Accelerating Production Machine Learning with MLflow

Download Slides

Successfully building and deploying a machine learning model can be difficult to do once. Enabling other data scientists (or yourself, one month later) to reproduce your pipeline, to compare the results of different versions, to track what’s running where, and to redeploy and rollback updated models is much harder.

In this talk, I’ll introduce MLflow, a new open source project from Databricks that simplifies the machine learning lifecycle. MLflow provides APIs for tracking experiment runs between multiple users within a reproducible environment, and for managing the deployment of models to production. MLflow is designed to be an open, modular platform, in the sense that you can use it with any existing ML library and development process. MLflow was launched in June 2018 and has already seen significant community contributions, with 45 contributors and new features new multiple language APIs, integrations with popular ML libraries, and storage backends. I’ll go through some of the newly released features and explain how to get started with MLflow.

« back
Matei Zaharia
About Matei Zaharia

Matei Zaharia is an Assistant Professor of Computer Science at Stanford University and Chief Technologist at Databricks. He started the Apache Spark project during his PhD at UC Berkeley in 2009, and has worked broadly in datacenter systems, co-starting the Apache Mesos project and contributing as a committer on Apache Hadoop. Today, Matei tech-leads the MLflow development effort at Databricks in addition to other aspects of the platform. Matei’s research work was recognized through the 2014 ACM Doctoral Dissertation Award for the best PhD dissertation in computer science, an NSF CAREER Award, and the US Presidential Early Career Award for Scientists and Engineers (PECASE). [daisna21-speakers]