Sparse data support in MLlib - Databricks

Sparse data support in MLlib

Download Slides

Prior to v1.0, MLlib only supports dense data in regression, classification, and clustering, while sparse data dominates in practice. In this talk, we will show the design choices we’ve made to support sparse data in MLlib and the optimizations we used to take advantage of sparsity in k-means, gradient descent, column summary statistics, tall-and-skinny SVD and PCA, etc.

About Xiangrui Meng

Xiangrui Meng is an Apache Spark PMC member and a software engineer at Databricks. His main interests center around developing and implementing scalable algorithms for scientific applications. He has been actively involved in the development and maintenance of Spark MLlib since he joined Databricks. Before Databricks, he worked as an applied research engineer at LinkedIn, where he was the main developer of an offline machine learning framework in Hadoop MapReduce. His Ph.D. work at Stanford is on randomized algorithms for large-scale linear regression problems.