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Long before there was DevOps, there was just software development.  
Recently, a major trend in enterprise architecture has been MLOps, following 
the now-ubiquitous rise of machine learning, or ML. It’s a sign that the practice 
of machine learning and data science has arrived in the mainstream enterprise 
when many start to ask, “How do we operate these models in production?”

Machine learning and data science depend on data. The rise of MLOps reopens 
long-standing questions of data management and operations, with new urgency. 
Thus the latest front in MLops is the feature store.

A feature store manages features, or input data to a machine learning model. At 
first glance, it doesn’t seem different from the management of data in general. 
After all, databases with tables of data are nothing new. In practice, machine 
learning and data science share some needs (reliability, lineage, versioning) with 

applications that consume data and not so much others (transactions).  
The emphasis is different. Given the importance of machine learning, its 
particular needs (such as requiring data at both training and inference time) 
justify a new class of data management tooling.

 

The problem with features — and the purpose of 
feature stores

Machine learning models don’t simply consume raw data. The functions of raw 
data are what’s meaningful for a learning problem. In a model that predicts 
customer churn, for example, one might find:

•  Aggregations of raw data over time windows, like trailing 7-day purchases

•  Joined combinations of data sets, like customer demographic information 
joined to transaction features

•  Complex functions of customer information, like estimated customer 
lifetime value

The process of creating these values from data is feature engineering. 

  D I S C O V E R Y

Those features can be shared and reused in different models, and you can bet 
that they will need to be reused. Teams can’t reuse what they can’t find, so one 
purpose of feature stores is discovery, or surfacing features that have already 
been usefully refined from raw data.
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  L I N E A G E

Sharing entails dependency, however. Reusing a feature computed for one 
purpose means that changes to its computation now affect many consumers. 
Feature producers need to understand the downstream lineage of features. 
What models and deployments of models depend on it? Likewise, feature 
consumers need to understand the upstream lineage of a feature to reliably use 
it. How is it computed, and who owns it? 

  S K E W

The problem of lineage isn’t new or specific to machine learning — however, ML 
presents a different problem: managing feature transformation logic. Engineering 
features means executing logic to transform raw data, but this happens in two 
possibly quite different contexts: training the model and applying it to new 
data (inference, or scoring). Models may be trained in one environment, like 
Databricks, with access to scale-out distributed computing, SQL engines and 
secure connectors to offline data sources. They may be deployed, and called, 
from another type of environment entirely, like a Java web application using the 
model as a service. 

Once you’ve built your model, reproducing the necessary input data and data 
transformations logic for inference may be nearly impossible, because model 
training and production tech stacks could be entirely different and managed by 
different teams. Where it’s possible to reproduce the logic, it may be difficult 
to keep the two versions of the logic in sync, or the copied logic may yet not 
execute fast enough if the model is used for real-time sub-second-latency 
inference. If done incorrectly, the best-case scenario is a runtime error; the 
worst-case scenario is a silently wrong model continuing to make predictions.  

This problem of online/offline skew, or the difference between the inference 
and training environment, is somewhat unique to machine learning, and appears 
quickly once teams move to production. Managing input data can have its own 
challenges. In a large organization, it can be difficult to guarantee that the source 
of data used for batch feature computation is the same upstream source used in 
inference at real time. When multiple teams manage feature computation and ML 
models in production, minor yet significant skew in upstream data at the input of 
a feature pipeline can be very hard to detect and fix.

NOTE: Databricks Feature Store by design solves this data and compute skew 
problem! Win!

Instead of aiming to make arbitrary featurization logic portable and fast, which 
would be almost impossible in the general case, feature stores typically aim to 
make the features portable — that is, the data itself. Hence, feature stores are 
data management tools at heart.

The need for a feature store depends on the level of automation required by your 
use case and organization. Anyone productionizing machine learning models will 
probably encounter the problems a feature store solves. So now you might be 
asking, how should one be designed? Are there new data architecture questions 
to answer? Versioning? Data access? Performance?

In the following sections, we highlight key questions that arise in designing and 
deploying a feature store, and try to offer some answers. They are written with 
the Databricks Feature Store in mind, but many ideas and principles apply to any 
similar tool.

4The Comprehensive Guide to Feature Stores

https://docs.databricks.com/applications/machine-learning/feature-store/index.html
https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2


What is a feature?

To architect a feature store and its contents, it’s important to understand what a 
feature is in the feature store paradigm. It’s reasonable to picture a feature store 
as just a database at heart, with more functionality on top and alongside (see 
below). Feature stores have feature tables of rows, with typed columns, storing 
feature values.

Although feature stores can accommodate unstructured data, they do adopt 
a tabular paradigm for data, as most machine learning models’ direct input is 
structured (even if possibly derived from unstructured data).

For example, consider a model predicting customer churn. It relies on 
information about customers and benefits from receiving customer-related 
features as input. 

 
 
Features are meant to be reused by combining them with other data sets. 
To accomplish that, there must be some means of identifying how to join 
the features, and so feature tables need a primary key. The values must be 
associated with something uniquely identifiable. In the customer example  
below left, customer_id would be the natural candidate for a primary key. 

Isn’t everything a feature?

Should all data related to data science and machine learning be managed in 
a feature store? No. A feature store adds value in managing transformed data 
suitable for direct use in a machine learning model, not the raw data that is 
being transformed. That customer churn prediction model may learn, ultimately, 
from raw customer transaction records. However, transactions are not features. 
But functions of the transactions may well be — for example, total calls over time. 
Features are derived values.

The feature store paradigm may be described as “feature engineer once, reuse 
many.” Feature values are computed once, stored, managed and shared. Features 
are computed ahead of time, decoupling computation of features from their 
usage. Computing potentially expensive features once can save cost and time.

customer_id tenure est_lifetime_value 7_day_calls ...

473337 2 901.32 13 ...

480801 6 5828.80 7 ...

... ... ... ... ...
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A feature store’s role in an architecture

A feature store manages features, but its task depends on several related 
concerns:

•  Its data needs to be stored somewhere

•  The features are produced by transformations, which need to be  
executed somewhere

•  The features depend on source data, which need to be accessed  
from a data store or stream

•  Models require the feature values at both training time and inference time

 
 
Databricks and other standard open source tools can handle these.

•  Feature data is stored in a Delta table under the hood (Delta is an open 
source project enabling the lakehouse architecture on top of cloud storage)

•  Featurization is defined by code and scalable transformations with  
Apache SparkTM (i.e., not configuration-driven or using a custom DSL)

•  Source data is read with Spark, meaning most anything can be read:  
other tables in a data warehouse, CSV files, XML, images, Apache Kafka 
streams and so on

•  A modeling process based on MLflow (an open source platform for the 
MLOps lifecycle) can log models in a “feature aware” way that makes them 
capable of looking up features at runtime

As a result, a feature store isn’t necessarily a strange new addition to an 
enterprise architecture. The Databricks Feature Store in particular fits naturally 
with workflows already leveraging MLflow and Delta.
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In this simplified architecture, elements in red highlight the feature management 
roles covered by a feature store. From left to right:

•  Data is read by Databricks, connecting to standard data formats, stores or 
streams

•  Raw data in so-called Bronze tables is ETL’d with open source tools like 
Apache Spark

•  This and the resulting Silver tables are managed in the open Delta format

•  The Databricks Feature Store runs feature engineering transformations built 
on Spark — in batch or streaming — on Silver tables, and stores resulting 
feature tables in Delta

•  The Databricks Feature Store feeds data and feature information to a 
modeling process

•  Open source modeling libraries are used to build models, possibly on  
Spark, and are managed with open source MLflow

•  The model is deployed, whether as a batch or streaming job using Spark,  
or as a REST service (inside Databricks or on Kubernetes, etc.)

In this view, the Databricks Feature Store simplifies what might otherwise be a 
standard feature engineering pipeline, feeding a standard model tracking and 
deployment process. Adopting it doesn’t entail much change in either of those 
approaches, but instead purposefully integrates with them. The Databricks 
Feature Store eliminates the need to implement manual tracking and monitoring 
of feature creation and exploration, and enables out-of-the-box reuse.

I N P U T O U T P U TP R O C E S S

DATA ENGINEERING MODELINGFEATURE STORE

Discovery Transformations Lineage REST APIRaw Data
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Runtime inputs vs precomputed inputs

If a feature store can manage precomputed values that feed a model, then a 
good feature store should be able to help models find and load those values 
automatically. The Databricks Feature Store does this and makes an explicit design 
choice to integrate directly with model tracking and deployment managed by 
MLflow. The features that a model needs become an implementation detail of the 
model, and not something exposed to the caller. The caller does not, for example, 
need to load features on the model’s behalf and hand them to the model. The 
caller is not even aware of what features are required.

This affects the model’s input schema, and for the better. Because models are 
often treated as services, produced in one context and consumed in another,  
it might be better to call this the model’s “API,” because that is how it behaves. 
The less the caller has to marshal to invoke this model API, the better.

That is, a customer churn model might need many features as input: transaction 
totals, demographic information, services used. However, as a service that 
predicts whether a customer will churn, it would ideally take just one input: a 
customer ID. Why should the caller have to supply more than this?

This helps decouple the model from its caller. If the model controls what features 
it needs to look up and add, then it may more easily vary its input features 
without requiring updates to all callers. Those callers would otherwise have to 
update at the same time that an updated model is deployed if the model needs 
new features.

It may also be advantageous to avoid making the caller create and supply 
features. Callers deployed “at the edge,” outside of an enterprise architecture, 
might otherwise require direct access to raw data in order to compute features. 
Reading and sending that data might be slow, costly or insecure.

Feature Architecture

MODEL                                      MODEL                                      

C A L L E R - S U P P L I E D  F E AT U R E S W I T H  F E AT U R E  S T O R E

CALLER

ID

CALLER

ID

FEATURE STORE

Feautures

Features

ModelModel
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Why isn’t everything a feature?

If everything the model needs as inputs were managed as features, then the 
input to the model could become just an identifier, with the model looking up 
what it needs by that identifier. In this customer churn model, the only thing 
needed at inference time would be a customer ID. 

Runtime inputs

Unfortunately this isn’t usually possible. The model’s prediction may depend 
on facts that are only known at runtime, not ahead of time, and thus not 
precomputable as a feature. For example, in the context of a customer churn 
model, it may be useful to know whether someone who had called customer 
service recently escalated the issue to a manager. This can be known and 
recorded after the fact, and used to learn from later, but it is not a previously 
known fact that can be looked up from the feature store when deciding whether 
the customer on the phone right now with a manager is likely to churn.

This is an example of a model input that can’t be managed as a feature for this 
model. The caller has to supply it, because it is not known ahead of time. It’s 
possible that this piece of information becomes a feature in the context of 
another model, where the last-known value recorded ahead of time is just fine.

Why couldn’t the support call escalation be recorded quickly as a feature 
and looked up? It could, but it’s unlikely to be a useful idea. There is latency. 
Information can make its way through a streaming architecture to a job that 
computes, stores and syncs new feature values only so fast. Even though that  

 
 
could happen in seconds, that may not be fast enough in the context of a model 
serving real-time requests. Even if it is fast enough, it’s probably undesirable 
for the architecture to go to the trouble of storing and rereading a fact that the 
caller already knows and can supply.

In short, choosing what to store and use as a feature has effects on the “API” of 
the resulting models, and in a good way. How models are used will determine 
what makes sense to store as a feature. 

Labels as features

Should ground truth labels be managed in a feature store? These are not inputs 
to a model, but the correct outputs. In that sense, they do not seem to belong in 
a feature store, which is primarily concerned with managing model inputs. 

They could be managed in a feature table. Some attribute of a customer, for 
example, that is to be predicted by one model could conceivably also be an 
input to another type of model. Perhaps customer lifetime value is predicted by 
one model, and that value is used as input to a churn model. The output from the 
first model could be written to a feature table and managed as input to another.

In a situation like this, it’s important to not inadvertently use a label or features 
derived from the label in a model predicting that label.
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Features for unstructured data

Feature stores adopt a tabular paradigm, where features are organized 
into tables with typed columns and even a primary key. How do so-called 
unstructured data fit into this seemingly structured design?

Unstructured data isn’t really unstructured, it’s just not tabular. This term 
typically (and misleadingly) refers to images and text. Of course, machine 
learning is known for working wonders on images and text, learning to classify or 
even generate novel pictures and articles. They need a place in a tool designed 
to support machine learning.

The problem isn’t whether unstructured data can be stored; they at least can 
be encoded as bytes, and bytes could be stored in a feature store table, like any 
database table.

However, unstructured (or simply differently structured) data is “raw” data in 
the feature store paradigm, like the individual transactions that might feed that 
customer churn model. They’re valuable data, but they don’t offer reusable, 
derived information.

 
 
Note that models that consume text or images don’t really handle them as bytes 
anyway. A key step in many deep learning models is to learn an “embedding” of 
such data. An embedding is a vector, or list of numbers, that usefully summarizes 
the input in some way. It can condense a large, complex text document or video 
input, for example, into a compact vector that is more meaningful for learning 
tasks and ready to feed into a model. However, an embedding can be expensive 
to compute.

Therefore, embeddings of unstructured data are good candidates for features. 
For example, a company that maintains the text of a user’s forum posts might 
embed the posts and save those embeddings as features, as a useful summary 
of the posts. Many machine learning tasks that need to learn about forum posts 
could then reuse the embedding.

Architecturally, embeddings are just arrays of floating-point values and can be 
stored as such. There is nothing special about this type. 
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Handling time dimensions

Features are aggregations over raw data and describe the characteristics or 
behavior of an entity that the feature represents. Invariably these feature values 
vary over time, and as such, features are inherently time series data. It’s easy 
to overlook this time dimension when reasoning about a feature store’s design. 
Typically, for online model scoring, it’s only the latest value of features that 
matters, and in order to ensure high accuracy of the model, the online feature 
stores are typically kept up to date, with the latest feature values accessible for 
model scoring. In some cases, the latest feature values are computed on the fly 
from raw data, which may be available in online data sources. However, doing 
so may lead to data skew, as previously discussed. For this reason, these latest 
feature values are published for the offline feature tables to online stores. That 
raises the question: Is it sufficient to store only the latest feature values in offline 
feature tables, or should it store all historical time series values for features?

When training a model, using only the latest feature values may lead to 
inaccuracies. For example, let’s consider a data scientist training a customer 
churn model with the last two years of data from various data sets, such as user 
interactions (clicks, purchases, returns) and user communications. If the training 
pipeline joins this data with only the latest feature values for each customer, it 
would cause the training code to see incorrect data, since the latest features 
may already have included the effect of the user interactions in the past. This is 
referred to as “data leakage,” and in order to avoid this, the data scientist needs 
to employ techniques to ensure that each training row is joined with that user’s 
feature values at the event time for that user interaction. Hence, when designing  

 
 
feature tables to store time series features, it is important to record the ‘event 
time’ or ‘timestamp’ or express the time dimension in addition to the primary 
keys. Let’s explore different techniques used to achieve this. 

Native technique:  
Handling time series using a timestamp column as primary key

When using features from a previous point in time for model scoring or training, 
one of the techniques employed is to define a column that encodes the event 
time. Feature values would be computed and stored for many points in time, not 
just the current latest value. For this, a user can create a table with a timestamp 
or date column as part of the table’s primary key. In the customer churn example, 
(customer_ID, ’date’) could be used as the primary key, and feature store logic 
could produce features per customer per month. At inference time, a date would 
have to be passed along with the customer ID, at least, in order for the feature 
store to know which feature values to retrieve.

customer_id date tenure est_lifetime_value ...

date 2021-11-01 2 901.32 ...

tenure 2021-11-01 6 5828.80 ...

est_lifetime_
value 2021-12-01 7 5703.31 ...

... ... ... ... ...
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However, it would be inconvenient if time-based keys were treated like other 
primary keys and the feature store lookup required an exact match on the time 
value. A caller would have to know exactly the time at which the desired features 
were computed when presumably the caller just wants the latest value as of 
that time. This doesn’t match the simpler case without time-based keys, where 
implicitly the latest value is retrieved, no matter when it was computed. 

Time series feature tables

For that reason, the Databricks Feature Store supports time series feature tables. 
When creating one, you can specify an optional column that represents the 
time scale. This is a first-class field of the feature table, called a timestamp key. 
Internally, this column will be used along with the primary keys to determine data 
uniqueness and for “merge” semantics when adding new features to the table. 
However, in the feature lookup workflow, these timestamp keys will be used in 
native “as of” joins. Given a time value, the join will match the latest time in the 
table that isn’t after the given time value.

So, in the churn example, a caller may pass a customer ID and a time, and  
the model would look up the latest feature values for that customer “as of” the 
given time.

NOTE: In the churn example, the timestamp key (date) is of DateType. The 
Databricks Feature Store supports specifying a timestamp key of either 
DateType or TimestampType (for specifying more granular event time). In the 
latter case, an “as of” join will work in the same manner to look up the latest 
feature values for that customer “as of” the given time.

Using a particular time in the past for inference is an unusual use case, but it’s 
useful for backtesting a model with feature values as of a particular time in 
history. However, time is still important as a dimension in a feature table even if 
you only query for ‘now’. 

Historical feature values

It may be important to retrieve previously computed feature values or get the 
state of a feature table at the time of model training or inference for auditability 
or reproducibility purposes. Thankfully, this does not require any extra 
consideration in the Databricks Feature Store. Because it is built on Delta tables, 
which keep track of changes to the underlying data via the transaction log.

CAUTION: Looking up historical feature values will use the compute timestamp 
for the feature table and provide a snapshot of the table as it was at a particular 
time in the past. While this can be used for the purpose of auditing or querying 
a snapshot at a single point in time, this mechanism has several limitations when 
used to train models with features as of a particular event time in the past. 

Features over time during training

Putting that aside, time may still be important in a feature table to support 
model training. Consider that in a customer churn model, much more is known 
about a customer than the current state. There is a whole history of states.  
At many points in time, the customer did not churn — until the customer 
(perhaps) did. When using this data to train a churn model, it is important to use 
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all of that information so the model can train from examples that caused the 
users to not churn and differentiate from examples that caused churn. For this 
purpose, a data scientist may choose to use data sets such as user interactions 
(clicks, purchases, returns), user communications and other activity-type data 
sets as the main sample points for training and to join user features as of the 
event time in each of the data sets.

The timestamp key is not returned or used in training, and typically it would 
not be. However, it becomes necessary as input at inference time nevertheless. 
Callers will supply the time as of which the inference should be made, and this 
could simply be the current time/date. 

Time dimensions and online stores

Time series feature tables in the batch layer (Delta) can grow large, with a 
row per customer and month — not just per customer — in this example. The 
historical data is, of course, important for model training. This can also be 
required for batch scoring where necessarily older data is being scored and the 
model expects the feature values “as of” the time of that batch of data. However, 
if inference is always made as of “now” (typically in online scoring), then 
historical feature values are unnecessary at inference time.

While an offline store based on Delta can scale easily, this may present a 
challenge for the online store. When publishing features from time series feature 
tables to online stores, the Databricks Feature Store will only publish the latest 
feature values (using the timestamp key) for each primary key combination.  
This new batch of “latest” feature values is then merged into the online store 
such that there is only one row per unique primary key value. In the future,  
we will support multiple historical snapshots in online stores.  

Grouping features into tables

Of course, a feature table of customer-related features is likely keyed by a 
customer ID. A feature table of store-level sales data might be keyed by a 
combination of region ID and regional store ID. These two must be separate 
feature tables, of course, as they contain information about different entities. 
The key often determines what features could, or could not, exist in a single 
feature table.

Could two different feature tables contain customer-related features, keyed by 
customer ID? It’s possible. Which to choose is a data architecture decision, just 
as with any database tables. A few factors influence that decision. 
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Security

Some features may be considered sensitive information, such as a customer’s 
income or age. Other information might require less control, like a count of 
customer transactions. Some use cases and teams may not have access to more 
sensitive information for policy or regulatory reasons.

Enforcing different access controls for different customer information is simplest 
when the sensitive data exists in a different feature table. Table-level access is 
easier to manage, and at this time, the Databricks Feature Store does not yet 
support column-level ACLs. For example, maybe customer income and age are 
stored in a tightly controlled table, while average transaction size could exist in a 
less-controlled table. 

Source

One can imagine customer features originating from many sources as well. 
Transaction logs may produce transaction-related features like total spend; web 
logs might provide activity-related features. The data pipelines that consume 
these sources might be separate jobs, even managed by separate teams. 

It’s more natural for separate pipelines to feed separate feature tables. Data 
engineers manage a transaction data pipeline that populates and updates a 
transaction feature table, rather than a job that tries to update one large central 
table that many teams are updating.  

Performance

Separating features into tables can be more performant at scale too. Imagine 
that some customer data is slow-changing, like age or income. Some data is 
fast-changing, like daily average usage. Segregating the fast-changing features 
into a separate table could be more performant to update frequently, rather than 
updating one table that also contains features that rarely change. This is more 
relevant when considering the online store, to which features are synced. The 
Databricks Feature Store syncs feature tables to an online store at the table level. 
If all customer features are in one feature table, the whole table is replicated 
online, even if only subsets of it are updated.

1 4The Comprehensive Guide to Feature Stores

https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2


Migrating from existing feature storage

The audience for a feature store is typically a team or organization that has 
already begun to develop and deploy models, and so likely has some strategy in 
place for managing features, even if only an ad hoc one. To build a model at all, 
feature engineering has to happen somehow.

A basic training pipeline almost always has a few essential components:

•  Loading and transforming data with tools such as pandas and Spark

•  Joining transformed data with other data sources

•  Fitting an ML pipeline, which:

	 - Applies model-specific transforms (e.g., pretrained embedding,  
	    one-hot encoder)

	 – Fits a model

That is, the data transformation is often split into a portion that happens 
outside of model training, and a portion that can happen within the model’s 
own “pipeline” abstraction. The most common examples are scikit-learn, whose 
Pipeline abstraction and transformers are frequently used with scikit-learn 
and other libraries, and Spark ML’s similar Pipeline abstraction. Deep learning 
frameworks like Keras or PyTorch likewise allow some preprocessing in a model 
with the addition of layers that normalize, resize, etc.

 

 

 

It would be convenient if all featurization and encoding could live entirely within a 
modeling tool’s pipeline. Then the featurization logic would all travel with the model 
artifact. However, most pipeline libraries only support simple transformations 
like scaling, imputation, etc., and it’s difficult to extend them to support custom 
transformers. While possible to implement custom transformers, it is extra work, 
and typically rules out using tools like Spark for large-scale transformations (e.g., 
Spark can’t be used in a scikit-learn pipeline). It again raises issues of managing 
that code’s dependencies and performance at runtime.

Operating a Feature Store
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If you’re moving to a feature store like the Databricks Feature Store, how does 
a training workflow like this translate? Generally speaking, it’s the feature 
engineering that comes before model (pipeline) fitting that migrates to a feature 
store. The portions inside a pipeline abstraction can stay.

Why? The transformations found in a pipeline are also likely to be specific to the 
model itself, like applying scaling that was fit to the model’s training data. That is, 
it may not make sense to manage a set of scaled features created for one model, 
as it isn’t usefully reusable in other models.

Migrating the loading and transformation data to the Databricks Feature Store 
can be simple, even very simple, depending on the tools already in use. For 
example, if the transformations are already expressed as Spark code, then it’s 
only a matter of wrapping up that code in a function and invoking it slightly 
differently, because the Databricks Feature Store just relies on transformations 
expressed in terms of Spark:

Alternatively, the transformation code might be expressed using pandas, another 
popular Python package for data manipulation. This code has to be ported to 
Spark to work with the Feature Store API. This can be relatively simple now that 
Spark 3.2.0 supports the pandas API on Spark (formerly known as Koalas).

It’s possible, even likely, that an existing machine learning pipeline already writes 
features to some table. If so, those existing tables can be registered as feature 
tables instead of creating a new one (see register_table instead of create_table). 
Note that in this case, it’s not advisable to continue writing to the table directly 
without using the Feature Store APIs, as the Databricks Feature Store is trying to 
manage and track writes to and reads from the table, as well as guarantee things 
like key uniqueness.

Any logic to join results from other data sources then becomes FeatureLookups 
in the Databricks Feature Store, instead of manual joins:

Before

raw_data = spark.read...
features = raw_data.
select(...).agg(...)...
...
features.write(...)

After

fs = FeatureStoreClient()

def compute_features(raw_data):
  features = raw_data.select(...).agg(...)...
  ...
  return features

fs.write_table(..., compute_features(...))

Before

input_df = spark.read...
training_set_df = input_
df.join(table, on=key)...
join(...)

After

fs = FeatureStoreClient()

# input_df only needs to contain the key and target
input_df = spark.read…
training_set = fs.create_training_set(input_df, 
    [FeatureLookup(table_name = table, lookup_key = 
key), ...], 
    label=”...”)
training_set_df = training_set.load_df()
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Finally, migrating the modeling process to take advantage of loading features 
from the Databricks Feature Store is, hopefully, mostly an exercise in refactoring 
into simpler code. Modeling proceeds as usual, including creating and fitting 
pipelines; this does not change.

To track the resulting model in a Feature Store-aware way, it’s necessary to 
slightly change how MLflow is used to log the model. (And if you’re not using 
MLflow, you should! It’s necessary in order for the model to transparently join 
features it needs at runtime.) The MLflow model logging method is replaced by a 
wrapper in the Databricks Feature Store client instead:

At inference time, any code that recreates or reinvokes feature transformation 
logic to prepare data for the model to score simply goes away. The model, logged 
by MLflow and wrapped up with logic to look up necessary features, can be 
applied conveniently with the Feature Store client:

Before

with mlflow.start_run():
  ...
  model = pipeline.fit(..., …)
  mlflow.log_metric(...)
  ...
  mlflow.sklearn.log_model(model, “model”)

After

with mlflow.start_run():
  ...
  model = pipeline.fit(..., ...)
  mlflow.log_metric(...)
  ...
  fs.log_model(model, “model”,
    flavor=mlflow.sklearn, training_
set=training_set)

Before

model_udf = mlflow.pyfunc.spark_udf(spark, 
“models:/my_model/production”)
raw_data = spark.read...

# featurize again
transformed = raw_data.
select(...).agg(...)...

# join again
joined = transformed.join(table, on=key).
join(...)
predictions = joined.
withColumn(“prediction”, model_udf(*cols))

After

raw_data = spark.read...
predictions = fs.score_batch(raw_data, 
“models:/my_model/production”)
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This is simpler, and the magic lies in how models are logged with the Feature 
Store client. Take the following example of a model logged with fs.log_model():
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The workflow described below left works for streaming use cases as well. You can 
write feature values to a feature table from a streaming source.

streamingData = (spark.readStream...) fs.create_feature_table(table_name, schema, keys)
# stream to feature table
fs.write_table(table_name, df=streamingData, mode=”merge”) 

Or in the event that your inference data comes from a Spark structured 
streaming pipeline, the same feature store API can be used for inference.

streamingData = (spark.readStream...)
stream_predictions = fs.score_batch(model_uri, inference_stream)

You can also stream feature tables from the offline store to an online store with:

fs.publish_table(name=feature_table_name, online_store=online_store, streaming=True) 

In addition to the serialized model, a feature_spec.yaml file describes the 
feature lookups required to reconstruct a row at inference time. The model now 
possesses information on the features it needs, and conversely, the features 
possess information on the models they serve. If we look at the Feature Store 
UI, we see which feature columns are associated with models that have been 
promoted to the MLflow Model Registry:
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Promotion from dev to prod

Productionizing anything leads eventually to the age-old question: dev vs prod. 
How do artifacts move from development to production? 

We take for granted that code is developed, tested and only then rolled out to 
production.  Models need this, too, though it’s more ambiguous: Are models 
pushed from dev to production, or is the code that builds the model pushed  
to production? And data is typically not “promoted” from dev to prod at all, in 
any sense.

A feature store like the Databricks Feature Store falls ambiguously into this 
spectrum, because it touches each of these elements. A feature store runs 
featurization code to produce data that is used to produce models. 

Promote features as code, not data

One way or the other, featurization code needs to be tested, and so the 
development environment will use an instance of a feature store to test its logic. 

Code that computes features is code, and can be tested, versioned and 
deployed like other code, from development to production. For example, 
featurization notebooks may be developed against a branch of a git repository, 
and when changes are tested and vetted, merged to a production branch in git 
and pulled into production.

 
 
That is, production runs featurization code on production data to produce 
production features. Production does not receive “promoted” features from 
development in any sense. The development environment will have a feature 
store for functional testing, but its data may not be used, or it might be used 
only as part of testing in development. 

Promote features after data eng, before modeling

Features have upstream dependencies, such as data engineering outputs 
that featurization logic depends upon. Features, in turn, are depended upon 
by models used in inference. As with any other architectural component with 
dependencies, deployment to prod has to roll out in order.

Featurization code that depends on new data engineering outputs can’t deploy 
before the new outputs are operating in production. And models that depend on 
new features can’t be promoted to production before the featurization logic that 
produces them is rolled out.

The Databricks Feature Store tracks metadata about upstream and downstream 
dependencies to help developers understand these dependencies and make it 
easier for them to plan promotion accordingly.
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Migrating feature definitions

In production, models are retrained as new data arrives with new information 
about the world. Data science doesn’t sit still either, and teams also improve the 
accuracy of a model over time by altering the model itself or the data that it is 
fed for training. 

Tools like MLflow’s Model Registry manage successive versions of a logical model 
and provide workflow for the production promotion process. What about feature 
definitions? Teams may add new predictive features, or modify or fix existing 
definitions. This requires care, like any process change.

Adding features

For instance, in the customer churn example, a team may find that knowing the 
average price increase (or decrease) over the customer’s tenure helps more 
accurately predict the customer’s propensity to churn. This is the simplest case. 
The feature table definition would return the new column:

def compute_features(raw_data):
  ...
  features = feature.withColumn(“avg_price_increase”, ...)
  ...
  return features

To update existing customers with the newly computed value, use this merge mode:

fs.write_table(..., ..., mode=”merge”)

 
 

 
 
The underlying feature table will get a new column, ‘avg_price_increase’, on the 
next execution. Any customers passed as input to ‘compute_and_write’ will 
have this new feature value computed, and their rows in the feature table will 
be updated with the new value (just like other features). It’s ‘merge’ mode that 
chooses to update, rather than append, new rows.

Like adding a new column to a database table, this “sometimes” doesn’t cause 
problems for other consumers of the table, as it simply doesn’t appear when not 
selected. However, just as a new column might disrupt callers depending on the 
result of ‘SELECT *’, it’s important to consider whether other model pipelines are 
selecting all features from the feature table. 

For example, a feature lookup on this feature table that selects all features will 
see this: 

FeatureLookup(table_name=”customer_features”,
              lookup_key=”customer_id”)

Any model pipeline doing so will start to look up this new feature, use it in 
training and expect it at runtime. This is probably not desirable. Instead, consider 
having pipelines enumerate exactly what they look up:

FeatureLookup(table_name=”customer_features”,
              lookup_key=”customer_id”,
              feature_names=[“...”, “...”])
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Deleting features

Consider if, later, the team finds that ‘avg_price_increase’ wasn’t so predictive 
after all. Model pipelines would stop including it in training, and so would not look 
for it at inference time. Once all models stop using a feature, it would be safe to 
stop computing it. The compute_features function’s definition can simply not 
compute and instead returns this as a column.

At the time of this writing, the API does not allow completely deleting a feature 
from a feature table. It could be overwritten with nulls, or ignored. It may, in fact, 
be desirable to keep it for later reproducibility of older models.

Of course, it’s important to know if all models have stopped using the feature 
before deleting it. The Databricks Feature Store records which models are 
known to use a feature by recording which models are logged to MLflow via the 
Databricks Feature Store client’s log_model method. If used consistently, this 
helps teams understand when a feature is truly unused. Note that the Databricks 
Feature Store can’t track usages of features that do not proceed through its client. 

Modifying features

Changing a feature’s definition is more involved. Instead, maybe the team finds 
that ‘avg_price_increase’ was computed incorrectly. Fixing the logic is easy — 
just correct the code that computes the feature, and its next execution (with 
merge mode) will update the feature table with values computed according to 
the newest logic.

 
 
Existing models trained on the older definition have learned about average price 
increase based on a flawed computation, but fixing this input without retraining 
the model could actually make its predictions worse, as the model may have, to 
some extent, learned to correct for the error.

Synchronizing the release of the new computation with the release of a new, 
retrained version of every model that depends on the feature could be quite 
difficult. Ideally, models retrained on the corrected definition would use the new 
value, and existing models would continue to use the old value in the meantime.

This means that, for a time, the feature engineering pipeline must produce both 
old and new values. In the Databricks Feature Store, there is only one value of 
a feature at a given time. At the moment, there is no notion of feature versions. 
It’s possible to achieve this effect manually, though a little inelegantly. Use a 
naming convention to separate new from old versions, and produce both. Here 
that means continuing to compute ‘avg_price_increase’ but also producing, say, 
‘avg_price_increase_v2’:

def compute_features(raw_data):
  ...
  features = feature.withColumn(“avg_price_increase”,\
      ... old logic ...)
  features = feature.withColumn(“avg_price_increase_v2”,\
      ... new logic ...)
  ...
  return features

Of course, eventually the old feature may be “deleted” per above.
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Incremental updates and backfilling features

So far, while it may be clear how to define featurization logic, and have the 
feature store execute it, persist results and record metadata about featurization, 
it’s not necessarily clear where its input comes from. What is raw_data in the 
examples above?

This is caller-supplied in the Databricks Feature Store paradigm. The job that is 
invoking write_table decides what data to read, as this is an essential part of the 
overall featurization logic.

The input to the featurization logic has to contain all the columns that the code 
expects. What rows should be passed, though? It depends. 

Case: New rows only

Perhaps the simplest case is one where the upstream raw data is not modified, 
only appended to. Featurization only has to happen once. It isn’t necessary to 
reread past raw data, re-featurize it and rewrite the values to the feature store if 
the past data and the featurization logic haven’t changed.

In this case, where the upstream raw data has a time dimension, it may be a 
matter of selecting the data with timestamp after the last featurization job 
ran. There are ways to figure this out in a Delta table as well without an explicit 
timestamp. This is also how the featurization job would work if the upstream  
raw data is a stream, as by nature only “new” records are arriving.

Featurization logic is often not that simple, however. For example, upstream 
data may be raw customer transactions. New transactions arrive for existing 
customers. This may mean that the latest value for customer features like 
“average spend” changes for those existing customers. The same idea applies, 
but the featurization logic may be updating, rather than adding new feature  
table entries. 

Case: All rows

At an extreme, it’s possible that some features are a function of all historical 
data. Imagine calculating customer lifetime value, which may be a complex 
function of all customers. If any customer data changes, all estimated lifetime 
values may change. In this case, it would be necessary to supply all raw data 
every time write_table is invoked.

It’s always possible to rerun featurization on all data, recompute all features  
and rewrite updated values. This may be slow, but it won’t be incorrect.

Many real-world use cases fall in points in between. Some features may be 
computable and updatable only based on current, new data, while some may 
require all data, and some may require a mixture. 

It may be necessary to split featurization workloads into separate jobs, with 
some that compute based only on new data, where possible, and others that 
compute separately on all data each time, where not possible.
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The problem of backfill

Consider a simple example of a feature in a customer churn model, like 
’maximum call length’. As new raw call data arrives, it can only affect the 
maximum call length of customers that made a call. Typically these features can 
be computed only over newly arriving data as a maximum of the current max, 
and the length of the current call, for each customer. 

However, consider the day this feature is added to the featurization logic.  
It will compute correctly for all customers that made a call, but will not have 
been computed for anyone else. This may be a problem; the feature needs  
to be “backfilled.”

One solution is to run the featurization logic one time on all data to backfill.  
This is probably the simplest approach, as the featurization logic is just a 
function that can be applied to a different set of data in code.

This issue also arises when a feature definition is modified (see “Modifying 
Features” above). An updated feature definition might only be applied to new 
data going forward, and may require manually executing it on past data to 
update for all features.
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Data science vs data engineering ownership

Feature stores address the problem of feature engineering, but feature 
engineering is adjacent to both the more general data engineering that precedes 
it upstream and the machine learning work that consumes features downstream. 
The role of the data engineer is fairly distinct from that of the data scientist. So, 
which group owns the feature engineering in between them? 

Data engineering?

Features are generated from raw data that resides in files or tables. Data 
engineers are responsible for maintaining jobs to generate curated data sets. 
This includes developing, scaling and troubleshooting these pipelines.

In the customer churn example, data engineers might be responsible for making 
data available from different sources such as a mobile app, website or call 
center. Data engineers can ensure data is accessible, clean and reliable.

This partly also describes feature engineering — transforming data, possibly  
at scale, and troubleshooting transformation pipelines. There’s a natural 
argument that it’s just an extension of data engineering, as it will involve many of 
the same skills.

If so, lineage from a feature store framework would be crucial for data engineers 
to monitor in order to know how the feature data is used downstream.

Data science?

Of course, data engineers may know more about how to run feature engineering 
pipelines, but it’s the data scientists that know what needs to be produced. 
Often, new features might be tried rapidly, so it could make sense for data 
science to own defining features and avoid round trips through another team to 
modify features.

Yet there is a difference between concocting a feature for an experiment and 
productionizing and sharing it. After all, the premise of a feature store is to 
publish useful maintained features. It’s possible that data scientists iterate 
outside the feature store framework to evaluate features and work later with 
data engineering to move that code and featurization into the feature store. In 
the customer churn example, that is, if a data science team wants to experiment 
with ‘log of average price increase’ as a feature, it’s not as if they need to alter 
the feature store to merely try out that value as a model input. They might 
temporarily generate and test this feature without using the feature store.

Data scientists may only want to define and prototype features, and hand them 
off to scale and harden, just as with data engineering in general.

Finally, to the extent a feature is shared, many data science teams depend on 
it, but there is only one feature store and pipeline generating it. It may be more 
natural for a group outside of any single data science team to own the features 
that several teams share.

Organizational Issues
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The answer?

It depends, but on balance, the team that has the 
most familiarity with data pipelines should own 
feature engineering and the feature store. In large 
companies, that’s the data engineering team. The 
feature store is a data store, and its contents often 
transcend individual data science projects. Data 
science teams can still iterate and experiment 
directly with data without involving data engineering 
every time, even if so.

At right, the proposal is that feature store elements 
in red, like featurization and storage of features, 
be owned by data engineers. The feature store is 
still touched directly by data science pipelines 
downstream, to the right, and their downstream 
transformation logic may yet feed back into 
featurization pipelines owned by data engineering.

I N P U T P R O C E S S
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Featurization Feature  
Tables  Model Training Model Lineage 

and Tracking
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Raw Data
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This leads us to an even larger discussion — which is outside the scope of this 
book — and that is, how do data engineers, data scientists and production 
machine learning engineers operate together, as a team, with the same data, 
within the same governance and security framework? 

The answer is the data lakehouse. The Databricks Lakehouse is simple, open and 
collaborative, and trusted by thousands of the world’s best companies, from large, 
successful enterprises to new-age digital-native firms. The Databricks Lakehouse 
is a unified platform that supports the full machine learning lifecycle — from data 
ingest, to feature engineering, to model training and tuning, all the way to serving 
and monitoring. It creates a space for data engineers, data scientists, and machine 
learning engineers to collaborate and build better AI solutions.

The Data Lakehouse: One platform for the full machine learning 
lifecycle — from data prep to production ML

COLLABORATIVE  EXPLORATORY DATA ANALYSIS 

Bring data teams together and ensure your data is 
ready for machine learning

C O M P R E H E N S I V E  M O D E L  L I F E C Y C L E  M A N A G E M E N T

Leverage a single platform across the full ML lifecycle for 
tracking, governance and reproducibility

RAPID,  S IMPL IF IED MACHINE  LEARNING FOR EVERYONE

Built-in no-code capabilities and AutoML help proliferate 
ML across the organization to a variety of personas
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