AI and Machine Learning for the Connected Home - Databricks

AI and Machine Learning for the Connected Home

Download Slides

Quby is the creator and provider of Toon, a leading European smart home platform. We enable Toon users to control and monitor their homes using both an in-home display and app. As a data driven company, we use AI and machine learning to generate actionable insights for our end users. Using the data we collect via our IoT devices we have introduced multiple data driven services, including an energy waste checker and a boiler monitoring service. In this talk, Stephen will describe how AI and machine learning are implemented on the Toon platform, and will show multiple AI use cases relating to the connected home. We’ll take a look at how Deep Learning algorithms are used to detect inefficient appliances from electricity meter data and how streaming algorithms allow users to be alerted to anomalies with their heating systems in near real-time. Stephen will share the experiences from the Data Science and Data Engineering teams at Quby with bringing data science algorithms from R&D to production and the lessons learned in offering multiple data driven services to hundreds of thousands of users on a daily basis.

Session hashtag: #SAISAI4.



« back
About Dr. Stephen Galsworthy

Dr. Stephen Galsworthy is a data driven executive and advisor who loves to create products which address significant challenges. With an analytical background, including a Master’s degree and Ph.D. in Mathematics from Oxford University, he has been leading data science teams since 2011. Currently Stephen is Chief Data Officer at Quby, a leading company offering data driven home services technology and known for creating the in-home display and smart thermostat Toon. In this role, he is responsible for the creation of value from data and Quby’s overall product strategy to enable commodity suppliers such as utilities, banks and insurance companies to play a dominant role in the home services domain.