
The Comprehensive
Guide to Feature Stores
The art of feature engineering to take your
machine learning projects to the next level

SEAN OWEN, MANI PARKHE, AND MARZI RASOOLI

https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

Contents

Introduction .. 3

Feature Architecture .. 8

Operating a Feature Store .. 15

Organizational Issues .. 25

The Data Lakehouse: One platform for the full machine learning lifecycle .. 27

2The Comprehensive Guide to Feature Stores

https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

Long before there was DevOps, there was just software development.
Recently, a major trend in enterprise architecture has been MLOps, following
the now-ubiquitous rise of machine learning, or ML. It’s a sign that the practice
of machine learning and data science has arrived in the mainstream enterprise
when many start to ask, “How do we operate these models in production?”

Machine learning and data science depend on data. The rise of MLOps reopens
long-standing questions of data management and operations, with new urgency.
Thus the latest front in MLops is the feature store.

A feature store manages features, or input data to a machine learning model. At
first glance, it doesn’t seem different from the management of data in general.
After all, databases with tables of data are nothing new. In practice, machine
learning and data science share some needs (reliability, lineage, versioning) with

applications that consume data and not so much others (transactions).
The emphasis is different. Given the importance of machine learning, its
particular needs (such as requiring data at both training and inference time)
justify a new class of data management tooling.

The problem with features — and the purpose of
feature stores

Machine learning models don’t simply consume raw data. The functions of raw
data are what’s meaningful for a learning problem. In a model that predicts
customer churn, for example, one might find:

• Aggregations of raw data over time windows, like trailing 7-day purchases

• Joined combinations of data sets, like customer demographic information
joined to transaction features

• Complex functions of customer information, like estimated customer
lifetime value

The process of creating these values from data is feature engineering.

 D I S C O V E R Y

Those features can be shared and reused in different models, and you can bet
that they will need to be reused. Teams can’t reuse what they can’t find, so one
purpose of feature stores is discovery, or surfacing features that have already
been usefully refined from raw data.

Introduction

(Re-)Train

D
ev

el
op

Monitor

Deploy

Inference

Re
vie

w

EDA

Data Prep and
 Feature Engineering

MLOps Cycle

3The Comprehensive Guide to Feature Stores

https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2
https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

 L I N E A G E

Sharing entails dependency, however. Reusing a feature computed for one
purpose means that changes to its computation now affect many consumers.
Feature producers need to understand the downstream lineage of features.
What models and deployments of models depend on it? Likewise, feature
consumers need to understand the upstream lineage of a feature to reliably use
it. How is it computed, and who owns it?

 S K E W

The problem of lineage isn’t new or specific to machine learning — however, ML
presents a different problem: managing feature transformation logic. Engineering
features means executing logic to transform raw data, but this happens in two
possibly quite different contexts: training the model and applying it to new
data (inference, or scoring). Models may be trained in one environment, like
Databricks, with access to scale-out distributed computing, SQL engines and
secure connectors to offline data sources. They may be deployed, and called,
from another type of environment entirely, like a Java web application using the
model as a service.

Once you’ve built your model, reproducing the necessary input data and data
transformations logic for inference may be nearly impossible, because model
training and production tech stacks could be entirely different and managed by
different teams. Where it’s possible to reproduce the logic, it may be difficult
to keep the two versions of the logic in sync, or the copied logic may yet not
execute fast enough if the model is used for real-time sub-second-latency
inference. If done incorrectly, the best-case scenario is a runtime error; the
worst-case scenario is a silently wrong model continuing to make predictions.

This problem of online/offline skew, or the difference between the inference
and training environment, is somewhat unique to machine learning, and appears
quickly once teams move to production. Managing input data can have its own
challenges. In a large organization, it can be difficult to guarantee that the source
of data used for batch feature computation is the same upstream source used in
inference at real time. When multiple teams manage feature computation and ML
models in production, minor yet significant skew in upstream data at the input of
a feature pipeline can be very hard to detect and fix.

NOTE: Databricks Feature Store by design solves this data and compute skew
problem! Win!

Instead of aiming to make arbitrary featurization logic portable and fast, which
would be almost impossible in the general case, feature stores typically aim to
make the features portable — that is, the data itself. Hence, feature stores are
data management tools at heart.

The need for a feature store depends on the level of automation required by your
use case and organization. Anyone productionizing machine learning models will
probably encounter the problems a feature store solves. So now you might be
asking, how should one be designed? Are there new data architecture questions
to answer? Versioning? Data access? Performance?

In the following sections, we highlight key questions that arise in designing and
deploying a feature store, and try to offer some answers. They are written with
the Databricks Feature Store in mind, but many ideas and principles apply to any
similar tool.

4The Comprehensive Guide to Feature Stores

https://docs.databricks.com/applications/machine-learning/feature-store/index.html
https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

What is a feature?

To architect a feature store and its contents, it’s important to understand what a
feature is in the feature store paradigm. It’s reasonable to picture a feature store
as just a database at heart, with more functionality on top and alongside (see
below). Feature stores have feature tables of rows, with typed columns, storing
feature values.

Although feature stores can accommodate unstructured data, they do adopt
a tabular paradigm for data, as most machine learning models’ direct input is
structured (even if possibly derived from unstructured data).

For example, consider a model predicting customer churn. It relies on
information about customers and benefits from receiving customer-related
features as input.

Features are meant to be reused by combining them with other data sets.
To accomplish that, there must be some means of identifying how to join
the features, and so feature tables need a primary key. The values must be
associated with something uniquely identifiable. In the customer example
below left, customer_id would be the natural candidate for a primary key.

Isn’t everything a feature?

Should all data related to data science and machine learning be managed in
a feature store? No. A feature store adds value in managing transformed data
suitable for direct use in a machine learning model, not the raw data that is
being transformed. That customer churn prediction model may learn, ultimately,
from raw customer transaction records. However, transactions are not features.
But functions of the transactions may well be — for example, total calls over time.
Features are derived values.

The feature store paradigm may be described as “feature engineer once, reuse
many.” Feature values are computed once, stored, managed and shared. Features
are computed ahead of time, decoupling computation of features from their
usage. Computing potentially expensive features once can save cost and time.

customer_id tenure est_lifetime_value 7_day_calls ...

473337 2 901.32 13 ...

480801 6 5828.80 7 ...

...

5The Comprehensive Guide to Feature Stores

https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

A feature store’s role in an architecture

A feature store manages features, but its task depends on several related
concerns:

• Its data needs to be stored somewhere

• The features are produced by transformations, which need to be
executed somewhere

• The features depend on source data, which need to be accessed
from a data store or stream

• Models require the feature values at both training time and inference time

Databricks and other standard open source tools can handle these.

• Feature data is stored in a Delta table under the hood (Delta is an open
source project enabling the lakehouse architecture on top of cloud storage)

• Featurization is defined by code and scalable transformations with
Apache SparkTM (i.e., not configuration-driven or using a custom DSL)

• Source data is read with Spark, meaning most anything can be read:
other tables in a data warehouse, CSV files, XML, images, Apache Kafka
streams and so on

• A modeling process based on MLflow (an open source platform for the
MLOps lifecycle) can log models in a “feature aware” way that makes them
capable of looking up features at runtime

As a result, a feature store isn’t necessarily a strange new addition to an
enterprise architecture. The Databricks Feature Store in particular fits naturally
with workflows already leveraging MLflow and Delta.

6The Comprehensive Guide to Feature Stores

https://delta.io/
https://kafka.apache.org/
https://mlflow.org/
https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

In this simplified architecture, elements in red highlight the feature management
roles covered by a feature store. From left to right:

• Data is read by Databricks, connecting to standard data formats, stores or
streams

• Raw data in so-called Bronze tables is ETL’d with open source tools like
Apache Spark

• This and the resulting Silver tables are managed in the open Delta format

• The Databricks Feature Store runs feature engineering transformations built
on Spark — in batch or streaming — on Silver tables, and stores resulting
feature tables in Delta

• The Databricks Feature Store feeds data and feature information to a
modeling process

• Open source modeling libraries are used to build models, possibly on
Spark, and are managed with open source MLflow

• The model is deployed, whether as a batch or streaming job using Spark,
or as a REST service (inside Databricks or on Kubernetes, etc.)

In this view, the Databricks Feature Store simplifies what might otherwise be a
standard feature engineering pipeline, feeding a standard model tracking and
deployment process. Adopting it doesn’t entail much change in either of those
approaches, but instead purposefully integrates with them. The Databricks
Feature Store eliminates the need to implement manual tracking and monitoring
of feature creation and exploration, and enables out-of-the-box reuse.

I N P U T O U T P U TP R O C E S S

DATA ENGINEERING MODELINGFEATURE STORE

Discovery Transformations Lineage REST APIRaw Data

7The Comprehensive Guide to Feature Stores

https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

Runtime inputs vs precomputed inputs

If a feature store can manage precomputed values that feed a model, then a
good feature store should be able to help models find and load those values
automatically. The Databricks Feature Store does this and makes an explicit design
choice to integrate directly with model tracking and deployment managed by
MLflow. The features that a model needs become an implementation detail of the
model, and not something exposed to the caller. The caller does not, for example,
need to load features on the model’s behalf and hand them to the model. The
caller is not even aware of what features are required.

This affects the model’s input schema, and for the better. Because models are
often treated as services, produced in one context and consumed in another,
it might be better to call this the model’s “API,” because that is how it behaves.
The less the caller has to marshal to invoke this model API, the better.

That is, a customer churn model might need many features as input: transaction
totals, demographic information, services used. However, as a service that
predicts whether a customer will churn, it would ideally take just one input: a
customer ID. Why should the caller have to supply more than this?

This helps decouple the model from its caller. If the model controls what features
it needs to look up and add, then it may more easily vary its input features
without requiring updates to all callers. Those callers would otherwise have to
update at the same time that an updated model is deployed if the model needs
new features.

It may also be advantageous to avoid making the caller create and supply
features. Callers deployed “at the edge,” outside of an enterprise architecture,
might otherwise require direct access to raw data in order to compute features.
Reading and sending that data might be slow, costly or insecure.

Feature Architecture

MODEL MODEL

C A L L E R - S U P P L I E D F E AT U R E S W I T H F E AT U R E S T O R E

CALLER

ID

CALLER

ID

FEATURE STORE

Feautures

Features

ModelModel

8The Comprehensive Guide to Feature Stores

https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

Why isn’t everything a feature?

If everything the model needs as inputs were managed as features, then the
input to the model could become just an identifier, with the model looking up
what it needs by that identifier. In this customer churn model, the only thing
needed at inference time would be a customer ID.

Runtime inputs

Unfortunately this isn’t usually possible. The model’s prediction may depend
on facts that are only known at runtime, not ahead of time, and thus not
precomputable as a feature. For example, in the context of a customer churn
model, it may be useful to know whether someone who had called customer
service recently escalated the issue to a manager. This can be known and
recorded after the fact, and used to learn from later, but it is not a previously
known fact that can be looked up from the feature store when deciding whether
the customer on the phone right now with a manager is likely to churn.

This is an example of a model input that can’t be managed as a feature for this
model. The caller has to supply it, because it is not known ahead of time. It’s
possible that this piece of information becomes a feature in the context of
another model, where the last-known value recorded ahead of time is just fine.

Why couldn’t the support call escalation be recorded quickly as a feature
and looked up? It could, but it’s unlikely to be a useful idea. There is latency.
Information can make its way through a streaming architecture to a job that
computes, stores and syncs new feature values only so fast. Even though that

could happen in seconds, that may not be fast enough in the context of a model
serving real-time requests. Even if it is fast enough, it’s probably undesirable
for the architecture to go to the trouble of storing and rereading a fact that the
caller already knows and can supply.

In short, choosing what to store and use as a feature has effects on the “API” of
the resulting models, and in a good way. How models are used will determine
what makes sense to store as a feature.

Labels as features

Should ground truth labels be managed in a feature store? These are not inputs
to a model, but the correct outputs. In that sense, they do not seem to belong in
a feature store, which is primarily concerned with managing model inputs.

They could be managed in a feature table. Some attribute of a customer, for
example, that is to be predicted by one model could conceivably also be an
input to another type of model. Perhaps customer lifetime value is predicted by
one model, and that value is used as input to a churn model. The output from the
first model could be written to a feature table and managed as input to another.

In a situation like this, it’s important to not inadvertently use a label or features
derived from the label in a model predicting that label.

9The Comprehensive Guide to Feature Stores

https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

Features for unstructured data

Feature stores adopt a tabular paradigm, where features are organized
into tables with typed columns and even a primary key. How do so-called
unstructured data fit into this seemingly structured design?

Unstructured data isn’t really unstructured, it’s just not tabular. This term
typically (and misleadingly) refers to images and text. Of course, machine
learning is known for working wonders on images and text, learning to classify or
even generate novel pictures and articles. They need a place in a tool designed
to support machine learning.

The problem isn’t whether unstructured data can be stored; they at least can
be encoded as bytes, and bytes could be stored in a feature store table, like any
database table.

However, unstructured (or simply differently structured) data is “raw” data in
the feature store paradigm, like the individual transactions that might feed that
customer churn model. They’re valuable data, but they don’t offer reusable,
derived information.

Note that models that consume text or images don’t really handle them as bytes
anyway. A key step in many deep learning models is to learn an “embedding” of
such data. An embedding is a vector, or list of numbers, that usefully summarizes
the input in some way. It can condense a large, complex text document or video
input, for example, into a compact vector that is more meaningful for learning
tasks and ready to feed into a model. However, an embedding can be expensive
to compute.

Therefore, embeddings of unstructured data are good candidates for features.
For example, a company that maintains the text of a user’s forum posts might
embed the posts and save those embeddings as features, as a useful summary
of the posts. Many machine learning tasks that need to learn about forum posts
could then reuse the embedding.

Architecturally, embeddings are just arrays of floating-point values and can be
stored as such. There is nothing special about this type.

1 0The Comprehensive Guide to Feature Stores

https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

Handling time dimensions

Features are aggregations over raw data and describe the characteristics or
behavior of an entity that the feature represents. Invariably these feature values
vary over time, and as such, features are inherently time series data. It’s easy
to overlook this time dimension when reasoning about a feature store’s design.
Typically, for online model scoring, it’s only the latest value of features that
matters, and in order to ensure high accuracy of the model, the online feature
stores are typically kept up to date, with the latest feature values accessible for
model scoring. In some cases, the latest feature values are computed on the fly
from raw data, which may be available in online data sources. However, doing
so may lead to data skew, as previously discussed. For this reason, these latest
feature values are published for the offline feature tables to online stores. That
raises the question: Is it sufficient to store only the latest feature values in offline
feature tables, or should it store all historical time series values for features?

When training a model, using only the latest feature values may lead to
inaccuracies. For example, let’s consider a data scientist training a customer
churn model with the last two years of data from various data sets, such as user
interactions (clicks, purchases, returns) and user communications. If the training
pipeline joins this data with only the latest feature values for each customer, it
would cause the training code to see incorrect data, since the latest features
may already have included the effect of the user interactions in the past. This is
referred to as “data leakage,” and in order to avoid this, the data scientist needs
to employ techniques to ensure that each training row is joined with that user’s
feature values at the event time for that user interaction. Hence, when designing

feature tables to store time series features, it is important to record the ‘event
time’ or ‘timestamp’ or express the time dimension in addition to the primary
keys. Let’s explore different techniques used to achieve this.

Native technique:
Handling time series using a timestamp column as primary key

When using features from a previous point in time for model scoring or training,
one of the techniques employed is to define a column that encodes the event
time. Feature values would be computed and stored for many points in time, not
just the current latest value. For this, a user can create a table with a timestamp
or date column as part of the table’s primary key. In the customer churn example,
(customer_ID, ’date’) could be used as the primary key, and feature store logic
could produce features per customer per month. At inference time, a date would
have to be passed along with the customer ID, at least, in order for the feature
store to know which feature values to retrieve.

customer_id date tenure est_lifetime_value ...

date 2021-11-01 2 901.32 ...

tenure 2021-11-01 6 5828.80 ...

est_lifetime_
value 2021-12-01 7 5703.31 ...

...

1 1The Comprehensive Guide to Feature Stores

https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

However, it would be inconvenient if time-based keys were treated like other
primary keys and the feature store lookup required an exact match on the time
value. A caller would have to know exactly the time at which the desired features
were computed when presumably the caller just wants the latest value as of
that time. This doesn’t match the simpler case without time-based keys, where
implicitly the latest value is retrieved, no matter when it was computed.

Time series feature tables

For that reason, the Databricks Feature Store supports time series feature tables.
When creating one, you can specify an optional column that represents the
time scale. This is a first-class field of the feature table, called a timestamp key.
Internally, this column will be used along with the primary keys to determine data
uniqueness and for “merge” semantics when adding new features to the table.
However, in the feature lookup workflow, these timestamp keys will be used in
native “as of” joins. Given a time value, the join will match the latest time in the
table that isn’t after the given time value.

So, in the churn example, a caller may pass a customer ID and a time, and
the model would look up the latest feature values for that customer “as of” the
given time.

NOTE: In the churn example, the timestamp key (date) is of DateType. The
Databricks Feature Store supports specifying a timestamp key of either
DateType or TimestampType (for specifying more granular event time). In the
latter case, an “as of” join will work in the same manner to look up the latest
feature values for that customer “as of” the given time.

Using a particular time in the past for inference is an unusual use case, but it’s
useful for backtesting a model with feature values as of a particular time in
history. However, time is still important as a dimension in a feature table even if
you only query for ‘now’.

Historical feature values

It may be important to retrieve previously computed feature values or get the
state of a feature table at the time of model training or inference for auditability
or reproducibility purposes. Thankfully, this does not require any extra
consideration in the Databricks Feature Store. Because it is built on Delta tables,
which keep track of changes to the underlying data via the transaction log.

CAUTION: Looking up historical feature values will use the compute timestamp
for the feature table and provide a snapshot of the table as it was at a particular
time in the past. While this can be used for the purpose of auditing or querying
a snapshot at a single point in time, this mechanism has several limitations when
used to train models with features as of a particular event time in the past.

Features over time during training

Putting that aside, time may still be important in a feature table to support
model training. Consider that in a customer churn model, much more is known
about a customer than the current state. There is a whole history of states.
At many points in time, the customer did not churn — until the customer
(perhaps) did. When using this data to train a churn model, it is important to use

1 2The Comprehensive Guide to Feature Stores

https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

all of that information so the model can train from examples that caused the
users to not churn and differentiate from examples that caused churn. For this
purpose, a data scientist may choose to use data sets such as user interactions
(clicks, purchases, returns), user communications and other activity-type data
sets as the main sample points for training and to join user features as of the
event time in each of the data sets.

The timestamp key is not returned or used in training, and typically it would
not be. However, it becomes necessary as input at inference time nevertheless.
Callers will supply the time as of which the inference should be made, and this
could simply be the current time/date.

Time dimensions and online stores

Time series feature tables in the batch layer (Delta) can grow large, with a
row per customer and month — not just per customer — in this example. The
historical data is, of course, important for model training. This can also be
required for batch scoring where necessarily older data is being scored and the
model expects the feature values “as of” the time of that batch of data. However,
if inference is always made as of “now” (typically in online scoring), then
historical feature values are unnecessary at inference time.

While an offline store based on Delta can scale easily, this may present a
challenge for the online store. When publishing features from time series feature
tables to online stores, the Databricks Feature Store will only publish the latest
feature values (using the timestamp key) for each primary key combination.
This new batch of “latest” feature values is then merged into the online store
such that there is only one row per unique primary key value. In the future,
we will support multiple historical snapshots in online stores.

Grouping features into tables

Of course, a feature table of customer-related features is likely keyed by a
customer ID. A feature table of store-level sales data might be keyed by a
combination of region ID and regional store ID. These two must be separate
feature tables, of course, as they contain information about different entities.
The key often determines what features could, or could not, exist in a single
feature table.

Could two different feature tables contain customer-related features, keyed by
customer ID? It’s possible. Which to choose is a data architecture decision, just
as with any database tables. A few factors influence that decision.

1 3The Comprehensive Guide to Feature Stores

https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

Security

Some features may be considered sensitive information, such as a customer’s
income or age. Other information might require less control, like a count of
customer transactions. Some use cases and teams may not have access to more
sensitive information for policy or regulatory reasons.

Enforcing different access controls for different customer information is simplest
when the sensitive data exists in a different feature table. Table-level access is
easier to manage, and at this time, the Databricks Feature Store does not yet
support column-level ACLs. For example, maybe customer income and age are
stored in a tightly controlled table, while average transaction size could exist in a
less-controlled table.

Source

One can imagine customer features originating from many sources as well.
Transaction logs may produce transaction-related features like total spend; web
logs might provide activity-related features. The data pipelines that consume
these sources might be separate jobs, even managed by separate teams.

It’s more natural for separate pipelines to feed separate feature tables. Data
engineers manage a transaction data pipeline that populates and updates a
transaction feature table, rather than a job that tries to update one large central
table that many teams are updating.

Performance

Separating features into tables can be more performant at scale too. Imagine
that some customer data is slow-changing, like age or income. Some data is
fast-changing, like daily average usage. Segregating the fast-changing features
into a separate table could be more performant to update frequently, rather than
updating one table that also contains features that rarely change. This is more
relevant when considering the online store, to which features are synced. The
Databricks Feature Store syncs feature tables to an online store at the table level.
If all customer features are in one feature table, the whole table is replicated
online, even if only subsets of it are updated.

1 4The Comprehensive Guide to Feature Stores

https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

Migrating from existing feature storage

The audience for a feature store is typically a team or organization that has
already begun to develop and deploy models, and so likely has some strategy in
place for managing features, even if only an ad hoc one. To build a model at all,
feature engineering has to happen somehow.

A basic training pipeline almost always has a few essential components:

• Loading and transforming data with tools such as pandas and Spark

• Joining transformed data with other data sources

• Fitting an ML pipeline, which:

	 - Applies model-specific transforms (e.g., pretrained embedding,
	 one-hot encoder)

	 – Fits a model

That is, the data transformation is often split into a portion that happens
outside of model training, and a portion that can happen within the model’s
own “pipeline” abstraction. The most common examples are scikit-learn, whose
Pipeline abstraction and transformers are frequently used with scikit-learn
and other libraries, and Spark ML’s similar Pipeline abstraction. Deep learning
frameworks like Keras or PyTorch likewise allow some preprocessing in a model
with the addition of layers that normalize, resize, etc.

It would be convenient if all featurization and encoding could live entirely within a
modeling tool’s pipeline. Then the featurization logic would all travel with the model
artifact. However, most pipeline libraries only support simple transformations
like scaling, imputation, etc., and it’s difficult to extend them to support custom
transformers. While possible to implement custom transformers, it is extra work,
and typically rules out using tools like Spark for large-scale transformations (e.g.,
Spark can’t be used in a scikit-learn pipeline). It again raises issues of managing
that code’s dependencies and performance at runtime.

Operating a Feature Store

F E AT U R E E N G I N E E R I N GI N P U T O U T P U TM O D E L P I P E L I N E

TransformData Model
TrainingJoin Enocde Fit Trained

Model

1 5The Comprehensive Guide to Feature Stores

https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html
https://spark.apache.org/docs/latest/ml-pipeline.html
https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

If you’re moving to a feature store like the Databricks Feature Store, how does
a training workflow like this translate? Generally speaking, it’s the feature
engineering that comes before model (pipeline) fitting that migrates to a feature
store. The portions inside a pipeline abstraction can stay.

Why? The transformations found in a pipeline are also likely to be specific to the
model itself, like applying scaling that was fit to the model’s training data. That is,
it may not make sense to manage a set of scaled features created for one model,
as it isn’t usefully reusable in other models.

Migrating the loading and transformation data to the Databricks Feature Store
can be simple, even very simple, depending on the tools already in use. For
example, if the transformations are already expressed as Spark code, then it’s
only a matter of wrapping up that code in a function and invoking it slightly
differently, because the Databricks Feature Store just relies on transformations
expressed in terms of Spark:

Alternatively, the transformation code might be expressed using pandas, another
popular Python package for data manipulation. This code has to be ported to
Spark to work with the Feature Store API. This can be relatively simple now that
Spark 3.2.0 supports the pandas API on Spark (formerly known as Koalas).

It’s possible, even likely, that an existing machine learning pipeline already writes
features to some table. If so, those existing tables can be registered as feature
tables instead of creating a new one (see register_table instead of create_table).
Note that in this case, it’s not advisable to continue writing to the table directly
without using the Feature Store APIs, as the Databricks Feature Store is trying to
manage and track writes to and reads from the table, as well as guarantee things
like key uniqueness.

Any logic to join results from other data sources then becomes FeatureLookups
in the Databricks Feature Store, instead of manual joins:

Before

raw_data = spark.read...
features = raw_data.
select(...).agg(...)...
...
features.write(...)

After

fs = FeatureStoreClient()

def compute_features(raw_data):
 features = raw_data.select(...).agg(...)...
 ...
 return features

fs.write_table(..., compute_features(...))

Before

input_df = spark.read...
training_set_df = input_
df.join(table, on=key)...
join(...)

After

fs = FeatureStoreClient()

input_df only needs to contain the key and target
input_df = spark.read…
training_set = fs.create_training_set(input_df,
 [FeatureLookup(table_name = table, lookup_key =
key), ...],
 label=”...”)
training_set_df = training_set.load_df()

1 6The Comprehensive Guide to Feature Stores

https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

Finally, migrating the modeling process to take advantage of loading features
from the Databricks Feature Store is, hopefully, mostly an exercise in refactoring
into simpler code. Modeling proceeds as usual, including creating and fitting
pipelines; this does not change.

To track the resulting model in a Feature Store-aware way, it’s necessary to
slightly change how MLflow is used to log the model. (And if you’re not using
MLflow, you should! It’s necessary in order for the model to transparently join
features it needs at runtime.) The MLflow model logging method is replaced by a
wrapper in the Databricks Feature Store client instead:

At inference time, any code that recreates or reinvokes feature transformation
logic to prepare data for the model to score simply goes away. The model, logged
by MLflow and wrapped up with logic to look up necessary features, can be
applied conveniently with the Feature Store client:

Before

with mlflow.start_run():
 ...
 model = pipeline.fit(..., …)
 mlflow.log_metric(...)
 ...
 mlflow.sklearn.log_model(model, “model”)

After

with mlflow.start_run():
 ...
 model = pipeline.fit(..., ...)
 mlflow.log_metric(...)
 ...
 fs.log_model(model, “model”,
 flavor=mlflow.sklearn, training_
set=training_set)

Before

model_udf = mlflow.pyfunc.spark_udf(spark,
“models:/my_model/production”)
raw_data = spark.read...

featurize again
transformed = raw_data.
select(...).agg(...)...

join again
joined = transformed.join(table, on=key).
join(...)
predictions = joined.
withColumn(“prediction”, model_udf(*cols))

After

raw_data = spark.read...
predictions = fs.score_batch(raw_data,
“models:/my_model/production”)

1 7The Comprehensive Guide to Feature Stores

https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

This is simpler, and the magic lies in how models are logged with the Feature
Store client. Take the following example of a model logged with fs.log_model():

1 8The Comprehensive Guide to Feature Stores

https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

The workflow described below left works for streaming use cases as well. You can
write feature values to a feature table from a streaming source.

streamingData = (spark.readStream...) fs.create_feature_table(table_name, schema, keys)
stream to feature table
fs.write_table(table_name, df=streamingData, mode=”merge”)

Or in the event that your inference data comes from a Spark structured
streaming pipeline, the same feature store API can be used for inference.

streamingData = (spark.readStream...)
stream_predictions = fs.score_batch(model_uri, inference_stream)

You can also stream feature tables from the offline store to an online store with:

fs.publish_table(name=feature_table_name, online_store=online_store, streaming=True)

In addition to the serialized model, a feature_spec.yaml file describes the
feature lookups required to reconstruct a row at inference time. The model now
possesses information on the features it needs, and conversely, the features
possess information on the models they serve. If we look at the Feature Store
UI, we see which feature columns are associated with models that have been
promoted to the MLflow Model Registry:

1 9The Comprehensive Guide to Feature Stores

https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

Promotion from dev to prod

Productionizing anything leads eventually to the age-old question: dev vs prod.
How do artifacts move from development to production?

We take for granted that code is developed, tested and only then rolled out to
production. Models need this, too, though it’s more ambiguous: Are models
pushed from dev to production, or is the code that builds the model pushed
to production? And data is typically not “promoted” from dev to prod at all, in
any sense.

A feature store like the Databricks Feature Store falls ambiguously into this
spectrum, because it touches each of these elements. A feature store runs
featurization code to produce data that is used to produce models.

Promote features as code, not data

One way or the other, featurization code needs to be tested, and so the
development environment will use an instance of a feature store to test its logic.

Code that computes features is code, and can be tested, versioned and
deployed like other code, from development to production. For example,
featurization notebooks may be developed against a branch of a git repository,
and when changes are tested and vetted, merged to a production branch in git
and pulled into production.

That is, production runs featurization code on production data to produce
production features. Production does not receive “promoted” features from
development in any sense. The development environment will have a feature
store for functional testing, but its data may not be used, or it might be used
only as part of testing in development.

Promote features after data eng, before modeling

Features have upstream dependencies, such as data engineering outputs
that featurization logic depends upon. Features, in turn, are depended upon
by models used in inference. As with any other architectural component with
dependencies, deployment to prod has to roll out in order.

Featurization code that depends on new data engineering outputs can’t deploy
before the new outputs are operating in production. And models that depend on
new features can’t be promoted to production before the featurization logic that
produces them is rolled out.

The Databricks Feature Store tracks metadata about upstream and downstream
dependencies to help developers understand these dependencies and make it
easier for them to plan promotion accordingly.

2 0The Comprehensive Guide to Feature Stores

https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

Migrating feature definitions

In production, models are retrained as new data arrives with new information
about the world. Data science doesn’t sit still either, and teams also improve the
accuracy of a model over time by altering the model itself or the data that it is
fed for training.

Tools like MLflow’s Model Registry manage successive versions of a logical model
and provide workflow for the production promotion process. What about feature
definitions? Teams may add new predictive features, or modify or fix existing
definitions. This requires care, like any process change.

Adding features

For instance, in the customer churn example, a team may find that knowing the
average price increase (or decrease) over the customer’s tenure helps more
accurately predict the customer’s propensity to churn. This is the simplest case.
The feature table definition would return the new column:

def compute_features(raw_data):
 ...
 features = feature.withColumn(“avg_price_increase”, ...)
 ...
 return features

To update existing customers with the newly computed value, use this merge mode:

fs.write_table(..., ..., mode=”merge”)

The underlying feature table will get a new column, ‘avg_price_increase’, on the
next execution. Any customers passed as input to ‘compute_and_write’ will
have this new feature value computed, and their rows in the feature table will
be updated with the new value (just like other features). It’s ‘merge’ mode that
chooses to update, rather than append, new rows.

Like adding a new column to a database table, this “sometimes” doesn’t cause
problems for other consumers of the table, as it simply doesn’t appear when not
selected. However, just as a new column might disrupt callers depending on the
result of ‘SELECT *’, it’s important to consider whether other model pipelines are
selecting all features from the feature table.

For example, a feature lookup on this feature table that selects all features will
see this:

FeatureLookup(table_name=”customer_features”,
 lookup_key=”customer_id”)

Any model pipeline doing so will start to look up this new feature, use it in
training and expect it at runtime. This is probably not desirable. Instead, consider
having pipelines enumerate exactly what they look up:

FeatureLookup(table_name=”customer_features”,
 lookup_key=”customer_id”,
 feature_names=[“...”, “...”])

2 1The Comprehensive Guide to Feature Stores

https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

Deleting features

Consider if, later, the team finds that ‘avg_price_increase’ wasn’t so predictive
after all. Model pipelines would stop including it in training, and so would not look
for it at inference time. Once all models stop using a feature, it would be safe to
stop computing it. The compute_features function’s definition can simply not
compute and instead returns this as a column.

At the time of this writing, the API does not allow completely deleting a feature
from a feature table. It could be overwritten with nulls, or ignored. It may, in fact,
be desirable to keep it for later reproducibility of older models.

Of course, it’s important to know if all models have stopped using the feature
before deleting it. The Databricks Feature Store records which models are
known to use a feature by recording which models are logged to MLflow via the
Databricks Feature Store client’s log_model method. If used consistently, this
helps teams understand when a feature is truly unused. Note that the Databricks
Feature Store can’t track usages of features that do not proceed through its client.

Modifying features

Changing a feature’s definition is more involved. Instead, maybe the team finds
that ‘avg_price_increase’ was computed incorrectly. Fixing the logic is easy —
just correct the code that computes the feature, and its next execution (with
merge mode) will update the feature table with values computed according to
the newest logic.

Existing models trained on the older definition have learned about average price
increase based on a flawed computation, but fixing this input without retraining
the model could actually make its predictions worse, as the model may have, to
some extent, learned to correct for the error.

Synchronizing the release of the new computation with the release of a new,
retrained version of every model that depends on the feature could be quite
difficult. Ideally, models retrained on the corrected definition would use the new
value, and existing models would continue to use the old value in the meantime.

This means that, for a time, the feature engineering pipeline must produce both
old and new values. In the Databricks Feature Store, there is only one value of
a feature at a given time. At the moment, there is no notion of feature versions.
It’s possible to achieve this effect manually, though a little inelegantly. Use a
naming convention to separate new from old versions, and produce both. Here
that means continuing to compute ‘avg_price_increase’ but also producing, say,
‘avg_price_increase_v2’:

def compute_features(raw_data):
 ...
 features = feature.withColumn(“avg_price_increase”,\
 ... old logic ...)
 features = feature.withColumn(“avg_price_increase_v2”,\
 ... new logic ...)
 ...
 return features

Of course, eventually the old feature may be “deleted” per above.

2 2The Comprehensive Guide to Feature Stores

https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

Incremental updates and backfilling features

So far, while it may be clear how to define featurization logic, and have the
feature store execute it, persist results and record metadata about featurization,
it’s not necessarily clear where its input comes from. What is raw_data in the
examples above?

This is caller-supplied in the Databricks Feature Store paradigm. The job that is
invoking write_table decides what data to read, as this is an essential part of the
overall featurization logic.

The input to the featurization logic has to contain all the columns that the code
expects. What rows should be passed, though? It depends.

Case: New rows only

Perhaps the simplest case is one where the upstream raw data is not modified,
only appended to. Featurization only has to happen once. It isn’t necessary to
reread past raw data, re-featurize it and rewrite the values to the feature store if
the past data and the featurization logic haven’t changed.

In this case, where the upstream raw data has a time dimension, it may be a
matter of selecting the data with timestamp after the last featurization job
ran. There are ways to figure this out in a Delta table as well without an explicit
timestamp. This is also how the featurization job would work if the upstream
raw data is a stream, as by nature only “new” records are arriving.

Featurization logic is often not that simple, however. For example, upstream
data may be raw customer transactions. New transactions arrive for existing
customers. This may mean that the latest value for customer features like
“average spend” changes for those existing customers. The same idea applies,
but the featurization logic may be updating, rather than adding new feature
table entries.

Case: All rows

At an extreme, it’s possible that some features are a function of all historical
data. Imagine calculating customer lifetime value, which may be a complex
function of all customers. If any customer data changes, all estimated lifetime
values may change. In this case, it would be necessary to supply all raw data
every time write_table is invoked.

It’s always possible to rerun featurization on all data, recompute all features
and rewrite updated values. This may be slow, but it won’t be incorrect.

Many real-world use cases fall in points in between. Some features may be
computable and updatable only based on current, new data, while some may
require all data, and some may require a mixture.

It may be necessary to split featurization workloads into separate jobs, with
some that compute based only on new data, where possible, and others that
compute separately on all data each time, where not possible.

2 3The Comprehensive Guide to Feature Stores

https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

The problem of backfill

Consider a simple example of a feature in a customer churn model, like
’maximum call length’. As new raw call data arrives, it can only affect the
maximum call length of customers that made a call. Typically these features can
be computed only over newly arriving data as a maximum of the current max,
and the length of the current call, for each customer.

However, consider the day this feature is added to the featurization logic.
It will compute correctly for all customers that made a call, but will not have
been computed for anyone else. This may be a problem; the feature needs
to be “backfilled.”

One solution is to run the featurization logic one time on all data to backfill.
This is probably the simplest approach, as the featurization logic is just a
function that can be applied to a different set of data in code.

This issue also arises when a feature definition is modified (see “Modifying
Features” above). An updated feature definition might only be applied to new
data going forward, and may require manually executing it on past data to
update for all features.

2 4The Comprehensive Guide to Feature Stores

https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

Data science vs data engineering ownership

Feature stores address the problem of feature engineering, but feature
engineering is adjacent to both the more general data engineering that precedes
it upstream and the machine learning work that consumes features downstream.
The role of the data engineer is fairly distinct from that of the data scientist. So,
which group owns the feature engineering in between them?

Data engineering?

Features are generated from raw data that resides in files or tables. Data
engineers are responsible for maintaining jobs to generate curated data sets.
This includes developing, scaling and troubleshooting these pipelines.

In the customer churn example, data engineers might be responsible for making
data available from different sources such as a mobile app, website or call
center. Data engineers can ensure data is accessible, clean and reliable.

This partly also describes feature engineering — transforming data, possibly
at scale, and troubleshooting transformation pipelines. There’s a natural
argument that it’s just an extension of data engineering, as it will involve many of
the same skills.

If so, lineage from a feature store framework would be crucial for data engineers
to monitor in order to know how the feature data is used downstream.

Data science?

Of course, data engineers may know more about how to run feature engineering
pipelines, but it’s the data scientists that know what needs to be produced.
Often, new features might be tried rapidly, so it could make sense for data
science to own defining features and avoid round trips through another team to
modify features.

Yet there is a difference between concocting a feature for an experiment and
productionizing and sharing it. After all, the premise of a feature store is to
publish useful maintained features. It’s possible that data scientists iterate
outside the feature store framework to evaluate features and work later with
data engineering to move that code and featurization into the feature store. In
the customer churn example, that is, if a data science team wants to experiment
with ‘log of average price increase’ as a feature, it’s not as if they need to alter
the feature store to merely try out that value as a model input. They might
temporarily generate and test this feature without using the feature store.

Data scientists may only want to define and prototype features, and hand them
off to scale and harden, just as with data engineering in general.

Finally, to the extent a feature is shared, many data science teams depend on
it, but there is only one feature store and pipeline generating it. It may be more
natural for a group outside of any single data science team to own the features
that several teams share.

Organizational Issues

2 5The Comprehensive Guide to Feature Stores

https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

The answer?

It depends, but on balance, the team that has the
most familiarity with data pipelines should own
feature engineering and the feature store. In large
companies, that’s the data engineering team. The
feature store is a data store, and its contents often
transcend individual data science projects. Data
science teams can still iterate and experiment
directly with data without involving data engineering
every time, even if so.

At right, the proposal is that feature store elements
in red, like featurization and storage of features,
be owned by data engineers. The feature store is
still touched directly by data science pipelines
downstream, to the right, and their downstream
transformation logic may yet feed back into
featurization pipelines owned by data engineering.

I N P U T P R O C E S S

DATA ENGINEERING DATA SCIENCE

Featurization Feature
Tables Model Training Model Lineage

and Tracking

Model
Serving

Online
Feature Store

O U T P U T

Raw Data

2 6The Comprehensive Guide to Feature Stores

https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

This leads us to an even larger discussion — which is outside the scope of this
book — and that is, how do data engineers, data scientists and production
machine learning engineers operate together, as a team, with the same data,
within the same governance and security framework?

The answer is the data lakehouse. The Databricks Lakehouse is simple, open and
collaborative, and trusted by thousands of the world’s best companies, from large,
successful enterprises to new-age digital-native firms. The Databricks Lakehouse
is a unified platform that supports the full machine learning lifecycle — from data
ingest, to feature engineering, to model training and tuning, all the way to serving
and monitoring. It creates a space for data engineers, data scientists, and machine
learning engineers to collaborate and build better AI solutions.

The Data Lakehouse: One platform for the full machine learning
lifecycle — from data prep to production ML

COLLABORATIVE EXPLORATORY DATA ANALYSIS

Bring data teams together and ensure your data is
ready for machine learning

C O M P R E H E N S I V E M O D E L L I F E C Y C L E M A N A G E M E N T

Leverage a single platform across the full ML lifecycle for
tracking, governance and reproducibility

RAPID, S IMPL IF IED MACHINE LEARNING FOR EVERYONE

Built-in no-code capabilities and AutoML help proliferate
ML across the organization to a variety of personas

2 7The Comprehensive Guide to Feature Stores

https://databricks.com/customers/cvs-health
https://www.youtube.com/watch?v=Xo1U617T-mU&t=1s
https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

©2021 Databricks Inc. — All rights reserved

Databricks Machine Learning

Open Multicloud Data Lakehouse Foundation with

MLOps / Governance powered by

Data
Prep

Data Versioning Monitoring

Batch Scoring

Online Serving

Model
Training Model Tuning Runtime and

Environments

Feature Store

AutoML

Collaborative Multi-Language Notebooks

Jobs and API Automation

Discover how Databricks can elevate your data science and machine learning projects.

2 8The Comprehensive Guide to Feature Stores

Databricks Machine Learning

https://databricks.com/product/machine-learning
https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2
https://databricks.com/product/machine-learning
https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

Databricks is the data and AI company. More than 7,000 organizations

worldwide — including Comcast, Condé Nast, H&M and over 40% of the

Fortune 500 — rely on the Databricks Lakehouse Platform to unify their

data, analytics and AI. Databricks is headquartered in San Francisco, with

offices around the globe. Founded by the original creators of Apache

Spark,™ Delta Lake and MLflow, Databricks is on a mission to help

data teams solve the world’s toughest problems. To learn more, follow

Databricks on Twitter, LinkedIn and Facebook.

About Databricks

Contact us for a personalized demo
databricks.com/contact

STA R T YO U R F R E E T R I A L

© Databricks 2022. All rights reserved. Apache, Apache Spark, Spark and the Spark logo are trademarks of the Apache Software Foundation. Privacy Policy | Terms of Use

https://twitter.com/databricks
https://www.linkedin.com/company/databricks/
https://www.facebook.com/databricksinc/
databricks.com/contact
https://databricks.com/try-databricks
https://databricks.com/try-databricks
https://www.apache.org/
https://databricks.com/privacypolicy
https://databricks.com/terms-of-use

