Analyzing endurance-sports activity data with Spark - Databricks

Analyzing endurance-sports activity data with Spark

Spark’s support for efficient execution and rapid interactive prototyping enable novel approaches to understanding data-rich domains that have historically been underserved by analytical techniques. One such field is endurance sports, where athletes are faced with GPS and elevation traces as well as samples from heart rate, cadence, temperature, and wattage sensors. These data streams can be somewhat comprehensible at any given moment, when looking at a small window of samples on one’s watch or cycle computer, but are overwhelming in the aggregate.

In this talk, I’ll present my recent efforts using Spark and MLLib to mine my personal cycling training data for deeper insights and help me design workouts to meet particular fitness goals. This work incorporates analysis of geographic and time-series data, computational geometry, visualization, and domain knowledge of exercise physiology. I’ll show how Spark made this work possible, demonstrate some novel techniques for analyzing fitness data, and discuss how these approaches could be applied to make sense of data from an entire community of cyclists.

About William Benton

William Benton leads a team of data scientists and engineers at Red Hat, where he has applied analytic techniques to problems ranging from forecasting cloud infrastructure costs to designing better cycling workouts. His current focus is investigating the best ways to build and deploy intelligent applications in cloud-native environments, but he has also conducted research and development in the areas of static program analysis, managed language runtimes, logic databases, cluster configuration management, and music technology.