New Directions for Spark in 2015 - Databricks

New Directions for Spark in 2015

Download Slides

As the Apache Spark userbase grows, the developer community is working to adapt it for ever-wider use cases. 2014 saw fast adoption of Spark in the enterprise and major improvements in its performance, scalability and standard libraries. In 2015, we also want to make Spark accessible to a wider set of users, through new high-level APIs targeted at data science: machine learning pipelines, data frames, and R language bindings. In addition, we are defining extension points to let Spark grow as a platform, making it easy to plug in data sources, algorithms, and third-party packages. Like all work on Spark, these APIs are designed to plug seamlessly into existing Spark applications, giving users a unified platform for streaming, batch and interactive data processing.



« back
About Matei Zaharia

Matei Zaharia is an Assistant Professor of Computer Science at Stanford University and Chief Technologist at Databricks. He started the Apache Spark project during his PhD at UC Berkeley in 2009, and has worked broadly in datacenter systems, co-starting the Apache Mesos project and contributing as a committer on Apache Hadoop. Today, Matei tech-leads the MLflow development effort at Databricks. Matei’s research work was recognized through the 2014 ACM Doctoral Dissertation Award for the best PhD dissertation in computer science, an NSF CAREER Award and several best paper awards.