Structured Streaming has proven to be the best platform for building distributed stream processing applications. Its unified SQL/Dataset/DataFrame APIs and Spark’s built-in functions make it easy for developers to express complex computations. However, expressing the business logic is only part of the larger problem of building end-to-end streaming pipelines that interact with a complex ecosystem of storage systems and workloads. It is important for the developer to truly understand the business problem needs to be solved.
These are the questions that we ask every customer in order to help them design their pipeline. In this talk, I am going to go through the decision tree of designing the right architecture for solving your problem.
Tathagata Das is an Apache Spark committer and a member of the PMC. He's the lead developer behind Spark Streaming and currently develops Structured Streaming. Previously, he was a grad student in the UC Berkeley at AMPLab, where he conducted research about data-center frameworks and networks with Scott Shenker and Ion Stoica.