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CHAPTER 1

Introduction

A Note for Early Release Readers
With Early Release ebooks, you get books in their earliest form—the author’s raw and
unedited content as they write—so you can take advantage of these technologies long
before the official release of these titles.

This will be the 1st chapter of the final book. Please note that the GitHub repo will be
made active later on.

If you have comments about how we might improve the content and/or examples in
this book, or if you notice missing material within this chapter, please reach out to the
editor at gobrien@oreilly.com.

As data engineers, we want to build large-scale data, machine learning, data science,
and AI solutions that offer state-of-the-art performance. We build these solutions by
ingesting large amounts of source data. We cleanse, normalize and combine the data,
and ultimately present it to the downstream applications through an easy to consume
data model.

As the amount of data that we need to ingest and process is ever-increasing, we need
the ability to horizontally scale our storage. Additionally, we need the ability to
dynamically scale our compute resources to address processing and consumption
spikes. Since we are combining our data sources together into one data model, we not
only need to append data to tables, but we often need to insert, update, or delete (i.e.,
MERGE or UPSERT) records, based upon complex business logic. We want to be able
to perform these operations with transactional guarantees, and without having to re-
write large data files.
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1 Codd, E. F. (1970). Relational Database: A Practical Foundation for Productivity. San Jose: San Jose Research
Laboratory.

In the past, the above set of requirements had been addressed by two distinct toolsets.
The horizontal scalability and de-coupling of storage and compute was offered by
cloud-based data lakes, while transactional guarantees were offered by relational data
warehouses. However, traditional data warehouses coupled storage and compute into
an on-premises appliance, and do not have the degree of horizontal scalability associ‐
ated with data lakes.

Delta Lake brings capabilities such as transactional reliability and support for
UPSERTs and MERGEs to data lakes while maintaining the dynamic horizontal scala‐
bility and separation of storage and compute of data lakes. Delta Lake is one the ena‐
blers for building Data lakehouses, an open data architecture that combines the best
of data warehouses and data lakes.

The goal of this book is to provide experienced data practitioners with practical
instructions on how to set up Delta Lake and start using its unique features. First,
we’ll discuss why Delta Lake is an important tool for building modern enterprise data
platforms and data science and AI solutions, followed by instructions on how to set
up Delta Lake with Spark. Each of the subsequent chapters will walk you through the
fundamental functions and operations of Delta Lake using step-by-step instructions
and real-world examples.

In this introduction, we will take a brief look at relational databases and how they
evolved into data warehouses. Next, we will look at the key drivers behind the emer‐
gence of data lakes. We will address the benefits and drawbacks of each architecture,
and finally show how the Delta Lake storage layer combines the benefits of each
architecture, enabling the creation of data lakehouse solutions.

Introduction of Relational Databases
In his historic 1970 paper1 EF Codd introduced the concept of looking at data as logi‐
cal relations, independent of the physical data storage. This logical relation between
data entities became known as a database model or schema. Codd’s writings led to the
birth of the relational database. The first relational database systems were introduced
in the mid-1970s by IBM and UBC.

Relational databases and their underlying SQL language became the standard storage
technology for enterprise applications throughout the 1980s and 1990s. One of the
main reasons behind this popularity was that relational databases offered a concept
called transactions. A database transaction is a sequence of operations on a database
that satisfies the ACID properties, ACID is an acronym which stands for four proper‐
ties: atomicity, consistency, isolation, and durability.
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Atomicity ensures that all changes made to the database are executed as a single
operation. This means that the transaction succeeds only when all changes have been
performed successfully. For example, when I use my online banking system to trans‐
fer money from savings to checking, the consistency property will guarantee that the
operation will only succeed when the money is deducted from my savings account
and added to my checking account. The complete operation will either succeed or fail
as a complete unit.

The Consistency property guarantees that database transitions from one consistent
state at the beginning of the transaction to another consistent state at the end of the
transaction. In our earlier example, the transfer of the money would only happen if
my savings account had sufficient funds. If not, the transaction would fail, and the
balances would stay in their original, consistent state.

Isolation ensures that concurrent operations that are happening within the database
are not affecting each other. This property ensures that when multiple transactions
are executed concurrently, their operations do not interfere with each other.

Durability refers to the persistence of committed transactions. It guarantees that
once a transaction is completed successfully, it will result in a permanent state even in
the event of a system failure. In our money transfer example, durability will ensure
that updates made to both my savings and checking account are persistent and can
survive a potential system failure.

Database systems continued to mature throughout the 1990s, and the advent of the
Internet in the mid-1990s led to an explosive growth of data and the need to store this
data.

Enterprise applications were using the RDBMS technology very effectively. Flagship
products such as SAP and Salesforce would collect and maintain massive amounts of
data.

However, this development was not without its drawbacks. Enterprise applications
would store the data in their own, proprietary formats, leading to the rise of data
silos. These data silos were owned and controlled by one department or business unit.
Over time, organizations recognized the need to develop an Enterprise view across
these different data silos, leading to the rise of data warehouses.

Data Warehouses
While each enterprise application has some type of reporting built-in, business
opportunities were missed because of the lack of a comprehensive view across the
organization. At the same time, organizations recognized the value of analyzing data
over longer periods of time. Additionally, they wanted to be able to slice and dice the
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data over several cross-cutting subject matters such as customers, products, and other
business entities.

This led to the introduction of the data warehouse, a central relational repository of
integrated, historical data from multiple data sources that presents a single integrated,
historical view of the business with a unified schema, covering all perspectives of the
enterprise.

Data Warehouse Architecture
A simple representation of a typical data warehouse architecture is shown in Figure
1-1.

Figure 1-1. Data Warehouse Architecture

When we look at the diagram in figure x.x, we start with the data source layer on the
left. Organizations need to ingest data from a set of heterogeneous data sources.
While the data from the organization’s ERP system(s) forms the backbone of the
organizational model, we need to augment this data with the data from the opera‐
tional systems that are running the day-to-day operations such as human relationship
(HR) systems and workflow management software. Additionally, organizations might
want to leverage the customer interaction data covered by their CRM- and POS sys‐
tems. In addition to the core data sources listed above, there is a need to ingest data
from a wide array of external data sources, in a variety of formats such as spread‐
sheets, CSV files etc.
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These different source systems each have their own data format. Therefore, the data
warehouse contains a staging area where the data from the different sources can be
brought together into one common format. To do this the system must ingest the data
from the original data sources. The actual ingestion process varies by data source
types. Some systems allow direct database access, others allow data to be ingested
through an API, while many data sources still rely on file extracts.

Next, the data warehouse needs to transform the data into a standardized format,
allowing the downstream processes to easily access the data. Finally, the transformed
data is loaded into the staging area. In relational data warehouses, this staging area is
typically a set of flat relational staging tables without any primary- of foreign keys,
and simple data types.

This process of extracting data, transforming it to a standard format and loading it
into the data warehouse is commonly referred to as Extract, Transform and Load
(ETL). ETL tools can perform several other tasks on the ingested data before finally
loading the data into the data warehouse. These tasks include elimination of duplicate
records. Since a data warehouse will be the one source of truth, we do not want it to
contain multiple copies of the same data. Additionally, duplicate records also prevent
the generation of a unique primary key for each record.

ETL tools also allow us to combine data from multiple data sources. For example, one
view of our customers might be captured in CRM systems while other attributes are
found in an ERP system. The organization needs to combine these different aspects
into one comprehensive view of a customer. This is where we start to introduce a
schema to the data warehouse. In our example of a customer, the schema will define
the different columns for the customer table, which columns are required, the data
type and constraints of each column etc.

Having canonical, standardized representations of columns such as date and time is
important, ETL tools can ensure that all these types of columns are formatted using
the same standard throughout the data warehouse.

Finally, organizations want to perform quality checks on the data in keeping with
their data governance standards. This might include dropping low quality data rows
which do not meet this minimal standard.

Data warehouses are physically implemented on a monolithic physical architecture,
made up out of a single large node, combining memory, compute and storage. This
monolithic architecture forces organizations to scale their infrastructure vertically,
resulting in expensive, often over-dimensioned infrastructure, which was provisioned
for peak user load, while being near idle at other times

A data warehouse typically contains data that can be classified as follows:
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Metadata
Contextual information about the data. This data is often stored in a data catalog.
It enables the data analysts to describe, classify and easily locate the data stored in
the data warehouse.

Summary data
Automatically created by the underlying data management system. The summary
data will automatically be updated as new data is loaded into the warehouse.
Summary data contains aggregations across several conformed dimensions. The
main purpose of the summary data is to accelerate query performance.

Raw data
Maintained in its original format without any processing. Having access to the
raw data enables the data warehouse system to re-process data in the case of load
failures.

The data in the warehouse is consumed in the presentation layer. This is where the
consumers can interact with the data stored in the warehouse. We can broadly iden‐
tify two large groups of consumers:

Human consumers
These are the people within the organization who have a need to consume the
data in the warehouse. These consumers can vary from knowledge workers, who
need access to the data as an essential part of their job, to executives who typically
consume highly summarized data, often in the form of dashboards and KPI’s.

Internal or external Systems
The data in a data warehouse can be consumed by a variety of internal or exter‐
nal systems. This can include machine learning and AI toolsets, or internal appli‐
cations which need to consume data in the warehouse. Some systems might
directly access the data, others might work with data extracts, while still others
might directly consume the data in a pub-sub model.

Human Consumers will leverage various analytical tools and technologies to create
actionable insights into the data, including:

Reporting tools
These tools enable the user to develop insights into the data through visualiza‐
tions such as tabular reports and a wide array of graphical representations.

Online Analytical Processing (OLAP) tools
Consumers need to slice and dice the data in a variety of ways. Online Analytical
Processing (OLAP) tools present the data in a multidimensional format, allowing
it to be queried from multiple perspectives. They leverage pre-stored aggrega‐
tions, often stored in memory, to serve up the data with fast performance.
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2 Kimball, R. (1996). The Data Warehouse toolkit: The Complete Guide to Dimensional Modeling. The Kimball
Group.

Data Mining
These tools allow a data analyst to find patterns in the data through mathematical
correlations and classifications. They assist the analysts in recognizing previously
hidden relationships between different data sources. In a way, data mining tools
can be seen as a precursor to modern data science tools.

Dimensional Modeling
Data warehouses introduced the need for a comprehensive data model that spans the
different subject areas in a corporate enterprise. The technique used to create these
models became known as dimensional modeling.

Driven by the writings and ideas of visionaries such as Bill Inmon and Ralph Kimball,
dimensional modeling was first introduced in Kimball’s seminal book The Data Ware‐
house toolkit: The Complete Guide to Dimensional Modeling.2 Kimball defines a meth‐
odology that focuses on a bottoms-up approach, ensuring that the team delivers real
value with the data warehouse as soon as possible.

A Dimensional model is described by a star schema. A star schema is a way of organ‐
izing the data for a given business process (e.g., sales) into a structure which facilitates
easy analytics. It consists of two types of tables:

• A fact table, which is the primary, or central table for the schema. The fact table
captures the primary measurements, metrics, or “facts” of the business process
Staying with our sales business process example, a Sales Fact Table would
include:

• Units sold
• Sales amount

Fact tables have a well-defined grain. The grain of a fact table would be the level of
granularity at which we store the data in our fact table. For our Sales Fact Table, the
grain would be at the sales detail level.

• Multiple dimension tables which are related to the fact table. A Dimension pro‐
vides the context surrounding the selected business process. In a Sales scenario
example, the list of dimensions could include:

• Product
• Customer
• Salesperson
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• Store

The dimension tables “surround” the fact table, which is why these types of schemas
are referred to as “star schemas”.

A star schema consists of fact tables, linked to their associated dimensional tables
through primary and foreign key relationships. A star schema for our sales subject
area is shown in Figure 1-2.

Figure 1-2. Sales Dimensional Model

Data Warehouse Benefits & Challenges
Data warehouses have inherent strengths that have served the business community
well.

They serve up high quality, cleansed and normalized data from different data sources
in a common format. Since data from the different departments is presented in a
common format, each department will review results in line with the other depart‐
ments. Having timely, accurate data is the basis for strong business decisions.

• Since they store large amounts of historical data, they enable historical insights,
allowing the user to analyze different time periods and trends.

• Data warehouses tend to be very reliable, based upon the underlying relational
database technology, which executes ACID transactions.

• Warehouses are modeled with standard star-schema modeling techniques, creat‐
ing fact tables and dimensions. More and more pre-built template models
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became available for various subject areas such as sales and CRM, further accel‐
erating the development of such models.

• Data warehouses are ideally suited for business intelligence and reporting, basi‐
cally addressing the “what happened” question of the data maturity curve. Data
warehouse, combined with BI tools can generate actionable insights for market‐
ing, finance, operations, and sales.

The fast rise of the internet, social media and the availability of multi-media devices
such as smart phones disrupted the traditional data landscape, giving rise to the term
big data. Big data is defined as data that arrives in ever higher volumes, with more
velocity, and a greater variety of formats and has higher veracity. These are known as
the four Vs of data:

Volume. The volume of data created, captured, copied, and consumed globally is
increasing rapidly. As described in Statistica3, over the next five years, global data cre‐
ation is projected to grow to more than 200 zettabytes (a zettabyte is a 2 to the power
70 number of bytes).

Velocity. In today’s modern business climate, timely decisions are critical. To make
these decisions, organizations need their information to flow quickly, ideally as close
to real-time as possible. For example, stock trading applications need to have access
to near-real-time data so advanced trading algorithms can make millisecond deci‐
sions, and communicate these decisions to their stakeholders. Access to timely data
can give organizations a competitive advantage.

Variety. Variety refers to the number of different “types” of data that are now avail‐
able. The traditional data types were all structured, and typically offered as relational
databases, or extracts thereof. With the rise of big data, data now arrives in new
unstructured types. Unstructured and semi-structured data types, such as IoT device
messages, text, audio, and video require additional preprocessing to derive business
meaning.

Veracity. Veracity defines the trustworthiness of the data. Here, we want to make sure
that the data is accurate and of high quality. Data can be ingested from several sour‐
ces. It is important to understand the chain of custody of the data, ensure we have
rich metadata, and understand the context under which the data was collected. Addi‐
tionally, we want to ensure that our view of the data is complete, with no missing
components or late-arriving facts.

Data Warehouses have a hard time addressing these four Vs.
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Traditional data warehouse architectures struggle to facilitate exponentially increas‐
ing data volumes. They suffer from both storage and scalability issues. With volumes
reaching petabytes, it becomes challenging to scale storage capabilities without
spending large amounts of money. Traditional data warehouse architectures do not
use in-memory and parallel processing techniques, preventing them from vertically
scaling the data warehouse.

Data Warehouse architectures are also not a good fit to address the velocity of big
data. Data warehouses do not support the types of streaming architecture required to
support near real-time data. ETL Data load windows can only be shortened so much
until the infrastructure starts to buckle.

While data warehouses are very good at storing structured data, they are not well
suited to store and query the variety of semi-structured or unstructured data.

Data warehouses have no built-in support for tracking the trustworthiness of the
data. Data warehouse metadata is mainly focused on schema, and less on lineage, data
quality and other veracity variables.

Further, data warehouses are based upon a closed, proprietary format and typically
only support SQL-based query tools. Because of their proprietary format, data ware‐
houses do not offer good support for data science and machine learning tools.

Because of these limitations, data warehouses are expensive to build, as a result
projects often fail before going live, and those that do go live have a hard time keep‐
ing up with the ever-changing requirements of the modern business climate and the
four Vs.

The limitations of the traditional data warehouse architecture gave rise to a more
modern architecture, based upon the concept of a data lake.

Introducing Data Lakes
A Data Lake is a cost-effective central repository to store structured, semi-structured
or unstructured data at any scale, in the form of files and blobs. The term “data lake”
came from the analogy of a real river or lake, holding the water, or in this case data,
with several tributaries which are flowing the water (aka “data”) into the lake in real-
time. A canonical representation of a typical data lake is shown in Figure 1-3.
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Figure 1-3. Canonical Data Lake

The initial data lakes and big data solutions were built with on-premises clusters,
based upon the Apache Hadoop open-source set of frameworks. Hadoop was used to
efficiently store and process large datasets ranging in size from gigabytes to petabytes
of data. Instead of using one large computer to store and process the data, Hadoop
leverages clustering of multiple commodity compute nodes to analyze large volumes
of datasets in parallel more quickly.

Hadoop would leverage the MapReduce framework to parallelize compute tasks over
multiple compute nodes. The Hadoop Distributed File System (HDFS) was a file sys‐
tem that was designed to run on standard or low-end hardware. HDFS was very
fault-tolerant and supported large datasets.
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Starting in 2015, cloud data lakes such as S3, ADLS, and GCS started replacing
HDFS. These cloud-based storage systems have superior Service Level Agreements
(SLAs) (often greater than 10 nines), offer geo-replication and most importantly,
offer extremely low cost with the option to utilize even lower-cost cold storage for
archival purposes.

At the lowest level, the unit of storage in a data lake is a blob of data. Blobs are by
nature unstructured enabling the storage of semi-structured and unstructured data,
such as large audio and video files. At a higher level, the cloud storage systems pro‐
vide file semantics and file-level security on top of the blob storage, enabling the stor‐
age of highly structured data. Because of their high bandwidth ingress and egress
channels, data lakes also enable streaming use cases, such as the continuous ingestion
of large volumes of IoT data or streaming media.

Compute engines enable large volumes of data to be processed in an ETL-like fashion
and delivered to consumers such as traditional data warehouses and machine learn‐
ing and AI toolsets. Streaming data can be stored in real-time databases, and reports
can be created with traditional BI and reporting tools.

Data lakes are enabled through a variety of technologies, as listed below:

Storage
Data lakes require very large, scalable storage systems, like the ones typically
offered in cloud environments. The storage needs to durable, scalable and should
offer interoperability with a variety of third-party tools, libraries, and drivers.
Note that data lakes separate out the concepts of storage and compute, allowing
both to scale independently. Independent scaling of storage and compute allows
for on-demand, elastic fine-tuning of resources, allowing our solution architec‐
tures to be more flexible. The ingress and egress channels to the storage systems
should support high bandwidths, enabling the ingestion or consumption of large
batch volumes, or the continuous flow of large volumes of streaming data, such
as IoT and streaming media.

Compute
High amounts of compute power are required to process the large amounts of
data stored in the storage layer. Several compute engines are available on the dif‐
ferent cloud platforms. The go-to compute engine for data lakes is Apache Spark.
Spark is an open-source unified analytics engine, which can be deployed through
various environments, such as Databricks, Microsoft Synapse or Snowflake. Big
Data compute engines will leverage compute clusters. Compute clusters pool
compute nodes to tackle complete data collection and processing tasks.
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Formats
The shape of the data on disk defines the formats. A wide array of storage for‐
mats is available. Most data lakes use standardized formats such as Parquet or
Avro.

Metadata
Modern, cloud-based storage systems maintain metadata (data about the data).
This includes various timestamps that describe when data was written or
accessed, data schemas and a variety of tags, which contain information about
the usage and owner of the data.

Benefits and Drawbacks of Data Lakes
A data lake architecture enables the consolidation of an organization’s data assets into
one central location.

Data lakes have some very strong benefits. They use open formats, such as Parquet
and Avro. These formats are well-understood by a variety of tools, drivers, and libra‐
ries which enables easy interoperability, especially in our open-source ecosystem.

Data lakes are deployed on mature cloud storage sub-systems, allowing them to bene‐
fit from the scalability, monitoring ease of deployment, and the low storage costs
associated with these systems. Automated DevOps tools such as Terraform have well-
established drivers, enabling automated deployments and maintenance.

Unlike data warehouses, data lakes support all data types, including semi-structured
and unstructured data, enabling workloads such as media processing.

Because of their high throughput ingress channels, they are very well suited for
streaming use cases, such as the ingestion of IoT sensor data, media streaming, or
Web clickstreams.

However, as data lakes become more popular and widely used, organizations started
to recognize some challenges with traditional data lakes. While the underlying cloud
storage is relatively inexpensive, building and maintaining an effective data lake
requires expert skills, resulting in high-end staffing or increased consulting services
costs.

While it is easy to ingest data into the data in its raw form, transforming the data into
a form that can deliver business values can be very expensive. Traditional data lakes
have low latency query performance, so they cannot be used for interactive queries.
As a result, the organization’s data teams must still transform and load the data into
something like a data warehouse, resulting in an extended time to value. This resulted
in a data lake + warehouse architecture. This architecture continues to be dominant
in the industry f(I have personally implemented dozens of those types of these sys‐
tems), but is now declining because of the rise of data lakehouses.
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Data lakes have typically used a “schema on read” strategy, where data can be ingested
in any format without schema enforcement. Only when the data is read, can some
type of schema be applied. This lack of schema enforcement can result in data quality
issues, allowing the pristine data lake to become a “data swamp”.

Data lakes do not offer any kind of transactional guarantees. Data files can only be
appended to, leading to expensive re-writes of previously written data to make a sim‐
ple update. This leads to an issue referred to as the “small file problem”, where multi‐
ple small files are created for a single entity. If this issue is not managed well, these
small files slow the read performance of the overall data lake, lead to stale data and
wasted storage. Data lake administrators need to run repeated operations to consoli‐
date these smaller files into larger files which are optimized for efficient read opera‐
tions.

Now that we have discussed the strengths and weaknesses of both data warehouses
and data lakes, we will introduce the data lakehouse, which combines the strengths,
and addresses the weaknesses of both technologies.

Data Lakehouse
The concept of the data lakehouse was first introduced by Armbrust, Ghodsi, Xin and
Zaharia.4 The authors define a lakehouse as “a data management system based upon
low-cost and directly-accessible storage that provides analytics DBMS management and
performance features such as ACID transactions, data versioning, auditing, indexing,
caching and query optimization”.

When we unpack the above, we can define a lakehouse as a system which merges the
flexibility, low cost, and scale of a data lake with the data management and ACID
transactions of data warehouses, addressing the limitations of both. Like data lakes,
the lakehouse architecture leverages the low-cost cloud storage systems, with the
inherent flexibility and horizontal scalability that comes with those systems. It also
continues to leverage the data formats like Parquet and AVRO, which enable the inte‐
gration with machine learning and AI systems. Like data warehouses, a data lake‐
house will enable ACID transactions on data assets stored on these low-cost storage
systems, enabling the reliability that used to be the exclusive domain of relational
database systems.

Data lakehouses allows the implementation of similar data structures and data man‐
agement features to those in a data warehouse, directly on the same storage resources
used for traditional data lakes. data lakehouses are a good bit for BOTH business
intelligence AND machine learning/AI use cases.
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Data lakehouses are an especially good match for most, if not all, cloud environments
with separate compute and storage resources. Different computing applications can
run on-demand on completely separate computing nodes, such as a Spark cluster
while directly accessing the same storage data. It is, however, conceivable that one
could implement a data lakehouse over an on-premises storage system such as HDFS.

Data Lakehouse benefits
An overview of the data lakehouse architecture is shown in Figure 1-4.

Figure 1-4. Data Lakehouse Architecture Overview

With the data lakehouse architecture, we no longer need to have a copy of our data in
the data lake, and another copy in some type of data warehouse storage. Indeed, we
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can serve up our data directly from the Data Lake with comparable performance to a
classical data warehouse.

Since we can continue to leverage the low-cost cloud-based storage technologies, and
we no longer need to copy data from the data lake to a data warehouse, we can realize
significant cost savings, both in infrastructure and staff and consulting overhead.

Since less data movement takes place and our ETL is simplified, opportunities for
data quality issues are significantly reduced, and finally, because the data lakehouse
combines the ability to store large data volumes and refined dimensional models,
development cycles are reduced, and the time-to-value is significantly reduced.

The evolution from data warehouses to data lakes to a data lakehouse architecture is
shown in Figure 1-5.

Figure 1-5. Evolution of Data Architectures

Implementing a Data Lakehouse
As we mentioned earlier, data lakehouses will leverage low-cost object stores like
Amazon S3 or Azure ADLS, storing the data in an open-source format such as
Apache Parquet. However, since data lakehouse implementations run ACID transac‐
tions against this data, we need a transactional metadata layer on top of the cloud
storage, which defines which objects are part of which table version.

This will allow a data lakehouse to implement features such as ACID transactions and
versioning within that metadata layer, while keeping the bulk of the data in the low-
cost object storage. The data lakehouse client is able to keep using data in an open-
source file format that they are already familiar with.
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Next, we need to address system performance. As we mentioned earlier, to be effec‐
tive, data lakehouse implementations need to achieve great SQL performance. Data
warehouses were very good at optimizing performance because they worked with a
closed storage format. This allowed them to maintain statistics, build clustered
indexes, move hot data on fast SSD devices etc.

In a data lakehouse, which is based upon open-source standard file formats, we do
not have that luxury, since we are unable to change the storage format. However, data
lakehouses can leverage a plethora of other optimizations, which leave the data files
unchanged. This included caching, auxiliary data structures such as indexes and sta‐
tistics and data layout optimizations.

The final tool that can speed up analytic workloads is the development of a standard
DataFrame API. Most of the popular ML tools out there, such as TensorFlow and
Spark MLlib already have support for DataFrames. DataFrames were first introduced
by R and pandas and provide a simple table abstraction of the data with a multitude
of transformation operations, most of which originate from relational algebra.

In Spark, the Dataframe API is declarative, and lazy evaluation is used to build an
execution DAG (Directed Acyclic Graph). This graph can then be optimized before
any action consumes that underlying data in the Dataframe. This gives the data lake‐
house several new optimization features such as caching and auxiliary data.

Figure X.X shows how these requirements fit into an overall data lakehouse system
design:
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Figure 1-6. Data lakehouse implementation

A number of data lakehouse implementations are available such as Apache Iceberg
and Delta Lake. Since Delta Lake is the focus of this book, we will illustrate how Delta
lake facilitates the requirements for implementing a data lakehouse.

Delta Lake
As was mentioned in the previous section, a possible data lakehouse solution can be
built on top of Delta Lake. Delta Lake is the metadata, caching and indexing layer on
top of a data lake storage that provides an abstraction level to serve ACID transac‐
tions and other management features.

Delta Lake is a file-based open-source metadata layer that enables data lakehouse
implementations. Delta Lake provides ACID transactions, scalable meta data han‐
dling, a unified process model that spans batch and streaming, full audit history, and
support for SQL DML statements. It can run on existing data lakes and is fully com‐
patible with several processing engines, including Apache Spark.
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Delta Lake is an open-source framework, the specification of which can be found at
https://delta.io. A detailed description of how Delta Lake provides ACID transaction
can be found in the work of Armbrust et al5

Delta lake provides the following features:

Transactional ACID guarantees

Delta Lake will make sure that all data lake transactions using Spark, or any other
processing engine are committed for durability and exposed to other readers in an
atomic fashion. This is made possible through the Delta transaction log. In the next
chapter we will cover the transaction log in detail.

Full DML support

Traditional data lakes do not support transactional, atomic updates to the data. Delta
Lake fully supports all DML operations, including deletes and updates, but also com‐
plex data merge, or upsert scenarios. This support greatly simplifies the creation of
dimensions and fact tables when building a modern data warehouse (MDW).

Audit History

The Delta Lake transaction log records every change made to the data, in the order
that these changes were made. Therefore, the transaction log becomes the full audit
trail of any changes made to the data. This enables admins and developers to roll back
to earlier versions of data after accidental deletions and edits. This feature is referred
to as Time Travel and is covered in detail in chapter X: Time Travel.

Unification of batch and streaming into one processing model

Delta Lake can work with batch and streaming sinks or sources. It can perform
MERGEs on a data stream, which is a common requirement when merging IoT data
with device reference data. It also enables use cases where we receive CDC data from
external data sources. We will cover streaming in detail in chapter xx: Streaming.

Schema enforcement and evolution

Delta lake will enforce a schema when writing or reading data from the lake. How‐
ever, when explicitly enabled for a data entity, it allows for a safe evolution of the
schema, enabling use cases where the data needs to evolve. Schema enforcement and
evolution is covered in chapter XX.

Rich metadata support and scaling

Having the ability to support large volumes of data is great, but if the metadata can‐
not scale accordingly, the solution will fall short. Delta Lake will scale out all metadata
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processing operations by leverage Spark or other compute engines, allowing it to effi‐
ciently process the metadata for petabytes of data.

Data Lakehouse-based Architectures
A data lakehouse architecture is made up out of three layers as shown in Figure 1-6.
The data lakehouse storage layer is built on standard cloud-storage technology such
as Azure ADLS Gen 2 storage, or AWS s3 storage. This provides the data lakehouse
with a highly scalable, low-cost storage layer.

Figure 1-7. Data lakehouse Layered Architecture

The transactional layer of the data lakehouse is provided by Delta Lake. This brings
ACID guarantees to the data lakehouse, enabling an efficient transformation of raw
data into curated, actionable data. Besides the ACID support, Delta lake offers a rich
set of additional features, such as DML support, scalable metadata processing,
streaming support and a rich audit log. The top layer of the data lakehouse stack is
made up out of high-performance query and processing engines, which leverage to
underlaying cloud compute resources. Supported query engines include

• Apache Spark
• Apache Hive
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• Presto
• Trino

Please consult the Delta Lake website (https://delta.io) for a complete list of sup‐
ported compute engines.

The Medallion Architecture
An example of a Delta Lake based data lakehouse solution architecture is provided
Figure 1-7. This architectural pattern with bronze, silver and gold layers is often
referred to as the Medallion Architecture. While it is only one of many data lakehouse
architecture patterns, it is a great fit for Modern Data Warehouses, Data Marts, and
other analytical solutions.

Figure 1-8. Data Lakehouse Solution Architecture

At the highest level, we have three components in this solution. To the left we have
the different data sources. A data source can take on many forms, some examples are
provided below:

• A set of CSV or TXT files on an external data lake.
• An on-premises database, such as Oracle or SQL Server.
• Streaming data sources such as Kafka or Azure Event Hubs.
• REST APIs from a SAS service such as Salesforce or ADP.

The central component implements what is called the “medallion architecture”. A
medallion architecture is a data design pattern used to logically organize data in a
data lakehouse, through a bronze, silver, and gold layer. The bronze layer is where we
land the data ingested from our source systems on the left. Data in the bronze zone is
typically landed “as-is”, but can be augmented with additional metadata such as the
loading date and time, processing identifiers etc.
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In the silver layer, the data from the bronze layer is cleansed, normalized, merged and
conformed. This is where the Enterprise view of the data across the different subject
areas is gradually coming together.

The data in the gold layer is “consumption-ready” data. This data can be in the format
of a classic star schema, containing dimensions and fact tables, or it could be in any
data model that is befitting to the consuming use case.

The goal of the medallion architecture is to improve the structure and quality of the
data incrementally and progressively as it flows through each layer of the architec‐
ture.

On the right we have the different consumers of the data lakehouse. This includes
reporting and BI consumers, machine learning tools and AI solutions.

A summary of the Bronze, Silver and Gold layers is provided below. For each layer,
we explore its business value and properties, and include implementation details
(such as “how it’s done):

Bronze Silver Gold
Business
Value

• Audit on exactly what was
received from the source

• Ability to reprocess without going
back to the sources

• First layer that is useful to the
business

• Enables data discover, self-
service, ad-hoc reporting,
advanced analytics and ML

• The data is in a format that is
easy for the business users to
navigate.

• Highly performant

Properties • No business rules or
transformations of any kind

• Should be fast and easy to get
new data to this layer

• Prioritize speed to market and
write performance- just
enough transformations

• Quality data expected

• Prioritize business use cases
and user experience

• Precalculated, business-specific
transformations

• Can have separate views of the
data for different consumption
use cases

How it’s
done

• Must include a copy of what was
received

• Typically, data is stored in folders
based upon the date received

• Delta Merge
• Can include light modeling

(3nf, vaulting)
• Data quality checks should be

included

• Prioritize denormalized, read-
optimized data models

• Full Transformed
• Aggregated

In the next section, we will take a more detailed look at the different layers that make
up the Medallion architecture.

The Bronze Layer (raw data)
Raw data from the data sources is ingested into the Bronze layer without any trans‐
formations or business rule enforcement. This layer is the “landing zone” for our raw
data, so all table structures in this layer correspond exactly to the source system struc‐
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ture. The format of the data source is maintained, so when the data source is a CSV
file, it is stored in Bronze as a CSV file, JSON data is written as JSON etc. Data extrac‐
ted from a database table is typically landed in Bronze as a Parquet or AVRO file.

At this point, no schema is required. As data is ingested, a detailed audit record is
maintained, which includes the data source, whether a full or incremental load was
performed, and detailed watermarks to support the incremental loads where needed.
The Bronze layer includes an archival mechanism, so that data can be retained for
long periods of time. This archive, together with the detailed audit records can be
used to re-process data in case of a failure somewhere downstream in the medallion
architecture.

The ingested data is landed in the Bronze zone “as-is”, maintaining the structure and
data types of the source system format, although it is often augmented with addi‐
tional metadata, such as the date and time of the load and ETL process system identi‐
fiers. The goal of the ingestion process is to land the source data quickly and easily in
the bronze layer with just enough auditing and metadata to enable data lineage and
re-processing.

The bronze layer is often used as a source for a Change Data Capture (CDC) process,
allowing newly arriving data to be immediately processed downstream through the
silver and gold layers.

The Silver Layer
In the Silver layer we first cleanse and normalize the data. We ensure that standard
formats are used for constructs such as date and time, we enforce the company’s col‐
umn naming standard, de-duplicate the data, and perform a series of additional data
quality checks, dropping low-quality data rows when needed.

Next, related data is combined and merged together. The Delta Lake MERGE capabil‐
ities work very well for this purpose. For example, customer data from various sour‐
ces (Sales, CRM, POS systems etc..) is combined into a single entity. Conformed data,
which are those data entities that are re-used across different subject areas is identi‐
fied and normalized across the views. In our previous example, the combined cus‐
tomer entity would be an example of such conformed data.

At this point, the combined “Enterprise View” of the data starts to emerge. Note that
we apply a “just-enough” philosophy here, where we provide just enough detail with
the least amount of effort possible, making sure that we maintain our agile approach
to building our medallion architecture.

At this point, we start enforcing schema, and allow the schema to evolve downstream.
The Silver layer is also the layer where we can apply GDPR and/or PII/PHI enforce‐
ment rules.
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Because this is the first layer where data quality is enforced, and the Enterprise view is
created, it serves as a useful data source for the business, especially for purposes such
as self-service analytics and ad-hoc reporting. The silver layer proves to be a great
data source for machine learning and AI use cases. Indeed, these types of algorithms
work best with the “less polished” data in the silver layer instead of the consumption
formats in the gold layer.

The Gold Layer
In the Gold layer, we create business level aggregates. This can be done through a
standard Kimball Star Schema, an Inmon Data Mart, or any other modeling techni‐
que that fits the consumer use case. The final layer of data transformations and data
quality rules are applied here, resulting in high-quality, reliable data that can serve as
the “single source of truth” in the organization.

The Gold layer continuously delivers high quality, clean data to the downstream users
and applications. The data model in the gold layer often includes many different per‐
spectives, or views of the data, depending on the consumption use cases.

The Gold layer will implement several Delta Lake optimization techniques, such as
partitioning, data skipping and z-ordering to ensure that we deliver quality data in a
performant way.

The Delta Ecosystem
As we mentioned earlier, Delta Lake enables us to build data lakehouse architectures,
which enables both data warehousing and machine learning/AI applications to be
hosted directly on a data lake. Today, Delta Lake is the most widely used data lake‐
house format used by over 7,000 organizations, processing exabytes of data per day.

However, data warehouses and machine learning applications are not the only appli‐
cation target of Delta Lake. Beyond its core transactional ACID supports which
brings reliability to data lakes, Delta Lake enables us to seamlessly ingest and con‐
sume both streaming and batch data with one solution architecture.

Another important component of Delta Lake is Delta Sharing, which enables compa‐
nies to share data sets with each other in a secure manner.

Delta Lake 2.0 now also supports standalone readers and writers, enabling any client
(Python, Ruby or Rust) to write data directly to Delta Lake without requiring any big
data engine such as Spark or Flink.

Data Lake ships with an extended set of open-source connectors, including Presto,
Flink and Trino.
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The Delta Lake storage layer is now used extensively on many different platforms,
include Azure Data Lake Storage Gen 2, Amazon s3 and Google’s Cloud Storage. All
components of Delta Lake 2.0 have been open sourced by Databricks.

The success of Delta Lake and data lakehouses has spawned a completely new ecosys‐
tem, build around the Delta technology. This ecosystem is made up of a variety of
individual components including Delta Lake Storage, Delta Sharing, and Delta Con‐
nectors.

Delta lake storage
Delta lake storage is an open-source storage layer that runs on top of cloud-based data
lakes. It adds transactional capabilities to data lake files and tables, thereby bringing
data warehouse-like features to a standard data lake. Delta lake storage is the core
component of the ecosystem because all other components depend on this layer.

Delta Sharing
Data sharing is a very common use case in the business world. For example, for pre‐
ventative maintenance and diagnostic purposes, a mining company might want to
securely share IoT information from their massive mining truck engines with the
manufacturer. A thermostat manufacturer might want to securely share HVAC data
with a public utility to optimize the power grid load on high-usage days. However, in
the past, implementing a secure, reliable data sharing solution was very challenging,
and required expensive, custom development.

Delta Sharing is an open-source protocol for securely sharing large datasets of Delta
Lake data. It allows a user to securely share data stored in S3, ADLS or GCS. With
Delta Sharing users can directly connect to the shared data, using their favorite tool‐
sets like Spark, Rust, Power BI, without having to deploy any additional components.
Notice that the data can be shared across cloud providers, without any custom devel‐
opment.

Delta sharing enables use cases such as:

• Data stored in Azure ADLS can be processed by a Spark Engine on AWS.
• Data stored in AWS S3 can be processed by Rust on GCP.

Please refer to Chapter X of this book for a detailed discussion of Delta Sharing.

Delta Connectors
The main goal of Delta Connectors was to bring Delta Lake to other big data engines
outside of Apache Spark.
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6 You can go to the Delta Connectors Github page if you are interested in directly contributing to the fast-
growing Delta Connectors ecosystem.

Delta connectors are open-source connectors that directly connect to Delta Lake. The
framework includes Delta Standalone which is a Java native library which allows
direct reading and writing the Delta Lake tables without requiring an Apache Spark
cluster. Consuming Applications can use Delta Standalone to directly connect to
Delta files written by their big data infrastructure. This eliminates the need for data
duplication into another format before it can be consumed.

Other native libraries are available for:

• Hive. The Hive Connector reads Delta tables directly from Apache Hive.
• Flink. The Flink/Delta Connector reads and writes Delta tables from Apache

Flink application. The connector includes a sink for writing to Delta tables from
Apache Flink, and a source for reading Delta tables using Flink.

• Sql-delta-import. This connector allows for importing data from a JDBC data
source directly into a Delta table.

• Power BI. The Power BI connector is a custom Power Query function which
allows Power BI to read a Delta table from any file-based data source supported
by Microsoft Power BI.

Delta connectors is a fast-growing ecosystem, with more connectors becoming avail‐
able on a regular basis. The integrations page on the Delta Lake home page describes
the currently available integrations.6
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CHAPTER 2

Getting Started with Delta Lake

A Note for Early Release Readers
With Early Release ebooks, you get books in their earliest form—the author’s raw and
unedited content as they write—so you can take advantage of these technologies long
before the official release of these titles.

This will be the 2nd chapter of the final book. Please note that the GitHub repo will be
made active later on.

If you have comments about how we might improve the content and/or examples in
this book, or if you notice missing material within this chapter, please reach out to the
editor at gobrien@oreilly.com.

In the previous chapter, we introduced Delta Lake, and saw how it adds transactional
guarantees, DML support, auditing, a unified streaming and batch model, schema
enforcement and a scalable metadata model to traditional data lakes.

In this chapter, we will go hands-on with Delta Lake. We will first set up Delta Lake
on a local machine with Spark installed. We will run Delta Lake samples in two inter‐
active shells:

1. First, we will run the PySpark interactive shell with the Delta Lake packages. This
will allow us to type in and run a simple two-line Python program that creates a
Delta file.

2. Next, we will run a similar program with the Spark Scala shell. Although we do
not cover theScala language extensively in this book, we want to demonstrate that
both the Spark Shell and Scala are options with Delta Lake.
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Next, we will create a helloDeltaLake starter program in Python inside our favorite
editor and run the program interactively in the PySpark shell. The environment we
set up in this chapter and the helloDeltaLake program will be the basis for most
other programs we create in this book.

Once our environment is up and running, we are ready to take a deeper look at the
Delta file format. Since Delta Lake uses Parquet as the underlying storage medium,
we first take a more detailed look at the Parquet format. Since partitions and partition
files play an important role when we study the transaction log later, we will study the
mechanism of both automatic and manual partitioning.

Next, we move on to Delta files and investigate how a Delta file adds a transaction log
in the _delta_log directory.

The remainder of this chapter is dedicated to the transaction log. We will create and
run several Python programs to investigate the details of transaction log entries, what
kind of actions are recorded and what Parquet part files are written when and how
they relate to the transaction log entries. We will look at more complex update exam‐
ples and their impact on the transaction log. Finally, we will introduce the concept of
checkpoint files and how they help Delta Lake to implement a scalable metadata sys‐
tem.

Getting a standard Spark Image
Setting up Spark on a local machine can be daunting. You have to adjust many differ‐
ent settings, update packages, and so on. Therefore, I chose to use a Docker container.
If you do not have Docker installed, you can download it free from their website1.
The specific container that I used was the standard Apache Spark image2. To down‐
load the image, you can use the following command:

docker pull apache/spark

Once you have pulled down the image, you can start the container with the following
command:

docker run -it apache/spark /bin/sh

The spark installation is in the /opt/spark directory. You can find pyspark, spark-sql
and all other tools in its /opt/spark/bin directory.
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3 https://github.com/benniehaelen/delta-lake-up-and-running
4 https://pypi.org/project/delta-spark/2.1.0/

I have included several instructions on how to work with the container in the readme
of the book’s GitHub 3repository.

Using Delta Lake with PySpark
As we mentioned before, Delta Lake runs on top of your existing storage and is fully
compatible with the existing Apache Spark APIs. This means that it is easy to get
started with Delta Lake if you already have Spark installed or use a container as speci‐
fied in the previous section.

With Spark in place, you can install the delta-spark 2.1.0 package. You can find the
delta-spark package in its pyspark directory.4

Enter the following command in a command shell:

pip-install delta-spark

Once you have delta-spark installed, you can run the python shell interactively like
this:

pyspark --packages io.delta:delta-core_2.12:2.1.0 --conf "spark.sql.exten-
sions=io.delta.sql.DeltaSparkSessionExtension" --conf "spark.sql.catalog.spark_cata-
log=org.apache.spark.sql.delta.catalog.DeltaCatalog"

This will give you a PySpark shell from which you can interactively run commands:

Welcome to
      ____              __
     / __/__  ___ _____/ /__
    _\ \/ _ \/ _ `/ __/  '_/
   /__ / .__/\_,_/_/ /_/\_\   version 3.2.2
      /_/
Using Python version 3.9.13 (tags/v3.9.13:6de2ca5, May 17 2022 16:36:42)
Spark context Web UI available at http://host.docker.internal:4040
Spark context available as 'sc' (master = local[*], app id = local-1665944381326).
SparkSession available as 'spark'.

Inside the shell, you can now run interactive PySpark commands. I always do a quick
test by creating a range() with Spark, resulting in a DataFrame that I can then save in
Delta Lake format (more details in the second section of this chapter).

The full code is provided below:

data = spark.range(0, 10)
data.write.format("delta").mode("overwrite").save("/book/testShell")
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Below is a full run:

>>> data = spark.range(0, 10)
>>> data.write.format("delta").mode("overwrite").save("/book/testShell")
>>>

Here we see the statement to create the range(), followed by the write statement. We
see that the Spark Executors do indeed run. When we open up the output directory,
we can indeed find the generated Delta file as shown in figure x.x (again, more details
on the Delta Lake format in the next section).

Figure 2-1. Delta File generated from the Python Shell

Running Delta Lake in the Spark Scala shell
We can also run Delta Lake in the interactive Spark Scala shell. As specified in the
Delta Lake Quickstart, we can start the Scala shell with the Delta Lake packages as
follows:

spark-shell --packages io.delta:delta-core_2.12:2.1.0 --conf "spark.sql.exten-
sions=io.delta.sql.DeltaSparkSessionExtension" --conf "spark.sql.catalog.spark_cata-
log=org.apache.spark.sql.delta.catalog.DeltaCatalog"
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This will start up the interactive Scala shell:

Spark context Web UI available at http://host.docker.internal:4040
Spark context available as 'sc' (master = local[*], app id = local-1665950762666).
Spark session available as 'spark'.
Welcome to
      ____              __
     / __/__  ___ _____/ /__
    _\ \/ _ \/ _ `/ __/  '_/
   /___/ .__/\_,_/_/ /_/\_\   version 3.2.2
      /_/
Using Scala version 2.12.15 (Java HotSpot(TM) 64-Bit Server VM, Java 1.8.0_311)
Type in expressions to have them evaluated.
Type :help for more information.
scala>

Inside the shell, you can now run interactive Scala commands. Let’s do a similar test
on Scale as we did for the PySpark shell:

The full code is provided below:

val data = spark.range(0, 10)
data.write.format("delta").mode("overwrite").save("/book/testShell")

Below is a full run:

Scala> val data = spark.range(0, 10)
data: org.apache.spark.sql.Dataset[Long] = [id: bigint]
scala> data.write.format("delta").mode("overwrite").save("/book/testShell")

And, again when we check our output, we can find the generated Delta Lake table/
data.

Running Delta Lake on Databricks
If you do not want to run Spark and Delta Lake on your local machine, you also have
the option of running Delta Lake on Databricks on a cloud platform, like Azure,
AWS, or Google cloud. These environments make it easy to get started with Delta
Lake, since their installed runtimes already have a version of Delta Lake installed.

The additional benefit of the cloud is that you can create real Spark clusters, anything
from a 4 node and 12 cores per node configuration with thousands of cores spanning
hundreds of nodes to process terabytes or petabytes of data.

When using Databricks in the cloud, you have two options. You can either use their
popular notebooks or connect your favorite development environment to a cloud-
based Databricks cluster with dbx5. Dbx by Databricks labs is an open source tool that
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allows you to connect to a Databricks cluster from an editing environment such as
Visual Studio Code.

If you are not ready to sign up for a full-fledged cloud account, you can leverage the
Databricks Community Edition6. The Databricks Community Edition is the free ver‐
sion of the Databricks cloud-hosted big data platform. Users can access a cluster with
a complete notebook environment and an up-to-date runtime with Delta Lake
installed on this platform.

Creating and Running a Spark Program: helloDeltaLake
Once we have the delta-spark packages installed creating your first PySpark program
is very straightforward.

Follow these steps to create the PySpark program:

1. Create a new file (I named mine helloDeltaLake.py)
2. Add the necessary imports. At a minimum you need to import PySpark and

Delta Lake:
import pyspark
from delta import *

3. Next, create a SparkSession builder which loads up the Delta Lake extensions, as
follows:

# Create a builder with the Delta extensions
builder = pyspark.sql.SparkSession.builder.appName("MyApp")       \
  .config("spark.sql.extensions",                                 \
                "io.delta.sql.DeltaSparkSessionExtension")        \
  .config("spark.sql.catalog.spark_catalog",                      \
                "org.apache.spark.sql.delta.catalog.DeltaCatalog")

4. Next, we can create our SparkSession object itself. We will create the SparkSes‐
sion object, and print out its version to ensure that the object is valid:

# Create a Spark instance with the builder
# As a result, we now can read and write Delta files
spark = configure_spark_with_delta_pip(builder).getOrCreate()
print(f"Hello, Spark version: {spark.version}")

5. To verify that our Delta Lake extensions are working correctly, we create a range
and write it out in Delta Lake format:

# Create a range, and save it in Delta Lake format to ensure
# that our Delta Lake extensions are indeed working
df = spark.range(0, 10)
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df.write                                 \
  .format("delta")                       \
  .mode("overwrite")                     \
  .save("/book/chapter02/helloDeltaLake")

That completes the code for our starter program. You can find the full code file in
the /chapter02/helloDeltaLake.py location of the book’s code repository. This code is
a good place to start if you want to write your own code.

Running helloDeltaLake
To run our program, we can simply start a command prompt on Windows, or a ter‐
minal on MacOS, and navigate to the folder with our code.

We simply start pyspark with our program as input, as shown below:

pyspark < helloDeltaLake.py

When we run the program, we get our Spark version output:

Hello, Spark version: 3.2.2

And when we look at our output, we can see that we have written a valid Delta file.
The details of the Delta Lake format are covered in the next section.

At this point, we have PySpark and Delta Lake installed successfully, and we were
able to code and run a full-fledged pySpark program with Delta Lake extension.

I will be using the above approach to write and run most of the programs in this
book. If I deviate from this standard approach, I will explicitly call it out in the book.

Now that we can run our own programs, we are ready to explore the Delta Lake for‐
mat in detail in the next section.

The Delta Lake Format
In this section we will dive deeper into the Delta Lake format. When we save a file
using the Delta Lake format, we are just writing a standard Parquet file with addi‐
tional metadata.

Since Delta Lake writes out data as a Parquet file, we will take a more in-depth look at
Parquet files. We first write out a simple Parquet file and take a detailed look at the
artifacts written by Spark. This will give us a good understanding of files, which we
will leverage throughout this book.

Next, we will write out a file in Delta Lake format, noticing how it triggers the cre‐
ation of the _delta_log directory, containing the transaction log. We will take a
detailed look at this transaction log and how it is used to generate a single source of
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truth. We will see how the transaction log implements the ACID atomicity property
mentioned in chapter 1.

We will see how Delta Lake breaks down a transaction into individual, atomic com‐
mit actions, and how it records these actions in the transaction log as ordered, atomic
units.

Finally, we will look at several use cases and investigate what Parquet part files and
transaction log entries are written, and what is stored in these entries.

Since a transaction log entry is written for every transaction, we might end up with
multiple small files. To ensure that this approach remains scalable, Delta Lake will
create a checkpoint file every 10 transactions with the full transactional state. This
way, a Delta Lake reader can simply process the checkpoint file, and the few transac‐
tion entries written afterwards. This results in a fast, scalable metadata system.

Parquet Files
The Apache Parquet file format has been one of the most popular big data formats for
the last 20 years. Unlike row-based formats such as CSV or Avro, Parquet is column-
oriented, meaning that the values of each table are stored next to each other, rather
than in each record. Second, Parquet is open source, so it is free to use under the
Apache Hadoop license and is compatible with most Hadoop data processing frame‐
works. Parquet is self-describing. In addition to the actual data, it contains metadata,
including the schema and structure of the file.

Parquet files perform compression on a column-by-column basis and are built to
support flexible compression options and extendable encoding schemas for each data
type. For example, a different encoding can be used for compressing integer versus
string data.

Writing a Parquet File
In the book repository, the /chapter02/writeParquetFile Python program creates a
Spark DataFrame in memory, and writes it in Parquet format to the /parquetData
folder using the standard PySpark API:

data = spark.range(0, 100)
data.write.format("parquet")     \
           .mode("overwrite")    \
           .save('/book/chapter02/parquetData')

When we look at what is written to disk in this case, we see the following:

 Directory of C:\book\chapter02\parquetData
10/17/2022  09:05 AM    <DIR>          .
10/17/2022  09:05 AM    <DIR>          ..
10/17/2022  09:05 AM                12 .part-00000-a3885270-f443-40dc-

40 | Chapter 2: Getting Started with Delta Lake



bdf9-8ee9946cbb79-c000.snappy.parquet.crc
10/17/2022  09:05 AM                16 .part-00001-a3885270-f443-40dc-
bdf9-8ee9946cbb79-c000.snappy.parquet.crc
10/17/2022  09:05 AM                16 .part-00002-a3885270-f443-40dc-
bdf9-8ee9946cbb79-c000.snappy.parquet.crc
10/17/2022  09:05 AM                16 .part-00003-a3885270-f443-40dc-
bdf9-8ee9946cbb79-c000.snappy.parquet.crc
10/17/2022  09:05 AM                16 .part-00004-a3885270-f443-40dc-
bdf9-8ee9946cbb79-c000.snappy.parquet.crc
10/17/2022  09:05 AM                16 .part-00005-a3885270-f443-40dc-
bdf9-8ee9946cbb79-c000.snappy.parquet.crc
10/17/2022  09:05 AM                16 .part-00006-a3885270-f443-40dc-
bdf9-8ee9946cbb79-c000.snappy.parquet.crc
10/17/2022  09:05 AM                16 .part-00007-a3885270-f443-40dc-
bdf9-8ee9946cbb79-c000.snappy.parquet.crc
10/17/2022  09:05 AM                16 .part-00008-a3885270-f443-40dc-
bdf9-8ee9946cbb79-c000.snappy.parquet.crc
10/17/2022  09:05 AM                16 .part-00009-a3885270-f443-40dc-
bdf9-8ee9946cbb79-c000.snappy.parquet.crc
10/17/2022  09:05 AM                16 .part-00010-a3885270-f443-40dc-
bdf9-8ee9946cbb79-c000.snappy.parquet.crc
10/17/2022  09:05 AM                16 .part-00011-a3885270-f443-40dc-
bdf9-8ee9946cbb79-c000.snappy.parquet.crc
10/17/2022  09:05 AM                 8 ._SUCCESS.crc
10/17/2022  09:05 AM               511 part-00000-a3885270-f443-40dc-
bdf9-8ee9946cbb79-c000.snappy.parquet
10/17/2022  09:05 AM               513 part-00001-a3885270-f443-40dc-
bdf9-8ee9946cbb79-c000.snappy.parquet
10/17/2022  09:05 AM               517 part-00002-a3885270-f443-40dc-
bdf9-8ee9946cbb79-c000.snappy.parquet
10/17/2022  09:05 AM               513 part-00003-a3885270-f443-40dc-
bdf9-8ee9946cbb79-c000.snappy.parquet
10/17/2022  09:05 AM               513 part-00004-a3885270-f443-40dc-
bdf9-8ee9946cbb79-c000.snappy.parquet
10/17/2022  09:05 AM               517 part-00005-a3885270-f443-40dc-
bdf9-8ee9946cbb79-c000.snappy.parquet
10/17/2022  09:05 AM               513 part-00006-a3885270-f443-40dc-
bdf9-8ee9946cbb79-c000.snappy.parquet
10/17/2022  09:05 AM               513 part-00007-a3885270-f443-40dc-
bdf9-8ee9946cbb79-c000.snappy.parquet
10/17/2022  09:05 AM               517 part-00008-a3885270-f443-40dc-
bdf9-8ee9946cbb79-c000.snappy.parquet
10/17/2022  09:05 AM               513 part-00009-a3885270-f443-40dc-
bdf9-8ee9946cbb79-c000.snappy.parquet
10/17/2022  09:05 AM               513 part-00010-a3885270-f443-40dc-
bdf9-8ee9946cbb79-c000.snappy.parquet
10/17/2022  09:05 AM               517 part-00011-a3885270-f443-40dc-
bdf9-8ee9946cbb79-c000.snappy.parquet
10/17/2022  09:05 AM                 0 _SUCCESS
              26 File(s)          6,366 bytes
               2 Dir(s)  767,409,405,952 bytes free
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A developer new to the big data world might be a bit shocked at this point. We only
did a single write of 100 numbers, so how did we end up with 12 files? A bit of elabo‐
ration might be in order.

First, the file name you specify in the write is really the name of a directory, not really
a file. As we can see the directory /parquetData is a directory containing 12 files.

When we look at the .parquet files, we see that we have 12 files. Spark is a highly par‐
allel computational environment, where the system is attempting to keep each CPU
core in your Spark cluster busy. In my case, I am running on my local machine, which
means there is one machine in my cluster. When I look at the information for my
system, I see that I have 12 cores.

When we look at the number of .parquet files that were written, we see that we have
12 files, which is equal to the number of cores on my cluster. And indeed, that is
Spark’s default behavior in this scenario. The number of files will be equal to the
number of available cores. If we add the following statement to our code:

data = spark.range(0, 100)
data.write.format("parquet")     \
           .mode("overwrite")    \
           .save('/book/chapter02/parquetData')
print(f"The number of files is: {data.rdd.getNumPartitions()}")

We can see in our output that we indeed have 12 files:

The number of files is: 12

While this might look like overkill for this scenario where we are only writing 100
numbers, one can imagine a scenario where we are reading or writing very large data‐
sets consisting of many files. Having the ability to split large datasets that can be pro‐
cessed in parallel can dramatically increase performance.

Writing a Delta File
So far, we have been working with Parquet files only. Now, let’s take the first example
from the previous section and save it in Delta Lake format instead of Parquet (code: /
chapter02/writeDeltaFile.py) All we need to do is replace the parquet format with
delta, as is shown in the code:

data = spark.range(0, 100)
data.write                \
    .format("delta")      \
     .mode("overwrite")   \
     .save('/book/chapter02/deltaData')
print(f"The number of files is: {data.rdd.getNumPartitions()}")

We get the same number of files:
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The number of files is: 12

And when we look at the output, we see the addition of the _delta_log file, as shown
below:

 Directory of C:\book\chapter02\deltaData
10/17/2022  09:36 AM    <DIR>          .
10/17/2022  09:36 AM    <DIR>          ..
10/17/2022  09:36 AM                16 .part-00000-a707e0b9-
b984-4642-976c-528a71a0b060-c000.snappy.parquet.crc
10/17/2022  09:36 AM                16 .part-00001-1f8ad5e6-836d-4ab7-a2f6-
dd73d22fb37b-c000.snappy.parquet.crc
10/17/2022  09:36 AM                16 .part-00002-
fd9f62af-024f-4097-9b1b-68e50858a871-c000.snappy.parquet.crc
10/17/2022  09:36 AM                16 .part-00003-23f8466e-a624-4987-
b786-5c8c1dd7d756-c000.snappy.parquet.crc
10/17/2022  09:36 AM                16 .part-00004-d4927a28-fa66-447b-
b9f9-067f951c9e08-c000.snappy.parquet.crc
10/17/2022  09:36 AM                16 .part-00005-fe003624-6ccf-49cc-a780-
bb16a601b2fd-c000.snappy.parquet.crc
10/17/2022  09:36 AM                16 .part-00006-
ee7f03c3-32a7-4c35-84d1-75d99ed658a8-c000.snappy.parquet.crc
10/17/2022  09:36 AM                16 .part-00007-32c9c8e1-e0a5-485e-baac-
f9d7a323c046-c000.snappy.parquet.crc
10/17/2022  09:36 AM                16 .part-00008-0f06006a-dea6-46d9-ba1f-
b5ba05c74ff7-c000.snappy.parquet.crc
10/17/2022  09:36 AM                16 .part-00009-9f1fbe69-d9ba-4adc-a846-
f2b5687c504e-c000.snappy.parquet.crc
10/17/2022  09:36 AM                
16 .part-00010-19b88404-209e-422b-94aa-42e10c17bef0-c000.snappy.parquet.crc
10/17/2022  09:36 AM                
16 .part-00011-0a84e9db-50bd-4eff-8b47-06be16983ad4-c000.snappy.parquet.crc
10/17/2022  09:36 AM               524 part-00000-a707e0b9-
b984-4642-976c-528a71a0b060-c000.snappy.parquet
10/17/2022  09:36 AM               519 part-00001-1f8ad5e6-836d-4ab7-a2f6-
dd73d22fb37b-c000.snappy.parquet
10/17/2022  09:36 AM               523 part-00002-
fd9f62af-024f-4097-9b1b-68e50858a871-c000.snappy.parquet
10/17/2022  09:36 AM               519 part-00003-23f8466e-a624-4987-
b786-5c8c1dd7d756-c000.snappy.parquet
10/17/2022  09:36 AM               519 part-00004-d4927a28-fa66-447b-
b9f9-067f951c9e08-c000.snappy.parquet
10/17/2022  09:36 AM               522 part-00005-fe003624-6ccf-49cc-a780-
bb16a601b2fd-c000.snappy.parquet
10/17/2022  09:36 AM               519 part-00006-
ee7f03c3-32a7-4c35-84d1-75d99ed658a8-c000.snappy.parquet
10/17/2022  09:36 AM               519 part-00007-32c9c8e1-e0a5-485e-baac-
f9d7a323c046-c000.snappy.parquet
10/17/2022  09:36 AM               523 part-00008-0f06006a-dea6-46d9-ba1f-
b5ba05c74ff7-c000.snappy.parquet
10/17/2022  09:36 AM               519 part-00009-9f1fbe69-d9ba-4adc-a846-
f2b5687c504e-c000.snappy.parquet
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10/17/2022  09:36 AM               519 
part-00010-19b88404-209e-422b-94aa-42e10c17bef0-c000.snappy.parquet
10/17/2022  09:36 AM               523 
part-00011-0a84e9db-50bd-4eff-8b47-06be16983ad4-c000.snappy.parquet
10/17/2022  09:36 AM    <DIR>          _delta_log
              24 File(s)          6,440 bytes

The _delta_log file contains the transaction log with every single operation per‐
formed on our data.

The Delta Lake Transaction Log
The Delta Lake transaction log (also known as DeltaLog), is a sequential record of
every transaction performed on a Delta Lake file since its creation. It is central to the
Delta Lake functionality because it is at the core of many of its important features,
including ACID transactions, scalable metadata handling, and time travel.

The main goal of the transaction log is to enable multiple readers and writers to oper‐
ate on a given version of a dataset simultaneously, and provide additional informa‐
tion, like data skipping indexes, to the execution engine for more performant
operations. The Delta Lake transaction log always shows the user a consistent view of
the data and serves as a single source of truth. It is the central repository that tracks all
changes the user makes to a Delta Lake dataset.

When a Delta Lake reader reads a Delta Lake dataset for the first time or runs a new
query on an open file that has been modified since the last time it was read, Spark
looks at the transaction log to get the latest version of the table. This ensures that a
user’s version of a file is always synchronized with the master record as of the most
recent query and that users cannot make divergent, conflicting changes to a file.

How the Transaction Log Implements Atomicity
In chapter 1, we learned atomicity guarantees that all operations (albeit an INSERT,
UPDATE, DELETE or MERGE) performed on your file will either succeed as a whole
or not succeed at all. Without atomicity, any hardware failure or software bug can
cause a data file to be written partially, resulting in corrupted or at a minimum invalid
data.

The Delta Lake transaction log is the mechanism through which Delta Lake can offer
the atomicity guarantee. The transaction log is also responsible for metadata, time
travel and significantly faster metadata operations for large tabular datasets.

The transaction log is an ordered record of every transaction made against a Delta
table since it was created. It acts as a single source of truth and tracks all changes
made to the table. The transaction log allows users to reason about their data and
trust its completeness and quality level.
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The simple rule is if an operation is not recorded in the transaction log, it never hap‐
pened.

In the next sections, we will illustrate these principles with several examples.

Breaking down Transactions into Atomic Commits
Whenever we perform a set of operations to modify a table or storage file (such as
INSERTs, UPDATEs, DELETEs or MERGEs), Delta Lake will break down that opera‐
tion into a series of atomic, discrete steps composed of one or more of the actions
shown in table X-X.

Table 2-1. List of possible actions in a transaction log entry

Action Description
Add file Adds a file
Remove file Removes a file
Update Metadata Updates the table’s metadata (e.g., changing the table or file’s name, schema, or partitioning). The first

transaction log entry for a table or file will always contain an Update Metadata action with the schema,
the partition columns and other information.

Set transaction Records that a structured streaming job has committed a micro-batch with the given stream ID. For more
information, see Chapter X: Streaming

Change Protocol Enables new features by switching the Delta Lake transaction log to the newest software protocol.
Commit Info Contains information about the commit, which operation was made, from where, and at what time. Every

transaction log entry will contain a Commit Info action.

These actions are recorded in the transaction log entries (*.json) as ordered, atomic
units known as commits. This is similar to how the git source control system tracks
changes as atomic commits. This also implies that you can re-play each of the com‐
mits in the transaction log to get to the current state of the file.

For example, if a user creates a transaction to add a new column to a table and then
adds data to it, Delta Lake would break this transaction down into its component
action parts, and once the transaction completes, add them to the transaction log as
the following commits:

1. Update metadata – change the schema to include the new column.
2. Add file – for each new file added

The Transaction Log at the File Level
When we write a Delta file, that file’s transaction log is automatically created in the
_delta_log subdirectory. As we continue to make changes to the Delta file, these
changes will be automatically recorded as ordered, atomic commits in the transaction
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log. Each commit is written as a JSON file, starting with 0000000000000000000.json.
If we make additional changes to the file, Delta Lake will generate additional JSON
files in ascending numerical order, so the next commit is written as
0000000000000000001.json, the following one as 0000000000000000002.json and
so on.

In the remainder of this chapter, we will use an abbreviated form for the transaction
log entries for readability purposes. Instead of showing up to 19 digits, we will use an
abbreviated form with up to 5 digits (so, we will use 00001.json instead of the longer
notation).

Additionally, we will be shortening the name of the parquet files. These names typi‐
cally look as follows:

part-00007-71c70d7f-c7a8-4a8c-8c29-57300cfd929b-c000.snappy.parquet

We will abbreviate a name like this to part-00007.parquet, leaving off the GUID and
the snappy.parquet portion.

In our example visualizations, we will visualize each transaction entry with the action
name and the part file name affected, for example, in figure X.X, where we have a
Remove (file) action, and another Add (file) action in a single transaction file.

Figure 2-2. Notation for a transaction log entry

Write Multiple Writes to the Same File
Throughout this section, we will use a set of figures that describe each code step in
detail. For each step, we show the following information:

• The actual code snippet is shown in the second column.
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• Next to the code snippet we show the parquet part files written as a result of the
code snippet execution.

• In the last column we show the transaction log entry’s JSON files. We show the
action and the affected parquet part file name for each transaction log entry.

For this first example we will use chapter02/MultipleWriteOperations.py from the
book’s repo to show multiple writes to the same file.

Figure 2-3. Multiple writes to the same file

A step-by-step description of the different steps in figure x.x is shown below:

1. First, a new Delta Lake table is written to our path. One Parquet file was written
to the output path (part-00000.parquet). The first transaction log entry
(00000.json) has been created in the _delta_log directory. Since this is the first
transaction log entry for the file, a metadata action is recorded, together with an
add file action, indicating a single partition file was added.

2. Next we add data to the table. You can see a new parquet file
(part-00001.parquet) has been written, and you created an additional entry
(00001.json) in the transaction log. Like the first step, the entry contains an add
file action, because you added a new file.

3. We add more data. Again, a new part file is written (part-00002.parquet), and a
new transaction log file (00002.json ) is added to the transaction log with an add
file action.
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Note that each transaction log entry will also have a commitInfo action, which con‐
tains the audit information for the transaction. We omitted the commitInfo log entries
on the figures for readability purposes.

The sequence of operations for writes is very important. For each write operation, the
part file is always written first, and only when that operation succeeds a transaction
log file is added to the _delta_log folder. The transaction is only considered complete
when the transaction log entry is written successfully.

Reading a Delta File
When the system reads a Delta Lake table, it will iterate through the transaction log
to “compile” the current state of the table. The sequence of events when reading a file
is as follows:

1. The transaction log files are read first.
2. The part files are read based on the log files.

Next, we will describe that sequence for the file written by the previous example
(multipleWriteOperations.py). Delta Lake will read all our log files (00000.json,
00001.json and 00002.json), then it will read the three part files based upon the log
information, as shown in figure x.x

Figure 2-4. Read Operations
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Note that the sequence of operations also implies that there could be part files that are
no longer referenced in the transaction log. Indeed, this is a common occurrence in
UPDATE or DELETE scenarios. Delta Lake does not delete these part files since they
might be required again if the user uses the Time Travel feature of Delta Lake (cov‐
ered in Chapter X). You can remove old, obsolete part files with the VACUUM com‐
mand.

Failure scenario with a write operation
Next, let’s see what happens if a write operation fails. In the previous write scenario,
let’s assume the write operation in step 3 fails halfway through. Part of the Parquet file
might have been written, but the transaction log entry 00002.json was not. We would
have a scenario as shown in figure X.X.

Figure 2-5. Failure during the last write operation.

As you can see in figure X.X, the last transaction file is missing. According to the read
sequence specified earlier, Delta Lake will read the first and second JSON transactions
file, and its corresponding part-00000 and part-00001 parquet files. The Delta Lake
reader will not read inconsistent data; it will read a consistent view through the first
two transaction log files.

Update Scenario
The last scenario is contained in the chapter02/UpdateOperation.py code repo. To
keep things simple, we have a small Delta Lake table with patient information. We are
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only tracking the patientId and the name of each patient. In this use case, we first
create a Delta Lake table/dataset with four patients, two in each file. Next, we add data
with two more patients. Finally, we update the name of our first patient. As we will
see, this update has a bigger impact than we first expect. The full update scenario is
shown in figure x.x.

Figure 2-6. Updates and the transaction log

In this example, we execute the following steps:

1. The first code snippet creates a Spark DataFrame, with the patientId and name
of four patients. We write the DataFrame to a Delta Lake table, forcing the data
into two files with the .coalesce(2). As a result, we write two files. Once the
part-00000.parquet and part-00001.parquet files are written, a transaction log
entry is created (00000.json). Notice that the transaction log entry contains two
add file actions indicating the part-00000.parquet and the part-000001.parquet
files were added.

2. The next code snippet adds the data for two more patients (P5 and P6). This
results in the creation of the part-00002.parquet file. Again, once the file is writ‐
ten, the transaction log entry is written (00001.json), and the transaction is com‐
plete. Again, the transaction log file has one add file action, indicating that a file
(part-2.parquet) was added.

3. The code performs an update. In this case, we want to update the patient’s name
with patientId 1 from P1 to P11. Currently, the record for patientId 1 is present
in part-0. To perform an update, part-0 is read, and any record matching the
patientId of 1 is updated from P1 to P11 and then written out to a new file, which
in this case is part-3. Delta Lake writes the transaction log entry (00002.json).
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Notice that it writes a Remove File action, saying that the part-0 file is removed,
and an Add File action, saying that the part-3 file has been added. This is because
the data from part-0 was rewritten into part-3, and all modified rows (along with
the unmodified rows) have been added to part-3, rendering the part-0 file obso‐
lete.
Notice that the part-0 file is not deleted by Delta Lake, since a user might want to
go back in time with Time Travel (see Chapter X), in which case the file is
required. The VACUUM command can clean up unused files like this (see Chap‐
ter X: Time Travel).

Now that we have seen how the data is written during an update, let’s look at how a
read would determine what to read, as is shown in figure X.X.

Figure 2-7. Reading after an update

The read would proceed as follows:

1. The first transaction log entry is read (00000.json). This entry tells Delta Lake to
include the part-0 and part-1 files.

2. The next entry (00001.json) is read, which tells Delta Lake to include the part-2
file.
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3. The last entry (00002.json) is read, which informs the reader to remove the
part-0 file and include part-3.

As a result, the reader ends up reading part-1, part-2 and part-3, resulting in the
correct data shown in figure x.x.

Scaling Massive Metadata
Checkpoint files
Now that we have seen how the transaction log records each operation, it is conceiva‐
ble we can have many very large files with thousands of transaction log entries for a
single Parquet file. How does Delta Lake scale its metadata handling without needing
to read thousands of small files, which would negatively impact Spark’s reading per‐
formance? Spark tends to be most effective when reading larger files, so how do we
resolve this?

Once the Delta Lake writer has made the commits to the transaction log, it will save a
checkpoint file in Parquet format in the _delta_log folder. The Delta Lake writer will
continue to generate a new checkpoint every 10 commits.

A checkpoint file saves the entire state of the table at a given point in time. Note that
“state” refers to the different actions, not the file’s actual content. So, it will contain the
add file, remove file, update metadata, commit info etc. actions, with all the context
information. It will save this list in native Parquet format. This will allow Spark to
read the checkpoint quickly. This gives the Spark reader a “shortcut” to fully repro‐
duce a table’s state and avoid reprocessing thousands of small JSON files, which could
be inefficient.

Checkpoint File Example
Following is an example where we do multiple commits, and a checkpoint file is gen‐
erated as a result. This example uses the code file chap02/ TransactionLogCheckPoin‐
tExample.py from the book’s repository.
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This example has the following steps:

1. The first code snippet creates a standard Spark DataFrame with several patients.
Note that we apply a coalesce(1) transaction to the Dataframe, which forces that
data into one single partition. Next, we write the DataFrame in Delta Lake format
to a storage file. We verify that a single part-00001.parquet file was written. We
also see that a single transaction log entry (00000.json) has been created in the
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_delta_log directory. This directory entry contains an add file action for the
part-0001.parquet file.

2. In the next step, we set up a loop over a range(0, 9), which will loop nine times,
creating a new patient tuple, then creating a DataFrame from that tuple, and
writing the DataFrame to our storage file. Since we loop nine times, we create
nine additional parquet files, from part-00001.parquet through
part-00009.parquet. We also see nine additional transaction log entries, from
00001.json through 00009.json.

3. In step 3, we create one more patient tuple, convert it to a DataFrame and write it
to our Delta Lake table. This creates one additional file (part-00010.parquet).
Our transaction log has another commit (00010.json) with the add file action for
our part-0010.parquet file. But the interesting fact is that it also creates a
000010.checkpoint.parquet file. This is the checkpoint that we mentioned ear‐
lier. A checkpoint is generated every 10 commits. This parquet file contains the
entire state of our table at the time of the commit in native Parquet format.

4. In the last step, our code adds data two more times, creating part-00011.parquet
and part-00012.parquet, and two new log entries with add file entries pointing
to these files.

If Delta Lake needs to recreate the state of the table, it will simply read the checkpoint
file (000010.checkpoint.parquet), and the two additional log entries (00011.json and
00012.json).

Displaying the checkpoint file
Now that we have generated out checkpoint.parquet file, let’s have a look at its con‐
tent using the /chapter02/readCheckPointFile.py python file:

# Set our output path for our Delta files
DATALAKE_PATH = "/book/chapter02/transactionLogCheckPointExample"
CHECKPOINT_PATH = "/_delta_log/00000000000000000010.checkpoint.parquet"
# Read the checkpoint.parquet file
checkpoint_df =                                \
  spark                                        \
  .read                                      \
  .format("parquet")                         \
  .load(f"{DATALAKE_PATH}{CHECKPOINT_PATH}")
# Display the checkpoint dataframe
checkpoint_df.show()

Notice how we do a parquet format read here, because the checkpoint file is indeed
stored in Parquet format, not Delta Lake format.

The contents of the checkpoint_df dataframe is shown below:
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+----+--------------------+------+--------------------+--------+
| txn|                 add|remove|            metaData|protocol|
+----+--------------------+------+--------------------+--------+
|null|{part-00000-f7d9f...|  null|                null|    null|
|null|{part-00000-a65e0...|  null|                null|    null|
|null|{part-00000-4c3ea...|  null|                null|    null|
|null|{part-00000-8eb1f...|  null|                null|    null|
|null|{part-00000-2e143...|  null|                null|    null|
|null|{part-00000-d1d13...|  null|                null|    null|
|null|{part-00000-650bf...|  null|                null|    null|
|null|{part-00000-ea06e...|  null|                null|    null|
|null|{part-00000-79258...|  null|                null|    null|
|null|{part-00000-23558...|  null|                null|    null|
|null|                null|  null|                null|  {1, 2}|
|null|                null|  null|{376ce2d6-11b1-46...|    null|
|null|{part-00000-eb29a...|  null|                null|    null|
+----+--------------------+------+--------------------+--------+

As we can see, the checkpoint file contains columns for the different actions (add,
remove, metadata and protocol). We see our add file actions for the different parquet
part files, we also see our update metadata action from when our Delta file was cre‐
ated, and the change protocol action which results from the initial Delta file write.

Note that DataFrame.show() will not show the DataFrame’s record in order. The
change protocol and update metadata records are always the first records in the check‐
point file, followed by the different add-file actions.
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