したがって、100% 完全に対応でき
ることはありません。しかし、理論的な対話をする必要があるずっと前に、潜在的な需要
の範囲に対応する能力を少しずつ向上させると、インベントリ要件がかなりの（実際には
指数関数的な）増加を伴うことを認識することができます。これにより、私たちは、潜在
的な需要の全範囲の特定の割合に対処しようとする、組織の収益目標とインベントリのコ
ストのバランスをとる、ターゲットを絞ったサービスレベルを追求することになります。

このサービスレベルの期待値を定義した結果、不確実性に対する緩衝材としての役割を果
たすために、平均予測需要に対応するために必要な量以上の一定量の余剰在庫を保有しな
ければならないことになります。この安全在庫は、平均周期的な需要に対応するために必
要なサイクル在庫に加えて、組織全体の目標のバランスを取りながら、実際の需要のほと
んど（全てではないが）の変動に対応する能力を与えてくれます。

必要な安全在庫レベルの計算
サプライチェーンの古典的な文献では、安全在庫は需要の不確実性と納期の不確実性に対
処する2つの式のうちの1つを使用して計算される。この記事では需要の不確実性に焦点を
当てているので、不確実なリードタイムの考慮を排除することができ、考慮すべき単一の
単純化された安全在庫の公式を残すことができます。

一言で言えば、この式は、安全在庫が平均予測値（σD）の周りの需要の平均的な不確実性
に、ストックしている（パフォーマンス）サイクルの期間（√PC⁄T）の平方根を乗じたも
のに、対応したい不確実性の範囲（Ζ）に関連する値を乗じたものとして計算されることを
説明しています。この式の各構成要素は、完全に理解していただくために少し説明する必
要があります。

前回は、需要が平均値付近の潜在的な値の範囲として存在していることを説明しましたが、
今回の予測ではそれが発生しています。もしこの範囲がこの平均値の周りに均等に分布し
ていると仮定すると、平均値の両側にあるこの範囲の平均値を計算することができます。
これは標準偏差として知られています。需要の標準偏差としても知られる値Σd は、平均値
の周辺の値の範囲の尺度を提供してくれます。

この範囲は平均値を中心にバランスが取れていると仮定しているので、この範囲内の値の
うち、その平均値から標準偏差がいくつか存在する割合を導き出すことができることがわ
かります。我々が対応したい潜在的な需要の割合を表すためにサービスレベルの期待値を
使用する場合、我々は安全在庫の計画の一部として考慮する必要がある需要の標準偏差の
数に戻ることができます。値の範囲のパーセンテージを捕捉するために必要な標準偏差の
必要数（Ζの式で表される z スコアとして知られています）の計算の背後にある実際の計算
は少し複雑になりますが、幸いにも z スコア表は広く公開されており、オンライン計算機
も利用できます。とはいえ、ここでは、一般的に採用されているサービスレベルの期待値
に対応するいくつかの zスコア値を紹介します。

安全在庫 = Ζ * √PC⁄T  * σD

https://en.wikipedia.org/wiki/Service_level
https://measuringu.com/zcalcp/
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最後に、安全在庫（√PC⁄T）を計算しているサイクルの期間を表す項にたどり着きます。
平方根計算が必要な理由はさておき、これが式の最も単純な要素であることを理解してく
ださい。PC⁄T 値は、安全在庫を計算しているサイクルの期間を表しています。T による除
算は、標準偏差値の計算に使用される単位と同じ単位でこの期間を表現する必要があるこ
とを思い出させてくれるものです。例えば、7 日サイクルの安全在庫を計画している場合、
日次需要値を利用して需要の標準偏差を計算している限り、この期間は 7 の平方根を取る
ことができます。

需要のばらつきを見積もるのは難しい
表面的には、安全在庫分析の必要条件の計算は非常に簡単です。サプライチェーンマネジ
メントの授業では、学生はしばしば需要の過去の値を提供され、そこから計算式の標準偏
差成分を計算することができます。サービスレベルの期待値が与えられると、すぐに z ス
コアを導き出し、その目標レベルを満たすための安全在庫の要件をまとめることができま
す。しかし、これらの数字は間違っているか、少なくとも、ほとんど有効ではないという
重大な仮定の外では間違っています。

安全在庫の計算で問題となるのは、需要の標準偏差である。標準式は、我々が計画してい
る将来の期間の需要に関連した変動を知ることに依存しています。時系列の変動が安定し
ていることは極めて稀です。その代わりに、それはしばしばデータのトレンドや季節的な
パターンで変化します。イベントや外部回帰因子も同様に独自の影響を及ぼします。

この問題を克服するために、サプライチェーン・ソフトウェア・パッケージはしばしば、
需要の標準偏差の代わりに二乗平均誤差（RMSE）や平均絶対誤差（MAE）のような予測誤
差の尺度を代用しますが、これらの値は異なる（関連する概念ではありますが）概念を表
しています。これはしばしば安全在庫の要件を過小評価することにつながりますが、この
チャートでは 95% の期待値を設定したにもかかわらず、92.7%のサービスレベルが達成さ
れていることが示されています。

また、ほとんどの予測モデルは、予測平均値を計算しながら誤差を最小化するように機能
しているため、皮肉なことに、モデルのパフォーマンスの向上が過小評価の問題を悪化さ
せてしまうことがよくあります。多くの小売業者が公表されているサービスレベルの期待
値に向かって努力しているにもかかわらず、そのほとんどがその目標を達成できていない
という認識の広まりは、このことが背景にあると考えられます。

サービスレベル期待値 Z（z スコア）

80.00% 0.8416

85.00% 1.0364

90.00% 1.2816

95.00% 1.6449

97.00% 1.8808

98.00% 2.0537

99.00% 2.3263

99.90% 3.0902

99.99% 3.7190

https://medium.com/focal-systems/because-of-click-and-pick-retailers-now-realize-their-on-shelf-availability-scores-are-incorrect-1e21c94247ab
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今後の展望およびデータブリックスができる支援
問題に対処するための重要な第一歩は、安全性ストック分析計算の欠点を認識することで
す。認識だけでは満足できることはほとんどありません。

何人かの研究者が、安全性ストック推定を改善するという明確な目的のために、需要分散
をより良く推定する技術を定義するために取り組んでいますが、これをどのように行うべ
きかについてはコンセンサスが得られていません。また、これらの技術をより簡単に実装
できるようにするためのソフトウェアは、広く利用できるものではありません。

今のところは、サプライチェーン管理者の皆様には、過去のサービスレベルの実績を慎重
に検証し、目標が達成されているかどうかを確認することを強くお勧めしたいと思います。
これには、過去の実績と同様に過去の予測を慎重に組み合わせることが必要である。従来
のデータベース・プラットフォームにデータを保存するにはコストがかかるため、多くの
組織では過去の予測や原子レベルのソース・データを保存していませんが、データブリッ
クスのようなプラットフォームを通じて提供されるオンデマンド計算技術を利用してアク
セスできる高性能で圧縮された形式で保存されたデータを持つクラウドベースのストレー
ジを使用することで、コスト効率が向上し、多くの組織でクエリ・パフォーマンスの向上
を実現することができます。

自動化またはデジタル化されたフルフィルメントシステムが導入され、多くの購入オンラ
インピックアップインストア（BOPIS）モデルに必要とされるようになり、注文フルフィル
メントに関するリアルタイムのデータを生成し始めると、企業はこのデータを使用して在
庫切れの問題を検出し、期待されるサービスレベルや店舗内のインベントリ管理方法を再
評価する必要性を示すことを望むようになります。これらの分析の実行に制限されていた
製造業者は、以下のような分析を行っています。

毎日のルーチンでは、シフトごとに分析して調整したい場合があります。データブリック
スのストリーミングインジェスト機能はソリューションを提供し、企業はほぼリアルタイ
ムに近いデータで安全性の高いストック分析を行うことができます。

最後に、インベントリ計画プロセスへのより良いインプットを提供する予測を生成する新
しい方法を検討してみてください。Facebook Prophet と並列化とデータブリックスのよう
なオートスケーリング・プラットフォームを組み合わせることで、多くの企業でタイム
リーできめ細かな予測を実現しています。また、一般化自己回帰的条件付きヘテロスケマ
ティック（GARCH）モデルのような他の予測技術では、安全在庫戦略を設計する上で非常
に有益であることを証明する需要変動のシフトを調べることができるかもしれません。

セーフティストックの課題を解決することは、その旅に出ようとする組織にとって大きな
潜在的利益をもたらしますが、最終状態への道筋が容易に定義されていないため、柔軟性
が成功への鍵となるでしょう。私たちは次のことを信じています。

データブリックスは、この旅のための手段として独自の位置を占めており、お客様と一緒
にナビゲートしていくことを楽しみにしています。

データブリックスは、この重要なトピックについての洞察を提供してくれたSouthern 
Methodist University Cox School of Business の Sreekumar Bhaskaran教授に感謝しています。

データブリックスの無料の Notebookを使って実験を始める

https://www.sciencedirect.com/science/article/abs/pii/S0377221716304568
https://www.researchgate.net/publication/286867762_Forecasting_and_Risk_Analysis_in_Supply_Chain_Management_GARCH_Proof_of_Concept
https://www.smu.edu/cox/Our-People-and-Community/Faculty/Sreekumar-Bhaskaran
https://pages.databricks.com/rs/094-YMS-629/images/Fine-Grained-Time-Series-Forecasting.html?_ga=2.167072185.629507392.1589211892-2105806216.1585857288
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第 5 章 サプライチェーン需要予測を
改善する新しい手法

因果関係を考慮したきめ細かな需
要予測

投稿者：
Bryan Smith
Rob Saker

2020 年 3 月 26 日

組織は急速に微細な需要予測を取り入れている
小売業者や消費財メーカーは、コストを削減し、運転資金を自由にし、オムニチャネル・イノベーションの基盤を作る
ために、サプライチェーン・マネジメントの改善を求める声が高まっています。消費者の購買行動の変化は、サプライ
チェーンに新たな負担をかけています。製品やサービスに対する需要は、労働、インベントリ管理、供給・生産計画、
貨物・物流、その他多くの分野の意思決定に影響を与えるため、需要予測を通じた消費者需要の理解を深めることは、
これらの取り組みのほとんどの出発点と考えられています。

マッキンゼー・アンド・カンパニーは、「Notes from the AI Frontier」の中で、小売業のサプライチェーン予測の精度を
10～20% 向上させることで、インベントリコストを5% 削減し、収益を 2～3% 増加させる可能性があると強調していま
す。従来のサプライチェーン予測ツールでは、望ましい結果は得られませんでした。小売業者のサプライチェーンの需
要予測では、業界平均で 32% の不正確さがあると言われており、ほとんどの小売業者にとって、わずかな予測精度の改
善でさえも潜在的な影響は計り知れません。その結果、多くの企業はパッケージ化された予測ソリューションから離れ、
需要予測スキルを社内に持ち込む方法を模索し、計算効率のために予測精度を低下させていた過去の慣行を見直すよう
になっています。

これらの取り組みの主な焦点は、時間的および（場所や製品の）階層的な粒度のより細かいレベルでの予測を生成する
ことである。細かい粒度の需要予測は、需要に影響を与えるパターンを、需要が満たされなければならないレベルに近
いところで捉えることができる可能性を持っている。これまでは、小売業者は市場レベルや流通レベルである商品クラ
スの短期的な需要を 1 か月や 1 週間の期間で予測し、その予測値を使ってそのクラスの特定の商品を特定の店舗や日にど
のように配置すべきかを配分していたかもしれませんが、細かい粒度の需要予測では、予測者は特定の場所での特定の
商品のダイナミクスを反映したより局所的なモデルを構築することが可能になります。

https://www.mckinsey.com/featured-insights/artificial-intelligence/notes-from-the-ai-frontier-applications-and-value-of-deep-learning
https://www.supplychain247.com/article/does_ai_enabled_demand_forecasting_improve_supply_chain_efficiency
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細かい需要予測には課題がつきもの
細かい需要予測はワクワクするように聞こえるが、それには多くの課題がある。第一に、
集約的な予測から離れることで、生成しなければならない予測モデルと予測の数が爆発的
に増加します。必要とされる処理レベルは、既存の予測ツールでは達成できないか、ある
いは情報を有用に利用するためのサービスウィンドウを大幅に超えてしまう。この制限に
より、企業は処理されるカテゴリーの数や分析の粒度をトレードオフにしてしまうことに
なります。

以前のブログ記事で検討したように、この課題を克服するためにApache Sparkを採用する
ことで、モデラーが作業を並列化してタイムリーに効率的に実行できるようになります。
データブリックスのようなクラウドネイティブのプラットフォームにデプロイすると、計
算リソースを迅速に割り当ててからリリースすることができ、この作業のコストを予算内
に抑えることができます。

第二に、克服するのがより困難な課題は、より細かい粒度でデータを調査した場合に、集
合体として存在する需要パターンが存在しない可能性があることを理解することである。
アリストテレスの言葉を借りれば、全体が総和よりも大きいことがよくあります。その部
分の分析の詳細レベルが低くなるにつれて、より高いレベルの粒度でより簡単にモデル化
されたパターンはもはや確実に存在しない可能性があり、より高いレベルで適用可能な技
術を用いた予測の生成はより困難になります。予測の文脈におけるこの問題は、1950年代
のHenri Theilにまで遡る多くの専門家によって指摘されています。

取引レベルの粒度に近づくにつれ、個々の顧客の需要や購入に影響を与える外部要因も考
慮する必要があります。意思決定を行うためには、これらを直接組み入れる必要があるか
もしれません。全体としては、これらは時系列を構成する平均値、トレンド、季節性に反
映されるかもしれませんが、粒度の細かいレベルでは、これらを予測モデルに直接組み込
む必要があるかもしれません。

最後に、粒度を細かくすると、データの構造が従来の予測手法を使用できなくなる可能性
が高くなります。トランザクションの粒度に近づけば近づくほど、データの非活動期間に
対処する必要がある可能性が高くなります。この粒度のレベルでは、従属変数は、特に販
売台数などのカウントデータを扱う場合、単純な変換ができない歪んだ分布になる可能性
があり、多くのデータサイエンティストが快適に過ごせる範囲外の予測技術の使用が必要
になるかもしれません。

履歴データへのアクセス
詳しくはデータ作成Notebookをご覧ください。

これらの課題を検証するために、ニューヨーク市の自転車シェアプログラム（別名Citi 
Bike NYC）の一般の旅行履歴データを活用します。Citi Bike NYC は、人々を助けることを
約束する会社です,「バイクのロックを解除します.ニューヨークをアンロックする。」。こ
のサービスでは、ニューヨーク市内にある 850 以上のレンタル拠点で自転車をレンタルす
ることができます。同社には 13,000 台以上のバイクのインベントリがあり、今後は40,000
台まで増やす予定です。Citi Bike には 10 万人以上の加入者がおり、1 日に約 1 万 4000 台の
自転車をレンタルしています。

Citi Bike NYC は、自転車を置いていた場所から将来の需要を予測した場所に再配置してい
ます。Citi Bike NYC は、小売店や消費財企業が日常的に直面している課題と似たようなも
のを抱えており、需要を予測して適切な場所にリソースを配分するにはどうすればよいの
でしょうか？需要を過小評価してしまうと、収益機会を逃し、顧客心理に悪影響を及ぼす
可能性があります。需要を過大に見積もってしまうと、自転車の余剰インベントリが未使
用のままになってしまいます。

https://databricks.com/blog/2020/01/27/time-series-forecasting-prophet-spark.html
https://www.worldcat.org/title/linear-aggregation-of-economic-relations/oclc/180231
https://databricks.com/notebooks/recitibikenycdraft/data-preparation.html
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この公開されているデータセットは、前月末から 2013 年半ばのプログラム開始までの各自
転車レンタルの情報を提供しています。走行履歴データは、特定のレンタル・ステーショ
ンから自転車がレンタルされた正確な時間と、その自転車が別のレンタル・ステーション
に返却された時間を特定します。Citi Bike NYC プログラムのステーションを店舗の場所と
して扱い、レンタルの開始を取引と考えると、長くて詳細な取引に近いものが得られます。
予測を立てることができる歴史を持っています。

この演習の一環として、モデル化の取り組みに組み込む外部要因を特定する必要がありま
す。外部要因として、休日のイベントと過去の（そして予測された）気象データの両方を
活用します。休日データセットについては、Python の holidays ライブラリを使用して、
2013 年から現在までの標準的な休日を単純に特定します。気象データには、人気の高い気
象データアグリゲータVisual Crossingの1時間ごとの抽出データを採用します。

Citi Bike NYC と Visual Crossing のデータセットには、当社が直接データを共有することを
禁止する利用規約があります。弊社の結果を再現したい方は、データ提供者のウェブサイ
トにアクセスし、その利用規約を確認した上で、適切な方法でデータセットをそれぞれの
環境にダウンロードしてください。当社は、これらの生データ資産を当社の分析に使用さ
れるデータオブジェクトに変換するために必要なデータ準備ロジックを提供します。

トランザクションデータの検討
詳しくは探索分析Notebook をご覧ください。

2020 年 1 月現在、Citi Bike NYC のバイクシェアプログラムは、マンハッタンを中心とした
ニューヨーク都市圏で稼働している 864 のアクティブステーションで構成されています。
2019 年だけでも、400 万人強の顧客がユニークなレンタルを開始し、ピーク時には 14,000
件近くのレンタルが行われました。

https://pypi.org/project/holidays/
https://www.visualcrossing.com/
https://databricks.com/notebooks/recitibikenycdraft/exploratory-analysis.html
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開始以来、レンタル台数は前年比で増加していることがわかります。この伸びの一部は自
転車の利用率が上がったことによるものと思われますが、その多くは駅全体のネットワー
クの拡大に沿ったものと思われます。

ネットワーク内のアクティブな駅の数で賃貸料を正規化すると、駅ごとの乗降客数の増加
は、ここ数年、わずかに直線的な上昇傾向にあると考えられるように、緩やかに増加して
いることがわかります。

この正規化されたレンタル値を使ってみると、春、夏、秋に上昇し、外の天気が悪くなる
と冬に下がるという季節的なパターンがはっきりと見られます。



データサイエンスユースケースのビッグブック この資料は機械翻訳システムで翻訳したものです

35

このパターンは、市の最高気温（華氏）のパターンに密接に追随しているように見えます。

月別のライダー数と気温のパターンを切り離すのは難しいですが、降雨量（月平均イン
チ）はこのようなパターンを反映しているとは言い難いです。

日曜日を「1」、土曜日を「7」とした週ごとの利用者数のパターンを調べてみると、
ニューヨーカーは自転車を通勤手段として利用しているようで、他の多くの自転車シェア
プログラムに見られるパターンとなっています。

これらの利用パターンを時間帯別に見てみると、平日は通常の通勤時間帯に利用者が急増
するパターンが見られます。また、週末になると、よりゆったりとした時間帯に利用され
ていることがわかり、先ほどの仮説を裏付ける結果となりました。
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興味深いのは、休日は曜日に関係なく、週末の利用パターンに近い消費パターンを示して
いることである。祝日の発生頻度が低いことが、このような傾向の不規則性の原因となっ
ているのかもしれません。しかし、信頼性の高い予測をするためには、休日を見極めるこ
とが重要であることが裏付けられているように思います。

時間ごとのデータを総合すると、ニューヨークはまさに眠らない街であることがわかる。
実際には、レンタサイクルがない時間帯の割合が多い駅も多数あります。

これらの活動のギャップは、予測を生成しようとするときに問題となることがあります。1
時間間隔から 4 時間間隔に移行することで、個々のステーションがレンタル活動を経験し
ていない期間の数は大幅に減少しますが、この時間枠の中で活動していないステーション
はまだ多く存在します。

より高いレベルの粒度に移行することで非活動期間の問題を回避する代わりに、我々は毎
時レベルでの予測を試み、このデータセットを扱うのに役立つ代替的な予測手法がどのよ
うに役立つかを探ります。大部分が活動していない局の予測はあまり面白くないので、分
析は最も活動的な上位 200 局に限定します。
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Facebook Prophet でバイクシェアのレンタルを
予測する
最初の試みとして、駅ごとの自転車レンタルを予測するために、時系列予測のための人気
の高い Python ライブラリである Facebook Prophet を利用しました。モデルは、日次、週
次、年次の季節パターンを持つ線形成長パターンを探索するように構成されています。祝
日に関連するデータセットの期間も特定し、これらの日付での異常行動がアルゴリズムに
よって検出された平均、トレンド、季節パターンに影響を与えないようにしました。

以前に参照したブログ記事で説明したスケールアウトパターンを用いて、最もアクティブ
な 200 の観測点についてモデルを訓練し、それぞれについて 36 時間の予測を生成した。モ
デルの平均二乗誤差（RMSE）は 5.44、平均平均比例誤差（MAPE）は 0.73でした。（ゼロ
値の実績はMAPE の計算には 1 を使用します。）

これらの指標は、モデルが賃貸料を予測するのにはそれなりに良い仕事をしているが、時
間当たりの賃貸料が高くなると欠落していることを示しています。個々のステーションの
売上データを可視化すると、ステーション518のチャートのようにグラフで見ることができ
ます。E 39 St と 2 Ave の RMSE は 4.58、MAPE は 0.69 です。

詳細は時系列Notebook を参照してください。

その後、モデルは気温と降水量を回帰因子として組み込むように調整された。結果として
得られた予測の RMSE は 5.35、MAPE は 0.72でした。非常にわずかに改善されたとはいえ、
モデルはまだ駅レベルで見られる乗降客数の大きな変動に対応するのは困難です。

詳細は、リプレッサーを用いた時系列Notebook を参照してください。

https://facebook.github.io/prophet/
https://databricks.com/notebooks/recitibikenycdraft/time-series.html
https://databricks.com/notebooks/recitibikenycdraft/time-series-with-regressors.html
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両方の時系列モデルで高い値をモデル化するのが困難なこのパターンは、ポアソン分布を
持つデータを扱う場合の典型的なパターンです。このような分布では、その上の値の長い
尾を持つ平均の周りに多数の値があるでしょう。平均の反対側では、ゼロの床はデータを
歪ませます。今日、Facebook Prophet はデータが正規分布（ガウス分布）を持つことを期
待していますが、ポアソン回帰を組み込む計画が議論されています。

サプライチェーンの需要予測のための代替的なアプ
ローチ
では、どのようにしてこれらのデータの予測を生成するのでしょうか？Facebook Prophet 
の管理人が検討しているように、一つの解決策は、伝統的な時系列モデルのコンテキスト
でポアソン回帰機能を活用することです。これは優れたアプローチかもしれませんが、広
く文書化されていないので、他のテクニックを検討する前に自分たちで取り組むのは、私
たちのニーズには最適なアプローチではないかもしれません。

別の潜在的な解決策は、非ゼロ値の規模とゼロ値期間の発生頻度をモデル化することであ
る。それぞれのモデルの出力を組み合わせて、予測を組み立てることができます。Croston
の方法として知られるこの方法は、最近リリースされたCroston Python ライブラリによっ
てサポートされていますが、別のデータサイエンティストが独自の関数を実装しています。
しかし、これはまだ広く採用されている方法ではありません（1970 年代までさかのぼって
いるにもかかわらず）、私たちの好みは、もう少し枠にとらわれない方法を探求すること
です。

この選好を考えると、ランダム・フォレスト回帰器はかなり理にかなっているように思え
ます。決定木は一般的に、多くの統計手法のようにデータ分布に同じ制約を課すことはあ
りません。予測された変数の値の範囲は、モデルを訓練する前に平方根変換のようなもの
を使用して家賃を変換することに意味があるかもしれませんが、その場合でも、アルゴリ
ズムがそれなしでどれだけうまく実行されるかを見ることができるかもしれません。

このモデルを活用するためには、いくつかの機能を開発する必要があります。探索的分析
から、データには年間、週単位、日単位の両方のレベルで強い季節的パターンがあること
が明らかになりました。これにより、年、月、曜日、時間帯を特徴として抽出することが
できます。また、休日のフラグを入れることもあります。

ランダムフォレスト回帰器と時間由来の特徴のみを使用して、全体的なRMSE は3.4、MAPE 
は 0.39となります。ステーション 518 については、RMSE とMAPE の値は以下のとおりです。
3.09、0.38 となっています。

詳しくはTemporal Notebookをご覧ください。

降水量と気温のデータをこれらの同じ時間的特徴のいくつかと組み合わせて活用すること
で、より良い（完全ではないが）高い賃貸価格のいくつかに対応することができます。ス
テーション 518 の RMSE は 2.14 に低下し、MAPE は 0.26 に低下しました。全体として、
RMSE は2.37に低下し、MAPE は 0.26 に低下しており、気象データは自転車の需要を予測す
る上で価値があることを示しています。

詳細については、「時間的および天候の特徴を持つランダムフォレスト」Notebookを参照
してください。

https://www.youtube.com/watch?v=8px7xuk_7OU
https://github.com/facebook/prophet/issues/797
https://databricks.com/notebooks/recitibikenycdraft/randomforest-with-time-variables-only.html
https://databricks.com/notebooks/recitibikenycdraft/randomForest-with-time-and-weather.html
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結果の意味合い
粒度の細かいレベルでの需要予測では、モデル化へのアプローチを別の方法で考える必要
があるかもしれない。高レベルの時系列パターンにまとめても問題ないと考えられるよう
な外部からの影響力は、我々のモデルにもっと明示的に組み込む必要があるかもしれませ
ん。集計レベルでは隠れていたデータ分布のパターンがより容易に露出し、モデリングア
プローチの変更が必要になるかもしれません。このデータセットでは、1 時間ごとの気象
データを含めることと、従来の時系列手法から、入力データについての仮定を少なくする
アルゴリズムへとシフトすることで、これらの課題を解決することができました。

他にも探索する価値のある外部のインフルエンサーやアルゴリズムはたくさんあるかもし
れませんが、この道を進んでいくうちに、これらの中には他のものよりもデータの一部の
サブセットに適したものがあることに気づくかもしれません。また、新しいデータが入っ
てくると、以前はうまく機能していた技術を放棄し、新しい技術を検討する必要があるか
もしれません。

細かい粒度の需要予測を探求している顧客によく見られるパターンは、トレーニングと予
測サイクルごとに複数の手法を評価することで、自動化されたモデルのベークオフと表現
することができます。ベークオフ・ラウンドでは、データの与えられたサブセットに対し
て最高の結果を出したモデルがラウンドを勝ち抜き、各サブセットが独自の勝ちモデルタ
イプを決定することができます。最終的には、採用したアルゴリズムとデータが適切に一
致するような優れたデータサイエンスを確実に実行したいものですが、次から次へと記事
にあるように、問題に対する解決策は常に 1 つだけとは限りませんし、ある時には他の時
よりもうまくいくものもあります。Apache Spark やデータブリックスのようなプラット
フォームを利用することで、これら全てのパスを探索し、ビジネスに最適なソリューショ
ンを提供するための計算能力にアクセスできるようになりました。

小売/消費財と需要予測リソースの追加
これらの開発者リソースを使って実験を始めましょう。

1. Notebooks

• データ作成Notebook 

• 探索分析Notebook 

• 時系列Notebook 

• リプレッサーを用いた時系列Notebook 

• テンポラリーNotebook 

• テンポラル＆ウェザー機能を備えたランダムな森のNotebook

2. 小売業と消費財のためのデータ分析とAI の大規模化ガイドをダウンロード

3. Dollar Shave Club と Zalando がどのようにデータブリックスを活用してイノベーション
を起こしているかについては、小売・消費財のページをご覧ください。

4. 最近のブログ「Fine-Grained Time Series Forecasting at Scale with Facebook Prophet and 
Apache Spark」は、Databricks Unified Data Analytics Platformがどのようにタイムリー
に、かつ粒度レベルで課題を解決し、製品のインベントリを正確に調整できるようにし
ているかを紹介しています。

https://databricks.com/notebooks/recitibikenycdraft/data-preparation.html
https://databricks.com/notebooks/recitibikenycdraft/exploratory-analysis.html
https://databricks.com/notebooks/recitibikenycdraft/time-series.html
https://databricks.com/notebooks/recitibikenycdraft/time-series-with-regressors.html
https://databricks.com/notebooks/recitibikenycdraft/randomforest-with-time-variables-only.html
https://databricks.com/notebooks/recitibikenycdraft/randomForest-with-time-and-weather.html
https://pages.databricks.com/data-science-at-scale-retail.html?_ga=2.10110837.1545315667.1582041023-1748556641.1581715136
https://databricks.com/solutions/industries/retail-solutions
https://databricks.com/blog/2020/01/27/time-series-forecasting-prophet-spark.html
https://databricks.com/product/unified-data-analytics-platform
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第 6 章 Prophet と Apache Spark を
活用した時系列予測の
大規模展開

投稿者：
Bilal Obeidat
Bryan Smith
Brenner Heintz

2020 年 1 月 27 日

時系列予測の進歩により、小売業者はより信頼性の高い需要予測を作成することができるようになりました。現在の課
題は、これらの予測をタイムリーに、かつ商品インベントリを正確に調整できるような粒度で作成することです。
Apache Spark™と Facebook Prophetを活用することで、これらの課題に直面している多くの企業は、従来のソリュー
ションのスケーラビリティと精度の限界を克服できることを発見しています。

この記事では、時系列予測の重要性について説明し、サンプルの時系列データを可視化し、Facebook Prophet の使用方
法を示すシンプルなモデルを構築します。一つのモデルを構築することに慣れたら、Prophet と Apache Spark™の魔法
を組み合わせて、一度に何百ものモデルをトレーニングする方法を紹介し、今までほとんど達成されなかった粒度レベ
ルで個々の商品と店舗の組み合わせについて正確な予測を作成できるようにします。

正確でタイムリーな予測がこれまで以上に重要になっています。
製品やサービスの需要をよりよく予測するために、時系列分析のスピードと精度を向上させることは、小売業者の成功
にとって非常に重要です。店頭に商品が多すぎると、棚や倉庫のスペースが圧迫され、商品の期限が切れる可能性があ
り、小売業者はインベントリに資金が縛られ、メーカーが生み出す新たな機会や消費者パターンの変化を利用すること
ができなくなる可能性があります。店頭に置かれている商品が少なすぎると、顧客が必要とする商品を購入できない可
能性がある。このような予測エラーは、小売業者の収益をすぐに失うだけでなく、時間の経過とともに消費者のフラス
トレーションが顧客を競合他社に向かわせることにもなりかねません。

https://databricks.com/spark/about
https://facebook.github.io/prophet/
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新たな期待に必要な、正確な時系列予測手法とモデル
しばらくの間、企業資源計画（ERP）システムやサードパーティのソリューションは、単
純な時系列モデルに基づいた需要予測機能を小売業者に提供してきました。しかし、技術
の進歩と業界のプレッシャーの増大に伴い、多くの小売業者は、歴史的に利用可能な線形
モデルやより伝統的なアルゴリズムを超えたものへの移行を模索しています。

Facebook Prophetが提供するような新しい機能がデータサイエンスコミュニティから登場
しており、企業はこれらの機械学習モデルを時系列予測のニーズに柔軟に適用することを
求めています。

このような従来の予測ソリューションからの脱却の動きに伴い、小売店などでは需要予測
の複雑さだけでなく、何十万、何百万もの機械学習モデルをタイムリーに生成するために
必要な作業を効率的に分散させるための社内の専門知識を身につける必要があります。幸
いなことに、Spark を使ってこれらのモデルのトレーニングを分散させることができるの
で、商品やサービスの全体的な需要だけでなく、各地域の商品ごとの固有の需要を予測す
ることが可能になります。

時系列データにおける需要の季節性の可視化
個々の店舗や商品の細かい需要予測を生成するためのProphet の使用を実証するために、
Kaggle から公開されているデータセットを使用します。これは、10 の異なる店舗にまたが
る 50 の個別商品の日販データの5年間のデータで構成されています。

まずは、全商品・全店舗の全体の年間売上高の推移を見てみましょう。ご覧のように、全
商品の売上高は前年比で増加しており、プラトーを中心に明確な収束の兆しは見られませ
ん。

次に、同じデータを月別に見てみると、前年比の上昇トレンドが毎月着実に進んでいるわ
けではないことがわかります。その代わり、夏場にピークがあり、冬場に谷間があるとい
う明確な季節的なパターンが見られます。Databricks Collaborative Notebooks に内蔵され
ているデータの可視化機能を使用して、チャート上でマウスを動かすことで、各月のデー
タの価値を確認することができます。

https://facebook.github.io/prophet/
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平日レベルでは、日曜日（平日 0）にピークを迎えた後、月曜日（平日 1）に大きく落ち込
み、その後は順調に回復しています。

Facebook Prophet で
シンプルな時系列予測モデルを作成する
上のグラフに示されているように、私たちのデータは、年間と週単位の季節的なパターン
とともに、売上高が前年比で明らかに上昇していることを示しています。このようなデー
タの重複したパターンこそが、Prophet が対処するために設計されたものなのです。

Facebook Prophet はscikit-learn の API に従っているので、sklearnの経験があれば誰でも簡
単に利用できます。2 カラムのpandas DataFrameを入力として渡す必要があります。1 カラ
ム目は日付、2 カラム目は予測する値（この場合は売上）です。データが適切な形式であ
れば、モデルの構築は簡単です。

モデルをデータに当てはめることができたので、それを使って 90 日間の予測を立ててみま
しょう。以下のコードでは、prophet のmake_future_dataframeメソッドを使用して、過去
の日付と 90 日以降の日付の両方を含むデータセットを定義しています。

import pandas as pd
from fbprophet import Prophet

# instantiate the model and set parameters  
model = Prophet(

interval_width=0.95,  
growth='linear',  
daily_seasonality=False,  
weekly_seasonality=True,  
yearly_seasonality=True,  
seasonality_mode='multiplicative'

)

# fit the model to historical data  
model.fit(history_pd)

future_pd = model.make_future_dataframe(  
periods=90,
freq='d',  
include_history=True

)

# predict over the dataset
forecast_pd = model.predict(future_pd)
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これだけです。これで、実際のデータと予測データがどのように並んでいるかを可視化す
ることができます。Prophet のビルトインの .plot メソッドを使って、実際のデータと予測
されたデータがどのように並んでいるか、そして将来の予測を視覚化することができるよ
うになりました。ご覧のように、先ほど説明した週ごとの需要パターンと季節ごとの需要
パターンは実際に予測結果に反映されています。

Prophet とSpark で何百もの時系列予測モデルを
並列にトレーニング
1つの時系列予測モデルを構築する方法をデモしたので、Apache Spark のパワーを使って、
さらに多くの努力をしてみましょう。目標は、データセット全体の予測を 1 つ生成するの
ではなく、商品と店舗の組み合わせごとに何百ものモデルと予測を生成することです。

このようにモデルを構築することで、例えば食料品店のチェーン店では、サンダスキーの
店舗に注文すべき牛乳の量を正確に予測することができます。クリーブランドの店舗で必
要とされる量とは異なります。

Spark DataFramesを使って
時系列データの処理を分散する方法
データサイエンティストは、Apache Spark のような分散データ処理エンジンを使用して大
量のモデルを訓練するという課題に頻繁に取り組んでいます。Spark クラスタを利用する
ことで、クラスタ内の個々のワーカーノードは、他のワーカーノードと並行してモデルの
サブセットを訓練することができ、時系列モデルのコレクション全体を訓練するのに必要
な全体の時間を大幅に短縮することができます。

もちろん、ワーカー・ノード（コンピュータ）のクラスタ上でモデルをトレーニングする
には、より多くのクラウド・インフラストラクチャが必要であり、それにはコストがかか
ります。しかし、オンデマンドのクラウドリソースを簡単に利用できるため、企業は必要
なリソースを迅速にプロビジョニングすることができます。

predict_fig = model.plot(forecast_pd, xlabel='date', ylabel='sales')  
display(fig)

この可視化は雑然としています。Bartosz Mikulski 氏は、チェックアウトする価値のあ
る優れた内訳を提供しています。一言で言えば、黒い点が当社の実績を表し、濃い青
色の線が当社の予測を表し、薄い青色のバンドが当社の（95%）不確実性区間を表し
ています。

https://databricks.com/spark/about
https://docs.databricks.com/clusters/index.html?_ga=2.92550174.2091689691.1591215417-566957636.1584739382&_gac=1.182965076.1589579628.Cj0KCQjw-_j1BRDkARIsAJcfmTFmZ1FrPnLWn4a6NsA_7M8Sc8-1KbOXqjgUhC_B7LqzO78jU8PyzusaAlt2EALw_wcB
https://www.mikulskibartosz.name/prophet-plot-explained/
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これにより、物理的な資産に長期的なコミットメントをすることなく、大規模なスケーラ
ビリティを実現することができます。

Spark で分散データ処理を実現するための重要な仕組みがDataFrameです。Spark の
DataFrameにデータをロードすることで、データはクラスタ内のワーカーに分散されます。
これにより、これらのワーカーはデータのサブセットを並行して処理することができ、作
業に必要な全体の時間を短縮することができます。

もちろん、各ワーカーは、作業を行うために必要なデータのサブセットにアクセスできる
必要があります。キー値に関するデータをグループ化することで、この場合はストアとア
イテムの組み合わせについて、これらのキー値に関する全ての時系列データを特定のワー
カー・ノードにまとめます。

Pandas のユーザー定義機能を活用する
時系列データを店舗と項目ごとに適切にグループ化したので、各グループごとに1つのモデ
ルを訓練する必要があります。これを達成するために、pandas のユーザー定義関数
（UDF）を使用すると、DataFrameの各データグループにカスタム関数を適用することが
できます。

このUDFは、各グループのモデルを訓練するだけでなく、そのモデルからの予測値を表す
結果セットを生成します。しかし、この関数はDataFrame内の各グループを他のグループ
とは独立して訓練し、予測しますが、各グループから返された結果は、便利なように 1 つ
のDataFrameに集められます。これにより、商品レベルの予測を生成しつつ、結果を1つの
出力データセットとしてアナリストや管理者に提示することが可能になります。

以下のPython のコードを見ればわかるように、UDF を構築するのは比較的簡単です。UDF
はpandas_udfメソッドでインスタンス化され、それが返すデータのスキーマと、それが受
け取ることを期待するデータのタイプを識別します。これに続いて，UDF の作業を実行す
る関数を定義します．

関数の定義の中で、モデルをインスタンス化し、設定し、受け取ったデータに適合させま
す。モデルは予測を行い、そのデータは関数の出力として返されます。

ここでは、groupBy のコードを共有して、多くのモデルを効率的に並列に
学習できることを強調していますが、次のセクションでUDFを設定して
データに適用するまでは、実際には使用されません。

store_item_history
.groupBy('store', 'item’) 
# . . .

https://databricks.com/glossary/what-are-dataframes
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ここで、全てをまとめるために、先ほど説明した groupByコマンドを使用して、データ
セットが特定の店舗とアイテムの組み合わせを表すグループに適切に分割されていること
を確認します。次に、UDF を DataFrameに適用するだけで、UDF がモデルを適合させ、
データの各グループ化について予測を行うことができます。

この関数を各グループに適用することで返されるデータセットは、予測を生成した日付を
反映して更新されます。これは、最終的に本番に向けて機能を導入する際に、異なるモデ
ルの実行中に生成されたデータを追跡するのに役立ちます。

次のステップ
これで、各商品の組み合わせごとに時系列予測モデルを構築しました。SQL クエリを使用
して、アナリストは各製品に合わせた予測を表示することができます。下のグラフでは、
10店舗における製品#1の予測需要をプロットしています。ご覧のように、需要予測は店舗
によって異なりますが、一般的なパターンは全ての店舗で一貫しています。

新たな販売データが到着すると、効率的に新たな予測を作成し、既存のテーブル構造に追
加することができるため、アナリストは状況の変化に応じてビジネスの予測を更新するこ
とができます。

@pandas_udf(result_schema, PandasUDFType.GROUPED_MAP)  
def forecast_store_item(history_pd):

# instantiate the model, configure the parameters  
model = Prophet(

interval_width=0.95,  
growth='linear',  
daily_seasonality=False,  
weekly_seasonality=True,  
yearly_seasonality=True,  
seasonality_mode='multiplicative'

)

# fit the model  
model.fit(history_pd)

# configure predictions
future_pd = model.make_future_dataframe(  

periods=90,
freq='d',  
include_history=True

)

# make predictions
results_pd = model.predict(future_pd)

# . . .

# return predictions  
return results_pd

from pyspark.sql.functions import current_date

results = (
store_item_history
.groupBy('store', 'item')
.apply(forecast_store_item)
.withColumn('training_date', current_date())
)

データブリックスの無料の Notebookを使って実験を始める

https://pages.databricks.com/rs/094-YMS-629/images/Fine-Grained-Time-Series-Forecasting.html?_ga=2.167072185.629507392.1589211892-2105806216.1585857288
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第 7 章 データブリックス上で
決定木とMLflowを用いて
金融詐欺検知を大規模展開

投稿者：
Elena Boiarskaia
Navin Albert
Denny Lee

2019年 5 月 2 日

人工知能を使用して大規模な不正行為のパターンを検出することは、どのようなユースケースであっても課題となりま
す。膨大な量の過去データをふるいにかける必要があること、絶えず進化する機械学習やディープラーニング技術の複
雑さ、そして不正行為の実際の事例の数が非常に少ないことは、干し草の山の中から針がどのように見えるかわからな
い中から針を見つけることに匹敵します。金融サービス業界では、セキュリティへの懸念や、不正行為がどのように特
定されたかを説明することの重要性が加わり、作業の複雑さがさらに増しています。

これらの検出パターンを構築するために、ドメインエキスパートのチームが、詐欺師の一般的な行動に基づいた一連の
ルールを作成します。ワークフローには、金融詐欺検知の分野の専門家が、特定の行動に関する一連の要件をまとめる
ことが含まれます。データサイエンティストは、利用可能なデータからサブサンプルを抽出し、これらの要件と場合に
よっては既知の詐欺事例を用いて、ディープラーニングまたは機械学習アルゴリズムのセットを選択します。このパ
ターンを本番で使用するために、データエンジニアは、結果として得られたモデルをしきい値を持つ一連のルールに変
換することができます。
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このアプローチにより、金融機関は、一般データ保護規則（GDPR）に準拠した不正取引を
特定するに至った一連の特徴を明確に提示することができます。しかし、このアプローチ
には多くの困難も伴います。ハードコード化された一連のルールを使用した不正検知シス
テムの実装は、非常にもろいものです。不正行為のパターンに変更があった場合、更新に
は非常に長い時間がかかります。そのため、現在の市場で起こっている不正行為の変化に
追いつき、適応することが難しくなってしまいます。

さらに、上述したワークフローのシステムはサイロ化されていることが多く、ドメインエ
キスパート、データサイエンティスト、データエンジニアが全てコンパートメント化され
ています。データエンジニアは、大量のデータを管理し、ドメインエキスパートとデータ
サイエンティストの作業を本番レベルのコードに変換する役割を担っています。共通のプ
ラットフォームがないため、ドメインエキスパートとデータサイエンティストは、分析の
ために1台のマシンに収まるサンプルダウンされたデータに頼らざるを得ません。これがコ
ミュニケーションの難しさにつながり、最終的にはコラボレーションの欠如につながりま
す。

このブログでは、不正検知のキープレイヤーであるドメインエキスパート、データサイエ
ンティスト、データエンジニアを統一して、このようなルールベースの検知ユースケース
をいくつかデータブリックスのプラットフォーム上で機械学習ユースケースに変換する方
法を紹介します。機械学習による不正検知のデータパイプラインを作成し、大規模なデー
タセットからモジュール化された特徴を構築するフレームワークを活用して、リアルタイ
ムでデータを可視化する方法を学びます。また、決定木と Apache Spark MLlib を使って不
正行為を検知する方法も学びます。その後、MLflowを使用してモデルを反復処理し、精度
を向上させるための改良を行います。

https://en.wikipedia.org/wiki/General_Data_Protection_Regulation
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機械学習で解決
機械学習モデルは、特定された不正事例を正当化する方法がない「ブラックボックス」ソ
リューションを提供すると考えられているため、金融の世界では機械学習モデルには一定
の消極的な傾向があります。GDPR の要件や金融規制により、データサイエンスの力を活用
することは一見不可能に見えます。しかし、いくつかの成功したユースケースでは、機械
学習を適用してスケールでの不正行為を検知することで、上述した問題のホストを解決で
きることが示されています。

金融詐欺を検知するために教師付き機械学習モデルを訓練することは、実際に確認された
詐欺行為の例が少ないため、非常に困難である。しかし、特定のタイプの不正行為を識別
する既知のルールのセットが存在することで、以下のようなモデルを作成することができ
ます。合成ラベルのセットと特徴の初期セット。この分野のドメインエキスパートによっ
て開発された検出パターンの出力は、おそらく次のようなプロセスを経ています。本番さ
ながらの適切な承認プロセスが必要となります。これは、予想される不正行為のフラグを
生成し、したがって、機械学習モデルを訓練するための出発点として使用することができ
ます。

これは同時に3つの懸念事項を緩和します。

1. トレーニングラベルの不足

2. どのような機能を使うかの判断

3. モデルに適切なベンチマークを持つこと

ルールベースの不正行為フラグを認識するために機械学習モデルを訓練すると、混乱行列
を介して期待される出力と直接比較することができます。結果がルールベースの検出パ
ターンと密接に一致する場合には、このアプローチは、懐疑論者との機械学習ベースの不
正行為防止への信頼を得るのに役立ちます。このモデルの出力は非常に解釈しやすく、元
の検出パターンと比較した場合の予想される偽陰性と偽陽性の基本的な議論として役立つ
かもしれません。

さらに、機械学習モデルが解釈しにくいという懸念は、初期の機械学習モデルとして決定
木モデルが使用されれば、さらに緩和されるかもしれません。モデルは一連のルールに対
して訓練されているので、決定木はおそらく他のどの機械学習モデルよりも優れています。
さらなる利点は、もちろん、モデルの透明性を最大限に高めたことです。これは、詐欺の
意思決定プロセスを本質的に示しますが、人間の介入やルールや閾値をハードコーディン
グする必要はありません。もちろん、モデルの将来の反復は、最大の精度を達成するため
に別のアルゴリズムを完全に利用する可能性があることを理解しておかなければなりませ
ん。モデルの透明性は、アルゴリズムに組み込まれた特徴を理解することによって最終的
に達成されます。解釈可能な特徴を持つことは、解釈可能で防御可能なモデルの結果をも
たらします。

機械学習アプローチの最大の利点は、最初のモデリング作業の後に、将来の反復がモ
ジュール化され、ラベル、特徴、モデルタイプのセットの更新が非常に簡単かつシームレ
スに行えるため、生産までの時間が短縮されることです。これは、データブリックスのコ
ラボレーティブNotebook でさらに促進され、ドメインエキスパート、データサイエンティ
スト、データエンジニアが同じデータセットを使って大規模に作業し、Notebook 環境で直
接コラボレーションすることができます。さあ、さっそく開始しましょう。
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データの取り込みと探索
今回の例では、合成データセットを使用します。自分でデータセットをロードするには、
Kaggle からローカルマシンにデータセットをダウンロードし、Azure や AWS 経由でデータ
をインポートしてください。

PaySimのデータは、アフリカのある国で実施されたモバイルマネーサービスの1ヶ月間の
財務ログから抽出された実際の取引のサンプルに基づいて、モバイルマネーの取引をシ
ミュレートしています。下の表は、データセットが提供する情報を示しています。

データを探る
DataFrameの作成： Databricks File System（DBFS）にデータをアップロードしたので、
Spark SQLを使って素早く簡単にDataFramesを作成することができます。

DataFrameを作成したので、スキーマと最初の 1,000 行を見てデータを確認してみましょ
う。

# Create df DataFrame which contains our simulated financial fraud  
detection dataset
df = spark.sql(“select step, type, amount, nameOrig, 
oldbalanceOrg,  newbalanceOrig, nameDest, oldbalanceDest, 
newbalanceDest from sim_  fin_fraud_detection”)

# Review the schema of your data
df.printSchema()
root
|-- step: integer (nullable = true)
|-- type: string (nullable = true)
|-- amount: double (nullable = true)
|-- nameOrig: string (nullable = true)
|-- oldbalanceOrg: double (nullable = true)
|-- newbalanceOrig: double (nullable = true)
|-- nameDest: string (nullable = true)
|-- oldbalanceDest: double (nullable = true)
|-- newbalanceDest: double (nullable = true)

https://www.kaggle.com/ntnu-testimon/paysim1
https://docs.azuredatabricks.net/user-guide/importing-data.html#import-data
https://docs.databricks.com/user-guide/importing-data.html?_ga=2.224810073.2112692442.1591844546-225663068.1585060489&import-data
https://docs.databricks.com/user-guide/dbfs-databricks-file-system.html?_ga=2.258430153.2112692442.1591844546-225663068.1585060489
https://databricks.com/glossary/what-are-dataframes
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トランザクションの種類
データを可視化して、データが捉えている取引の種類と全体の取引量への貢献度を把握し
てみましょう。

また、どのくらいの金額なのかを把握するために、取引の種類に応じたデータや、現金の
移動量（金額の合計）に対する寄与度なども可視化してみましょう。

ルールベースのモデル
モデルを訓練するために、既知の不正事例の大規模なデータセットから始めることはない
でしょう。ほとんどの実用的なアプリケーションでは、不正検知パターンは、ドメインの
専門家によって確立された一連のルールによって識別されます。ここでは、これらのルー
ルに基づいて「ラベル」と呼ばれる列を作成します。

ルールでフラグが立てられたデータの可視化
このようなルールでは、かなりの数の不正行為にフラグが立てられることが多いです。フ
ラグされた取引の数を可視化してみましょう。このルールでは、ケースの約4%、総ドル額
の 11% が不正行為としてフラグが立てられていることがわかります。

# Rules to Identify Known Fraud-based

df = df.withColumn("label",

F.when(

(

(df.oldbalanceOrg <= 56900) & (df.type ==

"TRANSFER") & (df.newbalanceDest <= 105)) | ( (df.oldbalanceOrg > 56900)

& (df.newbalanceOrig <= 12)) | ( (df.oldbalanceOrg > 56900) & (df.

newbalanceOrig > 12) & (df.amount > 1160000)

), 1

).otherwise(0))

%sql

-- Organize by Type

select type, count(1) from financials group by type 

%sql

select type, sum(amount) from financials group by type %sql

select label, count(1) as ‘Transactions’, sun(amount) as ‘Total  Amount’ 

from financials_labeled group by label
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適切な機械学習モデルの選択
多くの場合、ブラックボックス的なアプローチでは不正検知ができません。まず、ドメイ
ンの専門家は、なぜ取引が不正行為であると特定されたのかを理解する必要があります。
そして、アクションが取られる場合、証拠は法廷で提示されなければなりません。意思決
定木は簡単に解釈できるモデルであり、このユースケースの出発点として最適です。ディ
シジョン・ツリーについては、このブログ「The wise old tree」を読んでみてください。

トレーニングセットの作成
ML モデルを構築して検証するために，.randomSplit を用いて 80/20 分割を行います。
これにより、トレーニングのためにデータの 80% をランダムに選択し、残りの 20% を結
果の検証のために確保します。

機械学習モデルのパイプラインの作成
モデルのデータを準備するために、まず、.StringIndexer を使用してカテゴリ変数を
数値に変換しなければなりません。次に、モデルに使用したい全ての特徴をアセンブルし
なければなりません。決定木モデルに加えて、これらの特徴準備ステップを含むパイプラ
インを作成し、異なるデータセットでこれらのステップを繰り返すことができるようにし
ます。最初に学習データにパイプラインを適合させ、後のステップでテストデータの変換
に使用することに注意してください。

from pyspark.ml import Pipeline
from pyspark.ml.feature import StringIndexer  
from pyspark.ml.feature import
VectorAssembler
from pyspark.ml.classification import DecisionTreeClassifier

# Encodes a string column of labels to a column of label indices  
indexer = StringIndexer(inputCol = "type", outputCol = "typeIndexed")

# VectorAssembler is a transformer that combines a given list of columns  
into a single vector column
va = VectorAssembler(inputCols = ["typeIndexed", "amount",  
"oldbalanceOrg", "newbalanceOrig",
"oldbalanceDest", "newbalanceDest", "orgDiff", "destDiff"], outputCol =  
"features")

# Using the DecisionTree classifier model
dt = DecisionTreeClassifier(labelCol = "label", featuresCol = "features",  
seed = 54321, maxDepth = 5)

# Create our pipeline stages
pipeline = Pipeline(stages=[indexer, va, dt])

# View the Decision Tree model (prior to CrossValidator)  
dt_model = pipeline.fit(train)

# Split our dataset between training and test datasets  
(train, test) = df.randomSplit([0.8, 0.2], seed=12345)

https://pallav-routh.netlify.com/post/the-wise-old-tree/
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モデルの可視化
パイプラインの最後のステージである決定木モデルである display()  を呼び出すことで、各
ノードで選択された決定を持つ初期フィットモデルを表示することができます。これは、
アルゴリズムがどのようにして結果の予測値に到達したかを理解するのに役立ちます。

モデルチューニング
最適なツリーモデルが得られることを確認するために、いくつかのパラメータのバリエー
ションを用いてモデルを交差検証します。我々のデータが 96% の負のケースと 4% の正の
ケースで構成されているので、不均衡な分布を説明するためにPrecision-Recall（PR）評価
メトリックを使用します。

display(dt_model.stages[-1])

from pyspark.ml.tuning import CrossValidator, ParamGridBuilder

# Build the grid of different parameters  
paramGrid = ParamGridBuilder() \
.addGrid(dt.maxDepth, [5, 10, 15]) \
.addGrid(dt.maxBins, [10, 20, 30]) \
.build()

# Build out the cross validation  
crossval = CrossValidator(estimator = dt,

estimatorParamMaps = paramGrid,  
evaluator = evaluatorPR,  
numFolds = 3)

# Build the CV pipeline
pipelineCV = Pipeline(stages=[indexer, va, crossval])

# Train the model using the pipeline, parameter grid, and preceding  
BinaryClassificationEvaluator
cvModel_u = pipelineCV.fit(train)

決定木モデルの視覚的表現
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モデル性能
学習セットとテストセットの精度-リコール（PR）とROC 曲線下面積（AUC）を比較する
ことで、モデルを評価する。PR と AUC はともに非常に高い値を示した。

クラスのバランスをとる
このモデルは、元のルールが識別したケースよりも 2,421 件多くのケースを識別しているこ
とがわかります。これは、より多くの潜在的な不正事例を検出することは良いことかもし
れないので、それほど心配するほどのことではありません。しかし、アルゴリズムによっ
て検出されなかったが、元々特定されていたケースが 58 件あります。私たちは、アンダー
サンプリングを使用してクラスのバランスをとることで、予測をさらに改善しようとして
います。つまり、全ての不正事例を残しておき、その数に合わせて非不正事例をダウンサ
ンプリングして、バランスのとれたデータセットを得るのです。新しいデータセットを可
視化すると、イエスとノーのケースが半々になっていることがわかります。

# Build the best model (training and test datasets)  

train_pred = cvModel_u.transform(train)

test_pred = cvModel_u.transform(test)

# Evaluate the model on training datasets  
pr_train = evaluatorPR.evaluate(train_pred)  
auc_train =
evaluatorAUC.evaluate(train_pred)

# Evaluate the model on test datasets  
pr_test = evaluatorPR.evaluate(test_pred)  
auc_test =
evaluatorAUC.evaluate(test_pred)

# Print out the PR and AUC values  
print("PR train:", pr_train)  
print("AUC train:", auc_train)  
print("PR test:", pr_test)  
print("AUC test:", auc_test)

---

# Output:
# PR train: 0.9537894984523128  
# AUC train: 0.998647996459481  
# PR test: 0.9539170535377599  
# AUC test: 0.9984378183482442

モデルがどのように結果を
誤分類したかを見るために、
Matplotlib と pandas を使用
して混同行列を可視化して
みましょう。

# Reset the DataFrames for no fraud (`dfn`) and fraud (`dfy`)  
dfn = train.filter(train.label == 0)
dfy = train.filter(train.label == 1)

# Calculate summary metrics  

N = train.count()
y = dfy.count() 
p = y/N

# Create a more balanced training dataset
train_b = dfn.sample(False, p, seed = 92285).union(dfy)

# Print out metrics

print("Total count: %s, Fraud cases count: %s, Proportion of fraud cases: %s" % (N, y, 
p))  print("Balanced training dataset count: %s" % train_b.count())

---

# Output:
# Total count: 5090394, Fraud cases count: 204865, Proportion of fraud cases:  
0.040245411258932016
# Balanced training dataset count: 401898
---

# Display our more balanced training dataset  
display(train_b.groupBy("label").count())
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パイプラインの更新
それでは、ML パイプラインを更新して、新しいクロスバリデータを作成してみましょう。
ML パイプラインを使用しているので、新しいデータセットで更新するだけで、すぐに同じ
パイプラインの手順を繰り返すことができます。

結果を見直す
では、新しい混乱マトリックスの結果を見てみましょう。このモデルは、不正なケースを 1 
つだけ誤認していました。クラスのバランスをとることで、モデルは改善されたようです。

# Re-run the same ML pipeline (including parameters grid)  
crossval_b = CrossValidator(estimator = dt,  
estimatorParamMaps = paramGrid,
evaluator = evaluatorAUC,  
numFolds = 3)
pipelineCV_b = Pipeline(stages=[indexer, va, crossval_b])

# Train the model using the pipeline, parameter grid, and  
BinaryClassificationEvaluator using the `train_b` dataset  
cvModel_b = pipelineCV_b.fit(train_b)

# Build the best model (balanced training and full test  
datasets)
train_pred_b = cvModel_b.transform(train_b)  
test_pred_b = cvModel_b.transform(test)

# Evaluate the model on the balanced training datasets  
pr_train_b = evaluatorPR.evaluate(train_pred_b)  
auc_train_b = evaluatorAUC.evaluate(train_pred_b)

# Evaluate the model on full test datasets  
pr_test_b = evaluatorPR.evaluate(test_pred_b)  
auc_test_b = evaluatorAUC.evaluate(test_pred_b)

# Print out the PR and AUC values  
print("PR train:", pr_train_b)  
print("AUC train:", auc_train_b)  
print("PR test:", pr_test_b)  
print("AUC test:", auc_test_b)

---
# Output:
# PR train: 0.999629161563572  
# AUC train: 0.9998071389056655  
# PR test: 0.9904709171789063  
# AUC test: 0.9997903902204509

https://databricks.com/glossary/what-are-ml-pipelines
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モデルのフィードバックとMLflowの利用
生産のためにモデルが選択されたら、モデルがまだ関心のある行動を識別していることを
確実にするために、継続的にフィードバックを収集したいと考えています。ルールベース
のラベルから始めているので、人間のフィードバックに基づいて検証された真のラベルを
将来のモデルに提供したいと考えています。この段階は、機械学習プロセスの信頼性と信
頼性を維持するために非常に重要です。アナリストは全てのケースをレビューすることは
できないので、モデルの出力を検証するために慎重に選ばれたケースを提示するようにし
たいと考えています。例えば、モデルの確実性が低い予測は、アナリストがレビューする
のに適した候補となります。このようなフィードバックが追加されることで、モデルは変
化する状況に合わせて改善され、進化し続けることが保証されます。

MLflowは、異なるモデルのバージョンを学習する際に、このサイクル全体を通して私たち
を助けてくれます。異なるモデル構成やパラメータの結果を比較しながら、実験を追跡す
ることができます。例えば、ここでは、MLflow UI を使って、バランスのとれたデータセッ
トとバランスのとれていないデータセットで学習したモデルのPR と AUC を比較すること
ができます。データサイエンティストは、MLflowを使用して、様々なモデルのメトリクス
や、追加の可視化や成果物を追跡することができ、どのモデルを本番環境に導入すべきか
の判断を助けることができます。データエンジニアは、選択したモデルとトレーニングに
使用したライブラリのバージョンを.jarファイルとして簡単に取得して、本番の新しいデー
タに展開することができます。このように、モデルの結果をレビューするドメインエキス
パート、モデルを更新するデータサイエンティスト、本番でモデルを展開するデータエン
ジニアの間の連携は、この反復プロセスを通じて強化されます。
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結論
ルールベースの不正検知ラベルを使用し、Databricks with MLflowを使用して機械学習モデ
ルに変換する方法の例をレビューしました。このアプローチにより、スケーラブルでモ
ジュール化されたソリューションを構築することができ、常に変化し続ける不正行為のパ
ターンに対応することができます。不正行為を特定するための機械学習モデルを構築する
ことで、モデルを進化させ、新たな不正行為の可能性のあるパターンを特定するための
フィードバックループを作成することができます。特に決定木モデルは、その解釈のしや
すさと優れた精度のため、機械学習を不正行為検知プログラムに導入する際の出発点とし
て最適であることがわかりました。

この取り組みにデータブリックスのプラットフォームを使用する大きなメリットは、デー
タサイエンティスト、エンジニア、ビジネスユーザーがシームレスに連携して作業できる
ことです。プロセスを実現します。データの準備、モデルの構築、結果の共有、モデルの
本番への投入を同じプラットフォーム上で行うことができるようになり、これまでにない
コラボレーションが可能になりました。このアプローチにより、これまでサイロ化してい
たチーム間の信頼関係が構築され、効果的でダイナミックな不正検知プログラムにつなが
ります。

わずか数分で無料トライアルに申し込んで、このNotebook を試してみて、自分のモデルを
作り始めてみてはいかがでしょうか。

データブリックスの無料の Notebookを使って実験を始める

https://pages.databricks.com/rs/094-YMS-629/images/financial-fraud-detection-decision-tree.html?_ga=2.26367934.2091689691.1591215417-566957636.1584739382&_gac=1.117292148.1589579628.Cj0KCQjw-_j1BRDkARIsAJcfmTFmZ1FrPnLWn4a6NsA_7M8Sc8-1KbOXqjgUhC_B7LqzO78jU8PyzusaAlt2EALw_wcB
https://pages.databricks.com/rs/094-YMS-629/images/financial-fraud-detection-decision-tree.html?_ga=2.70219928.983042554.1590516546-2105806216.1585857288&_gac=1.51995421.1590016694.EAIaIQobChMIpOWx38nD6QIVXx-tBh1JXASHEAAYASAAEgL8oPD_BwE
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第 8 章 Virgin Hyperloop One 社が
Koalas を活用して処理時間を
数時間から数分に短縮した方法

Pandas のコードをApache 
Spark™にシームレスに切り替え
るためのフィールドガイド

投稿者：
Patryk Oleniuk
Sandhya Raghavan

2019 年 8 月 22 日

Virgin Hyperloop One では、Hyperloop を現実のものとし、航空会社のスピードで乗客や貨物を移動させることができる
ようにしていますが、そのコストは航空旅行の何分の一かです。商業的に実行可能なシステムを構築するために、私た
ちは Devloopテストトラックの実行、多数のテストリグ、様々なシミュレーション、インフラ、社会経済データなど、
膨大で多様な量のデータを収集し、分析しています。これらのデータを扱うスクリプトのほとんどは、pandas をメイン
のデータ処理ツールとして、Pythonライブラリを使って書かれており、全てを束ねています。このブログ記事では、
Koalas を使ってデータ分析をスケーリングし、わずかなコード変更で大規模なスピードアップを実現した経験を共有し
たいと思います。

私たちが成長し続け、新しいものを作り続けると、データ処理のニーズも高まります。データ処理の規模と複雑さが増
してきたため、pandas ベースの Python スクリプトでは、ビジネスのニーズを満たすには時間がかかりすぎていました。
そこで、高速な処理時間と柔軟なデータストレージ、オンデマンドでのスケーラビリティを期待してSpark を採用しま
した。しかし、pandas スベースのコードベースをPySparkに移行するためには、多くのカスタム変更を行わなければな
りませんでした。より高速なだけでなく、理想的にはコードの書き換えを必要としないソリューションが必要でした。
このような課題に直面した私たちは、他の選択肢を調査することになりましたが、このような面倒なステップをスキッ
プする簡単な方法があることを発見し、非常に嬉しく思いました。

Koalas の Readmeに以下のように記載されています

Koalasプロジェクトは、Apache Sparkの上に pandas DataFrame APIを実装することでビッグデータを扱う際の
データサイエンティストの生産性を高めています。

（…）

すでに pandas に精通している場合は、学習曲線なしでSparkを使ってすぐに生産性を上げることができます。

Pandas（テスト、より小さなデータセット）とSpark（分散データセット）の両方で動作する単一のコードベースを
持っています。

https://github.com/databricks/koalas
https://databricks.com/glossary/pandas-dataframe
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この記事では、これが（ほとんどの場合）真実であることと、なぜKoalas が試してみる価
値があるのかを示してみたいと思います。Pandas の 1% 未満の行に変更を加えることで、
Koalas と Spark を使ってコードを実行することができました。実行時間は数時間から数分
と 10 倍以上に短縮できましたし、水平方向へのスケールが可能な環境なので、さらに多く
のデータに対応できるようになりました。

クイックスタート
Koalas をインストールする前に、Spark クラスタが設定されていて、PySparkで使用できる
ことを確認してください。その後、実行するだけです。

または、condaのユーザーのために

詳しくは Koalas のReadmeを参照してください。

見てのとおり、Koalas は pandas のようなインタラクティブなテーブルをレンダリングする
ことができます。非常に便利です。

基本操作の例
この記事のために、4 列で構成、行数をパラメータ化したテストデータを生成しました。

免責事項
これはパフォーマンス評価に使用されるランダムに生成されたテストファイルで、
Hyperloop のトピックに関連していますが、当社のデータを表すものではありません。この
記事に使用されたテストスクリプトの全文はこちらからご覧いただけます。
https://gist.github.com/patryk-oleniuk/043f97 ae9c405cbd13b6977e7e6d6fbc

import databricks.koalas as ks
kdf = ks.DataFrame({'column1':[4.0, 8.0]}, {'column2':[1.0, 2.0]}) 
kdf

import pandas as pd
## generate 1M rows of test data  
pdf = generate_pd_test_data( 1e6 )  
pdf.head(3)
>>> timestamp pod_id trip_id speed_mph  
0 7.522523 pod_13 trip_6 79.340006
1 22.029855 pod_5 trip_22 65.202122
2 21.473178 pod_20 trip_10 669.901507

pip install koalas

conda install koalas -c conda-forge

https://github.com/databricks/koalas
https://gist.github.com/patryk-oleniuk/043f97ae9c405cbd13b6977e7e6d6fbc
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例えば、全てのポッドトリップで、いくつかの重要な記述的分析を評価したいと思います。
ポッドトリップ 1 回あたりの移動時間は？

次のオペレーションが必要です。

1. [‘pod_id','trip_id’] でグループ化します。

2. トリップごとに、最後のタイムスタンプ -最初のタイムスタンプとして trip_timeを計算
します。

3. ポッドトリップ時間の分布（平均、stddev）の計算

短くて遅い（Pandas）- スニペット#1

長くて速い（PySpark）- スニペット#2

短くて早い（Koalas）- スニペット#3

スニペット#1 と#3 については、コードが全く同じなので、「Spark の切り替え」はシーム
レスであることに注意してください。ほとんどのpandas スクリプトについては、import 
pandas databricks.koalasを pd として変更してみることもできますし、いくつかのスクリ
プトは、以下に説明する制限事項がありますが、微調整を加えても問題なく動作するもの
もあります。

import pandas as pd
# take the grouped.max (last timestamp) and join with grouped.min (first  
timestamp)
gdf = pdf.groupby([‘pod_id’,’trip_id’]).agg({‘timestamp’: [‘min’,’max’]})  
gdf.columns = [‘timestamp_first’,’timestamp_last’]
gdf[‘trip_time_sec’] = gdf[‘timestamp_last’] - gdf[‘timestamp_first’]  
gdf[‘trip_time_hours’] = gdf[‘trip_time_sec’] / 3600.0
# calculate the statistics on trip times  
pd_result = gdf.describe()

import databricks.koalas as ks
# import pandas df to koalas (and so also spark) (this line is not used  
for profiling)
kdf = ks.from_pandas(pdf)
# the code below is the same as the pandas version
gdf = kdf.groupby(['pod_id','trip_id']).agg({'timestamp':  
['min','max']})
gdf.columns = ['timestamp_first','timestamp_last']  
gdf['trip_time_sec'] = gdf['timestamp_last'] - gdf['timestamp_first']  
gdf['trip_time_hours'] = gdf['trip_time_sec'] / 3600.0
ks_result = gdf.describe().to_pandas()

import pyspark as spark
# import pandas df to spark (this line is not used for profiling)  
sdf = spark.createDataFrame(pdf)
# sort by timestamp and groupby  
sdf = sdf.sort(desc('timestamp'))
sdf = sdf.groupBy("pod_id", "trip_id").agg(F.max('timestamp').  
alias('timestamp_last'), F.min('timestamp').alias('timestamp_first'))  
# add another column trip_time_sec as the difference between first and  
last
sdf = sdf.withColumn('trip_time_sec', sdf2['timestamp_last'] -
sdf2['timestamp_first'])
sdf = sdf.withColumn('trip_time_hours', sdf3['trip_time_sec'] / 3600.0)  
# calculate the statistics on trip times  
sdf4.select(F.col('timestamp_last'),F.col('timestamp_first'),F.col('trip_  
time_sec'),F.col('trip_time_hours')).summary().toPandas()
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結果
全てのスニペットは、同じ pod-trip-times の結果を返すことが確認されています。Pandas 
と Spark の記述方法と要約方法は、ここで説明したように若干異なりますが、パフォーマ
ンスにはあまり影響しないはずです。

サンプル結果

さらに高度な例：UDF と複雑な操作
今度は同じDataFrameを使ってさらに複雑な問題に挑戦し、pandas とKoalas の実装の違い
を見てみましょう。

目標：ポッドトリップ1回あたりの平均速度を分析する

1. [pod_id','trip id’] でグループ化

2. ポッドトリップごとに，速度（時間）チャートの下の領域を求めて，総移動距離を計算
する（ここで説明した方法）

3. グループ化されたdfを timestamp 列でソートする

4. タイムスタンプの差分を計算する

5. 速度との差分を乗算するーその時間の差分で移動した距離になります。

6. distance_travelled列を合計するーポッドトリップごとの移動距離の合計が表示されます。

7. 旅行時間を timestamp.last - timestamp.firstとして計算する。
（前段落のように）

8. average_speedを distance_travelled /trip time として計算する

9. ポッドトリップ時間の分布（平均、stddev）を計算する

このタスクは、カスタム適用関数とユーザー定義関数（UDF）を使って実装することにし
ました。

https://www.kdnuggets.com/2016/01/python-data-science-pandas-spark-dataframe-differences.html
https://www.quora.com/How-do-I-find-the-total-distance-covered-from-a-velocity-time-graph
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Pandas - スニペット#4

PySpark - スニペット#5

Koalas -スニペット#6

Koalas の apply の実装は PySparkの pandas_udfをベースにしており、スキーマ情報を必要
とするため、関数の定義では型ヒントも定義しなければなりません。パッケージの作者は
新しいカスタム型、 ks.DataFrameと ks.Seriesをヒントを導入しました。残念ながら、現
在の apply メソッドの実装はかなり面倒で、同じ結果にたどり着くのに少し苦労しました
（列名が変わったり、groupbyキーが返ってこなかったり）。しかし、全ての動作はパッ
ケージのドキュメントで適切に説明されています。

import pandas as pd

def calc_distance_from_speed( gdf ):

gdf = gdf.sort_values('timestamp')  

gdf['time_diff'] = gdf['timestamp'].diff()  

return pd.DataFrame({

'distance_miles':[ (gdf['time_diff']*gdf['speed_mph']).sum()],  

'travel_time_sec': [ gdf['timestamp'].iloc[-1] - gdf['timestamp'].iloc[0] ]

})

results = df.groupby(['pod_id','trip_id']).apply( calculate_distance_from_speed)  

results['distance_km'] = results['distance_miles'] * 1.609

results['avg_speed_mph'] = results['distance_miles'] / results['travel_time_sec'] / 60.0  

results['avg_speed_kph'] = results['avg_speed_mph'] * 1.609

results.describe()

import databricks.koalas as ks

from pyspark.sql.functions import pandas_udf, PandasUDFType  

from pyspark.sql.types import *

import pyspark.sql.functions as F  

schema = StructType([

StructField("pod_id", StringType()),  

StructField("trip_id", StringType()),  

StructField("distance_miles", DoubleType()),  

StructField("travel_time_sec", DoubleType())

])

@pandas_udf(schema, PandasUDFType.GROUPED_MAP)  

def calculate_distance_from_speed( gdf ):

gdf = gdf.sort_values('timestamp')  

print(gdf)

gdf['time_diff'] = gdf['timestamp'].diff()  

return pd.DataFrame({

'pod_id':[gdf['pod_id'].iloc[0]],

'trip_id':[gdf['trip_id'].iloc[0]],

'distance_miles':[ (gdf['time_diff']*gdf['speed_mph']).sum()],  

'travel_time_sec': [ gdf['timestamp'].iloc[-1]-gdf['timestamp'].iloc[0] ]

})

sdf = spark_df.groupby("pod_id","trip_id").apply(calculate_distance_from_speed)  

sdf = sdf.withColumn('distance_km',F.col('distance_miles') * 1.609)

sdf = sdf.withColumn('avg_speed_mph',F.col('distance_miles')/ F.col('travel_time_sec') /  

60.0)

sdf = sdf.withColumn('avg_speed_kph',F.col('avg_speed_mph') * 1.609)  

sdf = sdf.orderBy(sdf.pod_id,sdf.trip_id)

sdf.summary().toPandas() # summary calculates almost the same results as describe

import databricks.koalas as ks

def calc_distance_from_speed_ks( gdf ) -> ks.DataFrame[ str, str, float , float]:  

gdf = gdf.sort_values('timestamp')

gdf['meanspeed'] = (gdf['timestamp'].diff()*gdf['speed_mph']).sum()

gdf['triptime'] = (gdf['timestamp'].iloc[-1] - gdf['timestamp'].iloc[0])  

return gdf[['pod_id','trip_id','meanspeed','triptime']].iloc[0:1]

kdf = ks.from_pandas(df)

results = kdf.groupby(['pod_id','trip_id']).apply( calculate_distance_from_speed_ks)

# due to current limitations of the package, groupby.apply() returns c0 .. c3 column names  

results.columns = ['pod_id', 'trip_id', 'distance_miles', 'travel_time_sec']

# spark groupby does not set the groupby cols as index and does not sort them  

results = results.set_index(['pod_id','trip_id']).sort_index()  

results['distance_km'] = results['distance_miles'] * 1.609

results['avg_speed_mph'] = results['distance_miles'] / results['travel_time_sec'] / 60.0  

results['avg_speed_kph'] = results['avg_speed_mph'] * 1.609

results.describe()

https://koalas.readthedocs.io/en/latest/reference/api/databricks.koalas.groupby.GroupBy.apply.html#databricks.koalas.groupby.GroupBy.apply
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パフォーマンス
Koalas のパフォーマンスを評価するために、異なる行数のコードスニペットをプロファイ
リングしました。

プロファイリング実験は、以下のクラスタ構成を使用して、データブリックスのプラット
フォーム上で行われました。

• Spark ドライバノード（pandas スクリプトの実行にも使用されます）： 8 CPU コア、
61GB RAM

• 15 台の Spark ワーカーノード。4CPUコア、各 30.5 GB RAM（合計：60 CPU/457.5 GB

基本操作
データが小さい場合は、初期化操作やデータ転送が計算に比べて膨大になるため、pandas 
の方がはるかに高速です（マーカーa）。データ量が多くなると、pandas の処理時間は分
散解を上回ります（マーカーb）。次に、Koalas のパフォーマンスの低下を見ることができ
ますが、データ量が増えるにつれてPySparkに近づいていきます（マーカーc）。

UDF
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議論
1つのノードでは処理できないような大きなデータセットでもすぐにスケーラブルに実行で
きるようにしたい場合には、Koalas が適しているようです。Koalas に素早くスワップした
後、Spark クラスタをスケーリングするだけで、より大きなデータセットを許可し、処理
時間を大幅に改善することができます。パフォーマンスは PySparkのものと同等（ただし、
データセットのサイズやクラスタにもよりますが、5%から50%程度は低くなります）にな
るはずです。

一方で、Koalas のAPI レイヤーは、特にネイティブのSparkと比較して、目に見えるパ
フォーマンスの低下を引き起こします。結局のところ、計算パフォーマンスが重要な優先
事項であれば、Python から Scala への切り替えを検討すべきでしょう。

限界と差異
Koalas を使い始めて数時間の間、あなたは "なぜこれが実装されていないのか" と疑問に思
うかもしれません。現在、このパッケージはまだ開発中で、いくつかの pandas API 機能が
不足していますが、今後数ヶ月のうちに実装される予定です。

（例えば groupby.diff() や kdf.rename() など）

また、プロジェクトへの貢献者としての経験から、いくつかの機能はSpark AP Iで実装す
るには複雑すぎるか、パフォーマンスが大幅に低下するためにスキップされています。例
えば、DataFrame.valuesは、1つのノードのメモリ内で作業セット全体をマテリアライズす
る必要があるため、最適ではないし、不可能な場合もあります。ドライバの最終的な結果
を取得する必要がある場合は、DataFrame.to_pandas() または DataFrame.to_numpy() を使
用します。

もう一つ重要なことは、Koalas の実行チェーンが pandas とは違うということです。データ
フレーム上の操作を実行する際には、操作のキューに入れられますが、実行はされません。
結果が必要な場合のみ、例えば kdf.head() や kdf.to_pandas()  の操作が実行されます。これ
は Spark を使ったことがない人にとっては誤解を招くかもしれません。

結論
Koalas のおかげで pandas のコードを「Spark-ify」するための負担を軽減することができま
した。もしあなたも pandas コードのスケーリングに悩んでいるのであれば、ぜひこちらも
試してみてください。もし、どうしても動作が見当たらない、あるいは pandas との矛盾を
発見した場合は、コミュニティとしてパッケージが積極的かつ継続的に改善されていくこ
とを保証できるように、ぜひ問題を公開してください。また、気軽に貢献してください。

リソース
1. Koalas GitHub： https://github.com/databricks/koalas

2. Koalasのドキュメント：https://koalas.readthedocs.io

3. この記事からのコードスニペット：https://gist.github.com/patryk-oleniuk/043f97ae9c 
405cbd13b6977e7e6d6fbc

データブリックスのこれらのNotebook（pandasと Koalas）は無償でご利用いただ
けます

https://databricks.com/glossary/spark-api
https://github.com/databricks/koalas/issues
https://github.com/databricks/koalas
https://koalas.readthedocs.io/
https://gist.github.com/patryk-oleniuk/043f97ae9c405cbd13b6977e7e6d6fbc
https://info.databricks.com/E0o0Y00gMy00C00S0n00h0s
https://info.databricks.com/HY000000C0h0nS00hsM00zo
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第 9 章 データブリックスで
Apache Spark を使用した
ショッピング体験の
パーソナライズ

投稿者：Brett Bevers

2017 年 3 月 31 日

Dollar Shave Club（DSC）は、男性のシェービングやグルーミングのニーズに応える方法を変えることを使命とする、男
性向けライフスタイルブランドおよび E コマース企業です。データは、最先端のユーザーエクスペリエンスを実現する
上で最も重要な資産であると考えられます。データを通じたパーソナライズされた顧客体験の構築に向けた取り組みに
おいて、データブリックスは重要なパートナーとなっています。この記事では、データブリックスのプラットフォーム
が、強力なカスタム機械学習パイプラインの開発と展開の全ての段階をどのようにサポートしたかを説明します。

DSC の主なサービスは、カミソリカートリッジの月額プランで、会員に直接配送されます。会員の皆様には、1 ページの
Web アプリまたはネイティブ・モバイル・アプリでご入会いただき、アカウントを管理していただいております。会員
の皆様には、ご来店の際に、グルーミング用品やバスルーム用品のカタログをご覧いただくことができます。また、会
員様とゲストの皆様には、当クラブの特徴的なスタイルをお楽しみいただくために作成されたオリジナルコンテンツや
記事、動画などをお楽しみいただけます。中学時代の保健体育を彷彿とさせない記事で、健康や身だしなみに関する好
奇心を満たしていただけます。スタイルや仕事、人間関係のヒントを得ることもできますし、「地球上の文明はいつま
で続くのか」というような大きな疑問をDSC が楽しく取り上げた記事を読むこともできます。また、DSC はソーシャル
メディア・チャンネルで人々を巻き込むことにも力を入れており、会員は熱心に参加することができます。個々の会員
にとって最も関心の高いコンテンツやオファーを見極めることで、より個人的でより良い会員体験を提供することがで
きます。

Dollar Shave Club（DSC）のデータ
DSC では、会員やゲストとのやりとりにより、膨大なデータが生成されます。このデータが会員の体験を向上させるた
めの資産となることを知っていたため、当社のエンジニアリングチームは、最新のデータインフラストラクチャに早期
に投資しました。当社のウェブアプリケーション、内部サービス、データインフラストラクチャは、100% AWS でホス
トされています。Redshift クラスタが中央のデータウェアハウスとして機能し、さまざまなシステムからデータを受け
取ります。レコードは、本番用データベースからウェアハウスに継続的にレプリケートされています。また、データは、
オープンソースのストリーミングプラットフォームである Apache Kafka を介して、アプリケーション間やRedshift に移
動します。当社では、高度にカスタマイズ可能なオープンソースのイベントパイプラインである Snowplow を使用して、
Web およびモバイルクライアントからイベントデータを収集しています。サーバサイドのアプリケーションを使用して
います。クライアントは、ページビュー、リンククリック、ブラウジング活動、および全ての数多くのカスタムイベン
トとコンテキストを使用しています。データがRedshift に届くと、モニタリング、可視化、洞察のために様々な分析プ
ラットフォームからアクセスされます。
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このレベルの可視性があれば、データから学び、それに基づいて行動する機会はいくらで
もあります。しかし、これらの機会を特定し、スケールで実行するためには、適切なツー
ルが必要です。ETL、ストリーム処理、機械学習のためのエンジンを備えた最先端のクラ
スタコンピューティングフレームワークである Apache Spark は、当然の選択です。さらに、
データエンジニアリングのためのデータブリックスの最新の開発により、Spark は非常に
簡単に使い始めることができ、IDEとデプロイメントパイプラインの両方に適したプラット
フォームを提供しています。データブリックスを使った最初の日には、新しいクラスの
データ課題に対応できるようになっていました。

ユースケース：推薦エンジン
私たちがデータブリックスで開発した最初のプロジェクトの一つは、予測モデリングを使
用して、私たちが作成した製品の推奨事項を最適化することを目的としています。製品を
最適化するためのモデリング提言会員の皆様には、特定のメールチャンネル。会員の方に
は前週メールが発送されます。これらのメールは、会員の皆様に近日中の発送予定をお知
らせするとともに、箱に入れることができる追加商品をご提案します。会員の方は、数回
クリックするだけで、メールに記載されているお勧めの商品を追加することができます。
私たちの目標は、特定のメンバーのために、毎月のメールでどの商品をどのような優先順
位でプロモーションするかを規定した商品ランキングを作成することでした。

私たちは、各製品に対する会員の関心度を示す傾向のある行動を徹底的に探索することを
計画しました。メンバーデータの約 12 のセグメントからさまざまなメトリクスを抽出し、
そのデータを何百ものカテゴリ、アクション、タグでピボットし、離散化された時間でイ
ベント関連のメトリクスをインデックス化します。全体では、大規模なメンバーのコホー
トについて、約 10,000 個の機能を調査範囲に含めることができました。大規模で高次元で
スパースなデータセットを扱うために、Spark Core、Spark SQL、Mllibを使って ETL とデー
タマイニングを自動化することにしました。最終的な製品は、生産データ上で訓練・調整
された線形モデルの集合体であり、それらを組み合わせて製品ランキングを作成すること
ができます。
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Spark 上で完全自動化されたパイプラインを以下の段階で開発することにしました。

1. 倉庫からデータを抽出する（Redshift）

2. メンバーごとのデータの集計とピボット

3. 最終モデルに含める機能を選択

ステップ 1：データを抽出
私たちはまず、リレーショナル・データベース内のさまざまなデータ・セグメントを見る
ことから始めます。各データセグメントを理解し、それがどのように解釈され、どのよう
にクリーンアップされる必要があるのかを理解する必要があります。この作業は、データ
とそのライフサイクルに関する専門知識と制度的な知識を結集して行う重要な作業である
ため、その過程で学んだことを文書化して伝えることが重要です。データブリックスは
Spark シェルへの "Notebook "インターフェースを提供しています。

Spark のプログラミングモデルを使いながら、インタラクティブにデータを操作すること
ができます。Spark のNotebook は、アイデアを試してみたり、すぐに結果を共有したり、
後で参照できるように作業の記録を残しておくのに最適なことがわかりました。

各データセグメントについて、レコードのクリーニングと非正規化の仕様を抽出モジュー
ルにカプセル化します。多くの場合、Redshift からテーブルをエクスポートし、動的にSQL 
クエリを生成し、Spark SQL に任せればよいのです。

必要に応じて、Spark の DataFrames API を使った機能的なプログラミングをきれいに導入
することができます。そして、ドメイン固有のメタデータのアプリケーションは、抽出器
の中に自然な形で存在しています。重要なのは、特定のデータセグメントを処理するため
の最初のステップが、他のセグメントやパイプラインの他のステージからきれいに分離さ
れていることです。抽出器は独立して開発し、テストすることができます。また、他の探
索や生産パイプラインに再利用することもできます。

データ抽出パイプラインのコード例：パイプラインは、いくつかの抽出クラスによって実
装されたインターフェイスを使用し、動作をカスタマイズするために引数を渡します。パ
イプラインは、各抽出の詳細には依存しません。

def performExtraction(

extractorClass, exportName, joinTable=None, joinKeyCol=None,  

startCol=None, includeStartCol=True, eventStartDate=None

):

customerIdCol = extractorClass.customerIdCol  

timestampCol = extractorClass.timestampCol  

extrArgs = extractorArgs(

customerIdCol, timestampCol, joinTable, joinKeyCol,  

startCol, includeStartCol, eventStartDate

)

Extractor = extractorClass(**extrArgs)  

exportPath = redshiftExportPath(exportName)

return extractor.exportFromRedshift(exportPath)
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エクストラクターインターフェイスのコード例：多くの場合、エクストラクタは単に SQL 
クエリを生成してSparkSQLに渡すだけです。

ステップ 2：集計とピボット
ウェアハウスから抽出されたデータは、ほとんどが個々のイベントや関係性に関する詳細
な情報です。しかし、私たちが本当に必要としているのは、ある製品または別の製品への
関心を示す行動を効果的に検索できるように、時間の経過とともに集約されたアクティビ
ティの説明です。特定のイベントタイプを秒単位で比較しても、実りのあるものではあり
ません。このレベルの粒度では、データがあまりにもまばらで、機械学習の良い材料には
なりません。まず最初にすべきことは、イベント関連のデータを離散的な期間にわたって
集約することです。イベントをカウント、合計、平均、頻度などに還元することで、以下
のようなことが可能になります。メンバー間の比較がより意味のあるものになり、データ
マイニングがより容易になります。もちろん、同じイベントのセットを時間だけでなく、
いくつかの異なる次元で集計することもできます。これらの数値のどれか、または全てが、
興味深いストーリーを物語っているかもしれません。

データセット内の複数の属性のそれぞれを集約することは、しばしばデータをピボット
（またはロールアップ）することと呼ばれています。メンバーごとにデータをグループ化
し、時間やその他の興味深い属性でピボットすると、データは個々のイベントや関係性に
関するデータから、メンバーを記述する特徴の（非常に長い）リストに変換されます。各
データセグメントについて、データを意味のある方法でピボットするための具体的な方法
を以下のようにカプセル化しています。

自身のモジュールを使用しています。これらのモジュールをトランスフォーマーと呼びま
す。ピボットされたデータセットは非常に広範囲になることがあるため、DataFramesより
も RDD を使用した方がパフォーマンスが高いことがよくあります。一般的には，ピボット
された特徴量の集合をスパースベクタ形式で表現し，キーバリューRDD 変換を用いてデー
タを削減しています．メンバーの振る舞いを疎なベクトルで表現することで，メモリ上の
データセットのサイズを小さくすることができ，また，パイプラインの次の段階でMlLib
で使用するための訓練セットを簡単に生成することができます。

ステップ 3：データマイニング
この時点では、各会員の機能が非常に膨大な量になっているので、各製品について、それ
らの機能のどのサブセットが、会員がその製品の購入に興味を持っているかを示すのに最
適なのかを判断したいと考えています。これはデータマイニングの問題です。考慮すべき
特徴量が少なければ（例えば、数千ではなく数十であれば）、いくつかの合理的な方法で
進めることができます。しかし、考慮される特徴の数が多いということは、特に難しい問
題です。データブリックスのプラットフォームのおかげで、私たちはこの問題に膨大な計
算時間を簡単にかけることができました。私たちは、比較的小さく、ランダムにサンプリ
ングされた特徴量のセットに対してモデルを学習し、評価する方法を用いました。数百回
の繰り返しの中で、それぞれが高性能モデルに大きく貢献する特徴のサブセットを徐々に
蓄積していきます。モデルを訓練し、そのモデル内の各特徴の評価統計量を計算するには
計算コストがかかります。しかし、大規模な Spark クラスタをプロビジョニングして各製
品の作業を行い、作業が終了したら終了させることは問題ありませんでした。

データマイニングの進捗状況を把握できることが不可欠です。プロセスが最高性能のモデ
ルに収束するのを妨げているバグやデータ品質の問題がある場合は、処理時間を何時間も
無駄にしないように、できるだけ早く発見する必要があります。そのために、各イテレー
ションで収集された評価統計を可視化するシンプルなダッシュボードをデータブリックス
上で開発しました。

def exportFromRedshift(self, path):  
export = self.exportDataFrame()  
writeParquetWithRetry(export, path)  
return sqlContext.read.parquet(path)
.persist(StorageLevel.MEMORY_AND_DISK)

def exportDataFrame(self):  
self.registerTempTables()  
query = self.generateQuery()  
return sqlContext.sql(query)
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最終モデル
MLlibの評価モジュールは、モデルのパラメータの調整を非常に簡単にします。 ETLとデー
タマイニングのハードワークが完了すれば、最終的なモデルの作成はほぼ簡単です。最終
的なモデルの係数とパラメータを決定した後、本番での製品ランキングの生成を開始しま
した。データブリックスのスケジューリング機能を使用して、その日にメール通知を受け
取るメンバーのそれぞれの製品ランキングを生成するために、毎日ジョブを実行しました。
各メンバーの特徴ベクトルを生成するために、オリジナルのトレーニングデータを生成し
たのと同じ抽出器と変換器モジュールを最新のデータに適用するだけです。これにより、
開発時間を前倒しで短縮できるだけでなく、探査パイプラインと生産パイプラインの二重
保守の問題を回避することができます。また、トレーニングデータと正確に同じ意味と文
脈を持つ特徴に対して、モデルが最も有利な条件で適用されていることを保証します。

データブリックスと Apache Spark を使った今後の予定
この製品推奨プロジェクトは大成功を収め、DSC でも同様の意欲的なデータプロジェクト
に取り組むようになりました。データブリックスは、特にデータ製品の開発ワークフロー
をサポートする上で重要な役割を果たし続けています。大規模なデータマイニングは、戦
略的に重要な問題に対処するための情報収集に欠かせないツールとなっており、その結果
得られた予測モデルは、本番でのスマート機能を強化するために展開することができます。
機械学習に加えて、Spark Streaming 上に構築されたストリーム処理アプリケーションを採
用したプロジェクトもあります。例えば、様々なイベントストリームを消費してメトリク
スの収集やレポートを簡単に作成したり、システム間のデータをほぼリアルタイムで複製
したりしています。そしてもちろん、Spark 上で開発されているETLプロセスも増えてきて
います。
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第 10 章 データブリックスで Apache 
SparkRを使用した大規模な
シミュレーションの並列化

投稿者：
Wayne W. Jones
Dennis Vallinga
Hossein Falaki

2017 年 6 月 23 日

序章
Apache Spark 2.0では、既存のR関数を並列化できるようにするためのApache Spark の R インターフェースである
SparkRに新しいAPIファミリーが導入されました。新しいdapply, gapply, spark.lapplyメソッドはRユーザーにエキサイ
ティングな可能性をもたらします。この記事では、Shell Oil Companyとデータブリックスが共同で行ったユースケース
の詳細を紹介します。

ユースケース：在庫の推薦
シェルでは、現在の在庫管理は、ベンダーの推奨事項、過去の運用経験、および「直感」の組み合わせによって行われ
ていることが多く、そのため、これらの決定に過去のデータを取り入れることは限られており、その結果、シェルの拠
点（石油リグなど）で在庫が過剰または不十分になることがあります。

プロトタイプツールである Inventory Optimization Analytics ソリューションは、シェルが SAP の在庫データ上で高度な
データ分析技術を使用して、次のことができることを証明しています。

• 倉庫のインベントリレベルを最適化

• 安全在庫水準の見通し

• 動きの遅い材料を合理化する

• 材料リストの非在庫品・在庫品の見直しと再割り当て

• 材料の重要性を特定する（例：部品表のリンク、過去の使用状況またはリードタイムを介して）

データサイエンスチームは、材料の推奨インベントリレベル要件を計算するために、マルコフ連鎖モンテカルロ
（MCMC）ブートストラップ統計モデルをRに実装しました。個々の材料モデルでは、過去の発行物の分布を把握するた
めに、10,000回のMCMC の反復シミュレーションを行います。

累積的には、計算タスクは大きいですが、幸いなことに、モデルはそれぞれの材料に独立して適用することができるの
で、恥ずかしいほど並列的な性質のものです。

https://databricks.com/blog/2016/07/26/introducing-apache-spark-2-0.html
https://spark.apache.org/docs/latest/sparkr.html
https://spark.apache.org/docs/latest/api/R/dapply.html
https://spark.apache.org/docs/latest/api/R/gapply.html
https://spark.apache.org/docs/latest/api/R/gapply.html
https://www.shell.us/
https://databricks.com/
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既存の設定
現在、フルモデルは 48コア、192GB RAM のスタンドアロン物理オフラインPC で実行され
ています。MCMC ブートストラップモデルは、多数のサードパーティ製R パッケージを使用
したカスタムビルドされた機能セットです。

このスクリプトは、シェルの各ロケーションを反復処理し、歴史的資料を48個のコアにま
たがって、ほぼ同じ大きさの資料グループに分散させます。その後、各コアは、個々のマ
テリアルにモデルを反復的に適用します。マテリアルをグループ化しているのは、各マテ
リアルの単純なループでは、各計算に 2～5 秒かかるため、オーバーヘッド（R プロセスの
開始など）が大きくなりすぎるからです。コア間の材料グループジョブの分散は、R 並列
パッケージを介して実装されています。

個々の48 のコアジョブの最後の処理が完了すると、スクリプトは次のロケーションに移動
し、プロセスを繰り返します。このスクリプトは、シェルの全てのロケーションの推奨イ
ンベントリレベルを計算するのに合計約48時間かかります。

データブリックスでApache Spark を使う
Shellは、多くのコアを持つ単一の大規模なマシンに頼るのではなく、クラスタコンピュー
ティングを利用してスケールアウトすることにしました。Apache Spark の新しい R API は、
このユースケースに適していました。SparkRのスケーラビリティとパフォーマンスを検証
するために、2 つのバージョンのワークロードをプロトタイプとして開発しました。

プロトタイプ I：概念実証（PoC）
最初のプロトタイプでは、新しいSparkR API  がワークロードを処理できるかどうかを素早
く検証するために、コードの変更を最小限に抑えました。全ての変更をシミュレーション
ステップに限定したのは以下のとおりです。

各シェルのロケーションリスト要素に対して：

1. 入力された日付をSpark DataFrameとして並列化する

2. SparkR::gapply() を使用して、チャンクごとに並列シミュレーションを行う

既存のシミュレーションコードベースを限定的に変更することで、データブリックス上の
50 ノードの Spark クラスタでの総シミュレーション時間を 3.97 時間に短縮することができ
ました。

プロトタイプ Ⅱ：性能向上
最初のプロトタイプはすぐに実装できましたが、1つの明らかなパフォーマンスのボトル
ネックがありました。それは、シミュレーションのイテレーションごとにSpark ジョブが
起動されることです。データは非常に偏っており、その結果、各ジョブの間、ほとんどの
実行者は、次のジョブから作業を引き継ぐ前に、はぐれ者が終了するまでアイドル状態で
待機しています。さらに、各ジョブの開始時には、クラスタ上のほとんどのCPU コアがア
イドル状態の間、Spark DataFrameとしてデータの並列化に時間を費やしています。

(“fExtremes”, “ismev”, “dplyr”, “tidyr”, “stringr”).

https://stat.ethz.ch/R-manual/R-devel/library/parallel/doc/parallel.pdf
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これらの問題を解決するために、前処理ステップを変更して、全ての場所と材料の値の入
力と補助的な日付を前もって生成するようにしました。入力データは大きなSpark 
DataFrameとして並列化しました。次に、場所ID と材料 ID の 2つのキーを持つ単一の
SparkR::gapply() コールを使用してシミュレーションを実行しました。

これらの簡単な改良により、データブリックス上の 50ノードのSpark クラスタでシミュ
レーション時間を45分に短縮することができました。

SparkRの改良点
SparkRは Apache Spark の最新の追加機能の一つであり、本作業の時点では apply API ファ
ミリが SparkRの最新の追加機能となっていました。今回の実験を通して、SparkRのいく
つかの制限やバグを特定し、Apache Spark で修正しました。

• [SPARK-17790] 2GB 以上のR data.frameの並列化に対応

• [SPARK-17919] SparkRでRbackendへのタイムアウトを設定できるように

• [SPARK-17811] SparkRでは、Date 列にNA またはNULL がある場合に data.frameを並列化
できない

次のステップ
SparkR開発者の方で、SparkRに興味がある方は、データブリックスのアカウントを取得し
て、SparkRのドキュメントをご覧ください。

https://issues.apache.org/jira/browse/SPARK-17790
https://issues.apache.org/jira/browse/SPARK-17919
https://issues.apache.org/jira/browse/SPARK-17811
https://databricks.com/try-databricks
https://docs.databricks.com/spark/latest/sparkr/overview.html
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第 11 章 導入事例 数百万人の顧客をパーソナライズされた体験につなげるグローバルなテクノロジーとメディア企業である Comcast は、
膨大なデータ、壊れやすいデータパイプライン、貧弱なデータサイエンスのコラボレーションに苦戦していました。
Delta Lake やMLflowを含むデータブリックスを使用することで、ペタバイト級のデータに対応したパフォーマンスの高
いデータパイプラインを構築し、何百ものモデルのライフサイクルを簡単に管理することができ、音声認識と機械学習
を活用した非常に革新的でユニークな視聴体験を生み出し、受賞歴のある視聴者体験を実現しました。

ユースケース

競争の激しいエンターテインメント業界では、一時停止ボタンを押している暇はありません。コムキャストは、データ
の取り込みから機械学習モデルの展開に至るまで、アナリティクスへのアプローチ全体を近代化する必要があることに
気付きました。

ソリューションとメリット

コムキャストは、アナリティクスへの統一的なアプローチにより、AI を活用したエンターテインメントの未来に向けて
前進することができ、競合他社に負けない顧客体験で視聴者を魅了し、満足させ続けることができます。

• エミー賞受賞の視聴者エクスペリエンス：コムキャストは、エンゲージメントを高めるインテリジェントな音声コマ
ンドを使って、非常に革新的で受賞歴のある視聴者体験を実現することができます。

• データ処理コストを 10 倍削減：Delta Lake は、パフォーマンスを向上させながら 640 台のマシンを 64 台に置き換え、
データインジェストを最適化することを可能にしました。チームは分析に多くの時間を割くことができ、インフラ管
理にかける時間を減らすことができます。

• 高度なデータサイエンスの基盤：Delta Lake のアップグレードと使用により、単一のインタラクティブなワークス
ペースで異なるプログラミング言語を使用できるようになり、データサイエンティスト間のグローバルなコラボレー
ションが促進されました。また、Delta Lake はデータチームがデータパイプライン内の任意のポイントでデータを使
用することを可能にし、新しいモデルの構築やトレーニングをより迅速に行うことができるようになりました。

• モデルの展開の高速化： Comcast は近代化により、運用チームが異種プラットフォーム上にモデルを展開する際の展
開時間を数週間から数分に短縮しました。

データブリックスを使うことで、より多くの
情報を得ることができ、より迅速な意思決定が
可能になりました。

コムキャスト社
プロダクト分析・行動科学シニアディレクター
Jim Forsythe 氏

詳しく見る

https://databricks.com/jp/customers/comcast
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第 11 章 導入事例 レジェネロンの使命は、ゲノムデータの力を利用して、必要な患者さんに新しい薬を届けることです。しかし、この
データを人生を変える発見や標的となる治療法に変換することは、これまで以上に困難なことではありませんでした。
処理性能が低く、スケーラビリティにも限界があるため、データチームはペタバイト級のゲノムデータや臨床データを
解析するために必要なものが不足していました。データブリックスは、ゲノムデータセット全体を迅速に解析し、新し
い治療法の発見を加速させることができるようになりました。

ユースケース

現在、医薬品開発のパイプラインにある全ての実験薬の 95% 以上が失敗すると予想されています。これらの取り組みを
改善するために、Regeneron Genetics Center は、40 万人以上の人々の配列決定されたエクソームと電子カルテをペアに
して、最も包括的な遺伝学データベースの1つを構築しました。しかし、この膨大なデータセットの解析には多くの課題
がありました。

• ゲノムデータや臨床データは非常に分散化されているため、10 TBのデータセット全体に対して分析やモデルのトレー
ニングを行うことは非常に困難です。

• 800 億以上のデータポイントで分析をサポートするために、レガシーアーキテクチャをスケールアップするのは困難
でコストがかかります。

• データチームは、分析に使用できるようにデータをETLしようとするだけの日々を過ごしていました。

ソリューションとメリット

データブリックスは、データサイエンスの生産性を向上させることで、業務を簡素化し、創薬を加速させる、Amazon 
Web Services 上で動作する統合データ分析プラットフォームをレジェネロンに提供します。これにより、これまで不可
能だった新しい方法でデータを分析することが可能になります。

• 加速化された医薬品の標的特定：データサイエンティストや計算生物学者がデータセット全体のクエリを実行するの
にかかる時間を 30 分から 3 秒に短縮し、600 倍の改善を実現しました。

• 生産性の向上：コラボレーションの改善、自動化されたDevOps、パイプラインの高速化（ETL を 3 週間から 2 日で
完了）により、チームはより広範な研究をサポートできるようになりました。

データブリックスの統合データ解析プラット
フォームは、医療サイエンティストから計算生物
学者まで、統合医薬品開発に関わる全ての人が、
私たちのデータに容易にアクセスし、分析し、
インサイトを抽出できるようにしています。

リジェネロン社
ゲノム情報学部長
Jeffrey Reid 博士

詳しく見る

https://databricks.com/jp/customers/regeneron
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第 11 章 導入事例 データの利用可能性が爆発的に増加し、市場競争が激化する中、保険会社は顧客により良い価格設定を提供することに
挑戦しています。Nationwide 社では、ダウンストリームML のために何億件もの保険記録を分析する必要があるため、
従来のバッチ分析プロセスでは時間がかかり、精度が低く、保険金請求の頻度や重症度を予測するためのインサイトが
限られていることに気づきました。データブリックスを導入したことで、ディープラーニングモデルを大規模に採用し
て、より正確な価格予測を行うことが可能になり、保険金請求からの収益を増やすことができました。

ユースケース

正確な保険料設定の鍵は、保険金請求から得られる情報を活用することにあります。しかし、保険金請求の頻度が低く、
予測不可能な変動性のある保険記録を分析しなければならず、結果的に不正確な価格設定になってしまうというデータ
の課題がありました。

ソリューションとメリット

Nationwide 社では、Databricks Unified Data Analytics Platform を活用して、データの取り込みから深層学習モデルの展開
まで、分析プロセス全体を管理しています。完全に管理されたプラットフォームにより、IT 運用が簡素化され、データ
サイエンスチームのデータ駆動の新たな機会が生まれました。

• 大規模なデータ処理：データパイプライン全体のランタイムが 34 時間から 4 時間未満に改善され、パフォーマンスが
9 倍向上しました。

• より迅速な機能化：データエンジニアリングは、5 時間から 20 分程度までの15倍の速さで特徴を識別することができ
ます。

• 高速なモデルトレーニング：トレーニング時間を 50% 短縮し、新しいモデルの市場投入までの時間を短縮しました。

• 改良されたモデルスコアリング：モデルのスコアリングを 3 時間から 5 分未満に加速し、60 倍の改善を実現しました。

データブリックスを使用することで、全てのデー
タに対してモデルをより迅速にトレーニングする
ことができるようになり、結果として、より正確
な価格予測が可能になり、収益に大きな影響を与
えました。

ネーションワイド社
データサイエンティスト
Bryn Clark氏

詳しく見る

https://databricks.com/jp/customers/nationwide
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第 11 章 導入事例 コンデナストは世界有数のメディア企業であり、そのポートフォリオにはニューヨーカー、ワイアード、ヴォーグなど
の最も象徴的な雑誌タイトルが含まれています。同社はデータを利用して、紙媒体、オンライン、ビデオ、ソーシャル
メディアで10億人以上にリーチしています。

ユースケース

大手メディア出版社として、コンデナストは 20 以上のブランドをポートフォリオとして管理しています。毎月 1 億人以
上の訪問者と 8 億人以上のページビューを獲得し、膨大な量のデータを生み出しています。データチームは、機械学習
を利用してパーソナライズされたコンテンツの推奨やターゲットを絞った広告を提供することで、ユーザーのエンゲー
ジメントを向上させることに注力しています。

ソリューションとメリット

データブリックスはコンデナストに完全に管理されたクラウドプラットフォームを提供し、業務を簡素化し、優れたパ
フォーマンスを提供し、データサイエンスの革新を可能にしています。

• 顧客満足度の向上：データパイプラインの改善により、コンデナストはより良い、より迅速、より正確なコンテンツ
レコメンデーションを行い、ユーザーエクスペリエンスを向上させることができます。

• スケーラビリティ：データセットはもはやコンデナストの処理能力や洞察を得る能力を超えることはできません。

• より多くのモデルを開発中：MLflow を使用することで、コンデナストのデータサイエンスチームはより迅速に製品
を革新することができます。これまでに 1,200 以上のモデルを導入しています。

データブリックスは、非常に強力なエンドツーエ
ンドのソリューションです。データブリックスの
導入によって、さまざまなバックグラウンドを持
つチームメンバーが素早く大量のデータにアクセ
スして活用し、実行可能なビジネス上の意思決定
を行えるようになりました。

コンデナスト社
AIインフラ担当主任エンジニア
Paul Fryzel 氏

詳しく見る

https://databricks.com/jp/customers/conde_nast
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第 11 章 導入事例 SHOWTIME® は、「シェイムレス」、「ホームランド」、「ビオンズ」、「ザ・チ」、「レイ・ドノバン」、「SMILF」、
「ザ・アフェア」、「パトリック・メルローズ」、「アワー・カートゥーン・プレジデント」、「ツイン・ピークス」
などの受賞歴のあるオリジナルシリーズや限定シリーズを放送しているプレミアムテレビネットワークおよびストリー
ミングサービスです。

ユースケース

SHOWTIME のデータ戦略チームは、組織全体のデータとアナリティクスの民主化に注力しています。彼らは、膨大な量
の加入者データ（例：視聴した番組、時間帯、使用したデバイス、加入履歴など）を収集し、機械学習を利用して加入
者の行動を予測し、スケジューリングや番組編成を改善しています。

ソリューションとメリット

データブリックスは、SHOWTIME が組織全体でデータと機械学習を民主化し、よりデータドリブンな文化を創造するの
に役立っています。

• パイプラインが 6 倍高速化：24 時間以上かかっていたデータパイプラインが4 時間以内に実行されるようになり、
チームはより迅速な意思決定が可能になりました。

• インフラの複雑性を取り除く：クラウド上で完全に管理されたプラットフォームを自動クラスター管理することで、
データサイエンスチームはハードウェアの設定、クラスターのプロビジョニング、デバッグなどではなく、機械学習
に集中することができます。

• サブスクライバーのエクスペリエンスの革新：データサイエンスのコラボレーションと生産性の向上により、新しい
モデルや機能の市場投入までの時間が短縮されました。チームはより迅速に実験を行うことができ、加入者にとって
より良い、よりパーソナライズされた体験を提供できるようになりました。

データブリックスのプラットフォームを導入し
たことで、かつて直面していたシステム構成上の
問題が全て解消されました。データサイエンス
部門の業務が飛躍的に進歩し、生産性が大幅に
向上しました。

ショータイム社
データ戦略・消費者分析部門シニア VP
Josh McNutt 氏

詳しく見る

https://databricks.com/jp/customers/showtime
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第 11 章 導入事例 シェルは、石油・ガス探査および生産技術のパイオニアであり、世界有数の石油・天然ガス生産者、ガソリンおよび天
然ガスのマーケティング業者、石油化学メーカーです。

ユースケース

生産を維持するために、シェルは世界各地の施設に 3,000 種類以上のスペアパーツをストックしています。操業停止を
回避するためには、適切な部品を適切なタイミングで入手することが重要ですが、同様に重要なのは、コストがかさむ
可能性のある過剰な在庫を持たないことです。

ソリューションとメリット

データブリックスは、シェルにクラウドネイティブの統合分析プラットフォームを提供し、インベントリ管理とサプラ
イチェーン管理の改善を支援します。

• 予測モデル化：スケーラブルな予測モデルを開発し、3,000 種類以上の材料を 50 以上の場所で展開しています。

• 履歴分析：各材料モデルは、過去の課題分布を捉えるために、10,000 回のマルコフ連鎖モンテカルロ反復をシミュ
レートしています。

• パフォーマンスの向上：データサイエンスチームはパフォーマンスの向上に重点を置き、インベントリの分析と予測
にかかる時間をデータブリックス上の50ノードのApache Spark™クラスターで48時間から 45 分に短縮し、パフォー
マンスを 32 倍に向上させました。

• コスト削減：年間数百万ドルに相当するコスト削減

データブリックスは、シェルにとって非常に大き
な価値を生み出しました。インベントリ最適化
ツール（データブリックス上に構築された）は、
私の組織から生まれた最初のスケールアップした
デジタル製品であり、グローバルに展開されてい
るという事実は、現在、毎年数百万ドルのコスト
削減を実現していることを意味します。

シェル社
高度分析 CoEゼネラルマネージャー
Dniel Jeavons氏

詳しく見る

https://databricks.com/jp/customers/shell
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第 11 章 導入事例 Riot Gamesの目標は、世界で最もプレイヤーにフォーカスしたゲーム会社になることです。2006 年に設立され、LAに拠
点を置く Riot Games は、League of Legends ゲームで最もよく知られています。毎月 1 億人以上のゲーマーがプレイして
います。

ユースケース

ネットワークパフォーマンスの監視とゲーム内での罵声に対抗することで、ゲーム体験を向上させます。

ソリューションとメリット

データブリックスは、Riot Games がスケーラブルで高速な分析を提供することで、プレイヤーのゲーム体験を向上させ
ることを可能にします。

• ゲーム内での購入経験の向上：500 B以上のデータポイントに基づいてユニークなオファーを提供するレコメンドエン
ジンを迅速に構築し、生産することが可能。ゲーマーは欲しいコンテンツをより簡単に見つけることができるように
なりました。

• ゲームラグの減少：ネットワークの問題をリアルタイムで検出するMLモデルを構築し、Riot Games がプレイヤーに悪
影響を及ぼす前に停止を回避できるようにしました。

• 分析の高速化：データ準備と探査の処理性能をEMRと比較して 50%向上させ、解析を大幅に高速化しました。私たちはデータサイエンティストをクラスター管
理から解放したいと考えていました。簡単にデー
タブリックスで管理されたSparkソリューション
を使用することで、このようなことが可能になり
ました。これでチームはゲーム体験の向上に集中
できるようになりました。

ライアットゲームズ社
データサイエンティスト
Colin Borys 氏

詳しく見る

https://databricks.com/jp/customers/riot-games
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第 11 章 導入事例 Qubyは、人々にエネルギー使用量、快適性、家庭のセキュリティなどを制御するスマート・エネルギー管理デバイスで
ある Toon の背後にあるテクノロジー企業です。Qubyのスマートデバイスは数百種類に及びます。

ヨーロッパ全土の何千もの家庭で使用されています。そのため、同社は、家庭内のあらゆる電化製品のセンサーから収
集したペタバイトの IoT データで構成されるヨーロッパ最大のエネルギーデータセットを維持しています。このデータ
を利用して、顧客がより快適な生活を送ることができるように支援するとともに、パーソナライズされたエネルギー使
用方法を提案することでエネルギー消費量を削減することを使命としています。

ユースケース

パーソナライズされたエネルギー使用の推奨。機械学習と IoT データを活用して、家庭内のエネルギー消費を削減する
ためのパーソナライズされた推奨事項を提供する「Waste Checker」アプリを開発しました。

ソリューションとメリット

データブリックスは Qubyに統合データ分析プラットフォームを提供しており、データサイエンスとエンジニアリングに
またがるスケーラブルで協調的な環境を醸成し、データチームがより迅速にイノベーションを起こし、ML を活用した
サービスを Qubyの顧客に提供することを可能にしています。

• コスト削減：データブリックスが提供するコスト削減機能（自動スケーリング・クラスターやSpot インスタンスな
ど）により、Qubyはインフラストラクチャ管理の運用コストを大幅に削減しつつ、大量のデータを処理することがで
きるようになった。

• イノベーションの加速：レガシーアーキテクチャでは、概念実証から本番までに12ヶ月以上を要していました。現在、
データブリックスを使用すると、同じプロセスが8週間以内で完了する。これにより、Qubyのデータチームは顧客の
ためにML を活用した新機能をより迅速に開発することが可能になった。

• エネルギー消費量の削減：Qubyは、廃棄物チェッカーアプリを通じて、パーソナライズされたレコメンデーションを
活用することで節約可能な 6,700 万キロワット時以上のエネルギーを特定した。

データブリックスは、Delta Lake と構造化された
ストリーミングの力を介して、私たちはアラート
を提供することができます。これにより、お客様
は快適性に影響が出る前に問題に対応したり、家
庭内の調整を行ったりすることができます。

クビー社
データサイエンティスト責任者
Stephen Galsworthy 氏

詳しく見る

https://databricks.com/jp/customers/quby


データブリックスについて
データブリックスはデータとAI の会社です。Comcast、Condé Nast、Nationwide、H&M など、世界
中の数千もの企業が、データエンジニアリング、機械学習、分析のためのデータブリックスのオー
プンで統一されたプラットフォームを利用しています。データブリックスは、サンフランシスコに
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