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Introduction

Long before there was DevOps, there was just software development.
Recently, a major trend in enterprise architecture has been MLOps, following
the now-ubiquitous rise of machine learning, or ML. It's a sign that the practice
of machine learning and data science has arrived in the mainstream enterprise
when many start to ask, “How do we operate these models in production?”
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Machine learning and data science depend on data. The rise of MLOps reopens
long-standing questions of data management and operations, with new urgency.
Thus the latest front in MLops is the feature store.

A feature store manages features, or input data to a machine learning model. At
first glance, it doesn’t seem different from the management of data in general.
After all, databases with tables of data are nothing new. In practice, machine
learning and data science share some needs (reliability, lineage, versioning) with
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applications that consume data and not so much others (transactions).

The emphasis is different. Given the importance of machine learning, its
particular needs (such as requiring data at both training and inference time)
justify a new class of data management tooling.

The problem with features — and the purpose of
feature stores

Machine learning models don't simply consume raw data. The functions of raw
data are what's meaningful for a learning problem. In a model that predicts
customer churn, for example, one might find:

+ Aggregations of raw data over time windows, like trailing 7-day purchases

+ Joined combinations of data sets, like customer demographic information
joined to transaction features

+ Complex functions of customer information, like estimated customer
lifetime value

The process of creating these values from data is feature engineering.

P DiscoOVERY

Those features can be shared and reused in different models, and you can bet
that they will need to be reused. Teams can't reuse what they can’t find, so one
purpose of feature stores is discovery, or surfacing features that have already
been usefully refined from raw data.
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P LINEAGE

Sharing entails dependency, however. Reusing a feature computed for one
purpose means that changes to its computation now affect many consumers.
Feature producers need to understand the downstream lineage of features.
What models and deployments of models depend on it? Likewise, feature
consumers need to understand the upstream lineage of a feature to reliably use
it. How is it computed, and who owns it?

Pl skeEw

The problem of lineage isn't new or specific to machine learning — however, ML
presents a different problem: managing feature transformation logic. Engineering
features means executing logic to transform raw data, but this happens in two
possibly quite different contexts: training the model and applying it to new

data (inference, or scoring). Models may be trained in one environment, like
Databricks, with access to scale-out distributed computing, SQL engines and
secure connectors to offline data sources. They may be deployed, and called,
from another type of environment entirely, like a Java web application using the
model as a service.

Once you've built your model, reproducing the necessary input data and data
transformations logic for inference may be nearly impossible, because model
training and production tech stacks could be entirely different and managed by
different teams. Where it's possible to reproduce the logic, it may be difficult
to keep the two versions of the logic in sync, or the copied logic may yet not
execute fast enough if the model is used for real-time sub-second-latency
inference. If done incorrectly, the best-case scenario is a runtime error; the
worst-case scenario is a silently wrong model continuing to make predictions.
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This problem of online/offline skew, or the difference between the inference

and training environment, is somewhat unique to machine learning, and appears
quickly once teams move to production. Managing input data can have its own
challenges. In a large organization, it can be difficult to guarantee that the source
of data used for batch feature computation is the same upstream source used in
inference at real time. When multiple teams manage feature computation and ML
models in production, minor yet significant skew in upstream data at the input of
a feature pipeline can be very hard to detect and fix.

NOTE: Databricks Feature Store by design solves this data and compute skew
problem! Win!

Instead of aiming to make arbitrary featurization logic portable and fast, which
would be almost impossible in the general case, feature stores typically aim to
make the features portable — that is, the data itself. Hence, feature stores are
data management tools at heart.

The need for a feature store depends on the level of automation required by your
use case and organization. Anyone productionizing machine learning models will
probably encounter the problems a feature store solves. So now you might be
asking, how should one be designed? Are there new data architecture questions
to answer? Versioning? Data access? Performance?

In the following sections, we highlight key questions that arise in designing and
deploying a feature store, and try to offer some answers. They are written with
the Databricks Feature Store in mind, but many ideas and principles apply to any
similar tool.
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What is a feature?

To architect a feature store and its contents, it's important to understand what a
feature is in the feature store paradigm. It's reasonable to picture a feature store
as just a database at heart, with more functionality on top and alongside (see
below). Feature stores have feature tables of rows, with typed columns, storing
feature values.

Although feature stores can accommodate unstructured data, they do adopt
a tabular paradigm for data, as most machine learning models’ direct input is
structured (even if possibly derived from unstructured data).

For example, consider a model predicting customer churn. It relies on
information about customers and benefits from receiving customer-related
features as input.

customer_id tenure est_lifetime_value 7_day_calls
473337 2 901.32 13
480801 6 5828.80 7
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Features are meant to be reused by combining them with other data sets.
To accomplish that, there must be some means of identifying how to join
the features, and so feature tables need a primary key. The values must be
associated with something uniquely identifiable. In the customer example
below left, customer_id would be the natural candidate for a primary key.

Isn't everything a feature?

Should all data related to data science and machine learning be managed in

a feature store? No. A feature store adds value in managing transformed data
suitable for direct use in a machine learning model, not the raw data that is
being transformed. That customer churn prediction model may learn, ultimately,
from raw customer transaction records. However, transactions are not features.
But functions of the transactions may well be — for example, total calls over time.
Features are derived values.

The feature store paradigm may be described as “feature engineer once, reuse
many.” Feature values are computed once, stored, managed and shared. Features
are computed ahead of time, decoupling computation of features from their
usage. Computing potentially expensive features once can save cost and time.


https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

The Comprehensive Guide to Feature Stores

A feature store’s role in an architecture

A feature store manages features, but its task depends on several related

concerns:

Its data needs to be stored somewhere

The features are produced by transformations, which need to be
executed somewhere

The features depend on source data, which need to be accessed
from a data store or stream

Models require the feature values at both training time and inference time
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Databricks and other standard open source tools can handle these.

+ Feature data is stored in a Delta table under the hood (Delta is an open
source project enabling the lakehouse architecture on top of cloud storage)

* Featurization is defined by code and scalable transformations with
Apache Spark™ (i.e., not configuration-driven or using a custom DSL)

« Source data is read with Spark, meaning most anything can be read:
other tables in a data warehouse, CSV files, XML, images, Apache Kafka
streams and so on

« A modeling process based on MLflow (an open source platform for the
MLOps lifecycle) can log models in a “feature aware” way that makes them
capable of looking up features at runtime

As a result, a feature store isn’t necessarily a strange new addition to an
enterprise architecture. The Databricks Feature Store in particular fits naturally
with workflows already leveraging MLflow and Delta.
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In this simplified architecture, elements in red highlight the feature management * The Databricks Feature Store feeds data and feature information to a
roles covered by a feature store. From left to right: modeling process

* Open source modeling libraries are used to build models, possibly on

+ Data is read by Databricks, connecting to standard data formats, stores or .
Spark, and are managed with open source MLflow

streams
* The model is deployed, whether as a batch or streaming job using Spark,

+ Raw data in so-called Bronze tables is ETL'd with open source tools like . o )
or as a REST service (inside Databricks or on Kubernetes, etc.)

Apache Spark
+ This and the resulting Silver tables are managed in the open Delta format In this view, the Databricks Feature Store simplifies what might otherwise be a
standard feature engineering pipeline, feeding a standard model tracking and
deployment process. Adopting it doesn’t entail much change in either of those
approaches, but instead purposefully integrates with them. The Databricks
Feature Store eliminates the need to implement manual tracking and monitoring

« The Databricks Feature Store runs feature engineering transformations built
on Spark — in batch or streaming — on Silver tables, and stores resulting
feature tables in Delta

of feature creation and exploration, and enables out-of-the-box reuse.
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Feature Architecture

Runtime inputs vs precomputed inputs

If a feature store can manage precomputed values that feed a model, then a

good feature store should be able to help models find and load those values
automatically. The Databricks Feature Store does this and makes an explicit design
choice to integrate directly with model tracking and deployment managed by
MLflow. The features that a model needs become an implementation detail of the
model, and not something exposed to the caller. The caller does not, for example,
need to load features on the model’s behalf and hand them to the model. The
caller is not even aware of what features are required.

This affects the model’s input schema, and for the better. Because models are
often treated as services, produced in one context and consumed in another,
it might be better to call this the model’s “AP|,” because that is how it behaves.
The less the caller has to marshal to invoke this model API, the better.

That is, a customer churn model might need many features as input: transaction
totals, demographic information, services used. However, as a service that
predicts whether a customer will churn, it would ideally take just one input: a
customer ID. Why should the caller have to supply more than this?

< databricks
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This helps decouple the model from its caller. If the model controls what features
it needs to look up and add, then it may more easily vary its input features
without requiring updates to all callers. Those callers would otherwise have to
update at the same time that an updated model is deployed if the model needs
new features.

It may also be advantageous to avoid making the caller create and supply
features. Callers deployed “at the edge,” outside of an enterprise architecture,
might otherwise require direct access to raw data in order to compute features.
Reading and sending that data might be slow, costly or insecure.
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Why isn’t everything a feature?

If everything the model needs as inputs were managed as features, then the
input to the model could become just an identifier, with the model looking up
what it needs by that identifier. In this customer churn model, the only thing
needed at inference time would be a customer ID.

Runtime inputs

Unfortunately this isn't usually possible. The model’s prediction may depend
on facts that are only known at runtime, not ahead of time, and thus not
precomputable as a feature. For example, in the context of a customer churn
model, it may be useful to know whether someone who had called customer
service recently escalated the issue to a manager. This can be known and
recorded after the fact, and used to learn from later, but it is not a previously

known fact that can be looked up from the feature store when deciding whether

the customer on the phone right now with a manager is likely to churn.

This is an example of a model input that can’t be managed as a feature for this

model. The caller has to supply it, because it is not known ahead of time. It's
possible that this piece of information becomes a feature in the context of

another model, where the last-known value recorded ahead of time is just fine.

Why couldn’t the support call escalation be recorded quickly as a feature
and looked up? It could, but it's unlikely to be a useful idea. There is latency.
Information can make its way through a streaming architecture to a job that
computes, stores and syncs new feature values only so fast. Even though that
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could happen in seconds, that may not be fast enough in the context of a model
serving real-time requests. Even if it is fast enough, it's probably undesirable

for the architecture to go to the trouble of storing and rereading a fact that the
caller already knows and can supply.

In short, choosing what to store and use as a feature has effects on the “API” of
the resulting models, and in a good way. How models are used will determine
what makes sense to store as a feature.

Labels as features

Should ground truth labels be managed in a feature store? These are not inputs
to a model, but the correct outputs. In that sense, they do not seem to belong in
a feature store, which is primarily concerned with managing model inputs.

They could be managed in a feature table. Some attribute of a customer, for
example, that is to be predicted by one model could conceivably also be an
input to another type of model. Perhaps customer lifetime value is predicted by
one model, and that value is used as input to a churn model. The output from the
first model could be written to a feature table and managed as input to another.

In a situation like this, it's important to not inadvertently use a label or features
derived from the label in a model predicting that label.
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Features for unstructured data

Feature stores adopt a tabular paradigm, where features are organized
into tables with typed columns and even a primary key. How do so-called
unstructured data fit into this seemingly structured design?

Unstructured data isn't really unstructured, it’s just not tabular. This term
typically (and misleadingly) refers to images and text. Of course, machine
learning is known for working wonders on images and text, learning to classify or
even generate novel pictures and articles. They need a place in a tool designed
to support machine learning.

The problem isn't whether unstructured data can be stored; they at least can
be encoded as bytes, and bytes could be stored in a feature store table, like any
database table.

However, unstructured (or simply differently structured) data is “raw” data in
the feature store paradigm, like the individual transactions that might feed that
customer churn model. They're valuable data, but they don’t offer reusable,
derived information.
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Note that models that consume text or images don't really handle them as bytes
anyway. A key step in many deep learning models is to learn an “embedding” of
such data. An embedding is a vector, or list of numbers, that usefully summarizes
the input in some way. It can condense a large, complex text document or video
input, for example, into a compact vector that is more meaningful for learning
tasks and ready to feed into a model. However, an embedding can be expensive
to compute.

Therefore, embeddings of unstructured data are good candidates for features.
For example, a company that maintains the text of a user’s forum posts might
embed the posts and save those embeddings as features, as a useful summary
of the posts. Many machine learning tasks that need to learn about forum posts
could then reuse the embedding.

Architecturally, embeddings are just arrays of floating-point values and can be
stored as such. There is nothing special about this type.
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Handling time dimensions

Features are aggregations over raw data and describe the characteristics or
behavior of an entity that the feature represents. Invariably these feature values
vary over time, and as such, features are inherently time series data. It's easy

to overlook this time dimension when reasoning about a feature store’s design.
Typically, for online model scoring, it's only the latest value of features that
matters, and in order to ensure high accuracy of the model, the online feature
stores are typically kept up to date, with the latest feature values accessible for
model scoring. In some cases, the latest feature values are computed on the fly
from raw data, which may be available in online data sources. However, doing
so may lead to data skew, as previously discussed. For this reason, these latest
feature values are published for the offline feature tables to online stores. That
raises the question: Is it sufficient to store only the latest feature values in offline
feature tables, or should it store all historical time series values for features?

When training a model, using only the latest feature values may lead to
inaccuracies. For example, let’s consider a data scientist training a customer
churn model with the last two years of data from various data sets, such as user
interactions (clicks, purchases, returns) and user communications. If the training
pipeline joins this data with only the latest feature values for each customer, it
would cause the training code to see incorrect data, since the latest features
may already have included the effect of the user interactions in the past. This is
referred to as “"data leakage,” and in order to avoid this, the data scientist needs
to employ techniques to ensure that each training row is joined with that user’s
feature values at the event time for that user interaction. Hence, when designing
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feature tables to store time series features, it is important to record the ‘event
time’ or ‘timestamp’ or express the time dimension in addition to the primary
keys. Let's explore different techniques used to achieve this.

Native technique:
Handling time series using a timestamp column as primary key

When using features from a previous point in time for model scoring or training,
one of the techniques employed is to define a column that encodes the event
time. Feature values would be computed and stored for many points in time, not
just the current latest value. For this, a user can create a table with a timestamp
or date column as part of the table’s primary key. In the customer churn example,
(customer_ID, 'date’) could be used as the primary key, and feature store logic
could produce features per customer per month. At inference time, a date would
have to be passed along with the customer ID, at least, in order for the feature
store to know which feature values to retrieve.

customer_id date tenure est_lifetime_value
date 2021-11-01 2 901.32
tenure 2021-11-01 6 5828.80

est_lifetime_

value 2021-12-01 7 5703.31
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However, it would be inconvenient if time-based keys were treated like other
primary keys and the feature store lookup required an exact match on the time
value. A caller would have to know exactly the time at which the desired features
were computed when presumably the caller just wants the latest value as of
that time. This doesn’t match the simpler case without time-based keys, where
implicitly the latest value is retrieved, no matter when it was computed.

Time series feature tables

For that reason, the Databricks Feature Store supports time series feature tables.

When creating one, you can specify an optional column that represents the

time scale. This is a first-class field of the feature table, called a timestamp key.
Internally, this column will be used along with the primary keys to determine data
uniqueness and for “merge” semantics when adding new features to the table.
However, in the feature lookup workflow, these timestamp keys will be used in
native “as of” joins. Given a time value, the join will match the latest time in the
table that isn't after the given time value.

So, in the churn example, a caller may pass a customer ID and a time, and
the model would look up the latest feature values for that customer “as of” the
given time.

NOTE: In the churn example, the timestamp key (date) is of DateType. The
Databricks Feature Store supports specifying a timestamp key of either
DateType or TimestampType (for specifying more granular event time). In the
latter case, an “as of” join will work in the same manner to look up the latest
feature values for that customer “as of” the given time.
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Using a particular time in the past for inference is an unusual use case, but it's
useful for backtesting a model with feature values as of a particular time in
history. However, time is still important as a dimension in a feature table even if
you only query for ‘now’.

Historical feature values

It may be important to retrieve previously computed feature values or get the
state of a feature table at the time of model training or inference for auditability
or reproducibility purposes. Thankfully, this does not require any extra
consideration in the Databricks Feature Store. Because it is built on Delta tables,
which keep track of changes to the underlying data via the transaction log.

CAUTION: Looking up historical feature values will use the compute timestamp
for the feature table and provide a snapshot of the table as it was at a particular
time in the past. While this can be used for the purpose of auditing or querying
a snapshot at a single point in time, this mechanism has several limitations when
used to train models with features as of a particular event time in the past.

Features over time during training

Putting that aside, time may still be important in a feature table to support
model training. Consider that in a customer churn model, much more is known
about a customer than the current state. There is a whole history of states.

At many points in time, the customer did not churn — until the customer
(perhaps) did. When using this data to train a churn model, it is important to use
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all of that information so the model can train from examples that caused the
users to not churn and differentiate from examples that caused churn. For this
purpose, a data scientist may choose to use data sets such as user interactions
(clicks, purchases, returns), user communications and other activity-type data
sets as the main sample points for training and to join user features as of the
event time in each of the data sets.

The timestamp key is not returned or used in training, and typically it would
not be. However, it becomes necessary as input at inference time nevertheless.
Callers will supply the time as of which the inference should be made, and this
could simply be the current time/date.

Time dimensions and online stores

Time series feature tables in the batch layer (Delta) can grow large, with a

row per customer and month — not just per customer — in this example. The
historical data is, of course, important for model training. This can also be
required for batch scoring where necessarily older data is being scored and the
model expects the feature values “as of” the time of that batch of data. However,
if inference is always made as of “now” (typically in online scoring), then
historical feature values are unnecessary at inference time.

< databricks
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While an offline store based on Delta can scale easily, this may present a
challenge for the online store. When publishing features from time series feature
tables to online stores, the Databricks Feature Store will only publish the latest
feature values (using the timestamp key) for each primary key combination.
This new batch of “latest” feature values is then merged into the online store
such that there is only one row per unique primary key value. In the future,

we will support multiple historical snapshots in online stores.

Grouping features into tables

Of course, a feature table of customer-related features is likely keyed by a
customer ID. A feature table of store-level sales data might be keyed by a
combination of region ID and regional store ID. These two must be separate
feature tables, of course, as they contain information about different entities.
The key often determines what features could, or could not, exist in a single
feature table.

Could two different feature tables contain customer-related features, keyed by
customer ID? It's possible. Which to choose is a data architecture decision, just
as with any database tables. A few factors influence that decision.
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Security

Some features may be considered sensitive information, such as a customer’s
income or age. Other information might require less control, like a count of
customer transactions. Some use cases and teams may not have access to more
sensitive information for policy or regulatory reasons.

Enforcing different access controls for different customer information is simplest
when the sensitive data exists in a different feature table. Table-level access is
easier to manage, and at this time, the Databricks Feature Store does not yet
support column-level ACLs. For example, maybe customer income and age are
stored in a tightly controlled table, while average transaction size could exist in a
less-controlled table.

Source

One can imagine customer features originating from many sources as well.
Transaction logs may produce transaction-related features like total spend; web
logs might provide activity-related features. The data pipelines that consume
these sources might be separate jobs, even managed by separate teams.
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It's more natural for separate pipelines to feed separate feature tables. Data
engineers manage a transaction data pipeline that populates and updates a
transaction feature table, rather than a job that tries to update one large central
table that many teams are updating.

Performance

Separating features into tables can be more performant at scale too. Imagine
that some customer data is slow-changing, like age or income. Some data is
fast-changing, like daily average usage. Segregating the fast-changing features
into a separate table could be more performant to update frequently, rather than
updating one table that also contains features that rarely change. This is more
relevant when considering the online store, to which features are synced. The
Databricks Feature Store syncs feature tables to an online store at the table level.
If all customer features are in one feature table, the whole table is replicated
online, even if only subsets of it are updated.
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Operating a Feature Store

Migrating from existing feature storage

The audience for a feature store is typically a team or organization that has - _ _ -
X X INPUT FEATURE ENGINEERING MODEL PIPELINE OUTPUT

already begun to develop and deploy models, and so likely has some strategy in

place for managing features, even if only an ad hoc one. To build a model at all,

feature engineering has to happen somehow.

oxo
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A basic training pipeline almost always has a few essential components: YN = “h T IA” T
+ Loading and transforming data with tools such as pandas and Spark Date Transform oin Ttl?gi; Erocde - Tl\rlla;ng

+ Joining transformed data with other data sources

* Fitting an ML pipeline, which:

- Applies model-specific transforms (e.g., pretrained embedding,
one-hot encoder)

— Fits a model

That is, the data transformation is often split into a portion that happens It would be convenient if all featurization and encoding could live entirely within a
outside of model training, and a portion that can happen within the model's modeling tool’s pipeline. Then the featurization logic would all travel with the model
own “pipeline” abstraction. The most common examples are scikit-learn, whose artifact. However, most pipeline libraries only support simple transformations
Pipeline abstraction and transformers are frequently used with scikit-learn like scaling, imputation, etc., and it's difficult 