
All Roads Lead to
the Lakehouse

EBOOK

A deep dive into data ingestion with the lakehouse

Contents

Introduction ... 03

Life of a Data Engineer .. 04

Ingesting From Cloud Object Stores ... 05

 COPY INTO .. 06

 Auto Loader .. 09

Ingesting Data From External Applications ... 13

 Partner Connect .. 13

2All Roads Lead to the Lakehouse

https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

Organizations today are inundated with data siloed across various on-premises
application systems, databases, data warehouses and SaaS applications. This
fragmentation makes it difficult to support new use cases for analytics or machine
learning, so many IT teams are now centralizing all of their data with a lakehouse
architecture built on top of Delta Lake, an open format storage layer.

The first thing data engineers need to do to support the lakehouse architecture is to
efficiently move data from various systems into their lakehouse. Ingesting data is a
critical first step in the data engineering and management lifecycle.

Introduction

3All Roads Lead to the Lakehouse

https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

The primary focus of data engineers is to provide timely and reliable data to downstream

data teams at an organization. Requests for data can come from a variety of teams, and for

a variety of data types. For example:

• Marketing team requests for Facebook and Google ad data in order to analyze spend and

better allocate their budget for ads

• Security team looking to get access to a table with low latency security data from Kafka,

in order to run rules to detect intrusions into the network

• Sales operations requesting customer data from Salesforce to enrich existing tables

• Finance team hoping to find a way to automatically ingest critical data from Google

Sheets or transaction data from AWS Kinesis

In each of these common scenarios, data engineers must create usable and easily

queryable tables from semi-structured and unstructured data. Beyond writing queries to

retrieve and transform all this data, the data engineering team must also be concerned

with performance, because running these queries on an ongoing basis can be a big load on

the system.

Data engineers face the challenge of constant requests and ongoing business

requirements, as well as an ever-changing ecosystem. As business requirements change,

so do the requirements around schemas, necessitating custom code to handle the

changes. With all of these challenges, the work of a data engineer is extremely critical, and

increasingly complex, with many steps involved before getting data to a state where it can

actually be queried by the business stakeholders. So how do data engineers get the data

that each of these teams need at the frequency, with the freshness, and in the format

required?

Life of a Data Engineer

W H AT I S
D E LTA L A K E ?

Before thinking about ingestion into Delta Lake, it’s important to

understand why ingesting into Delta Lake is the right solution in

the first place. Delta Lake is an open format data management

layer that brings data warehouse capabilities to your open data

lake. Across industries, enterprises have enabled true collaboration

among their data teams with a reliable single source of truth

enabled by Delta Lake. By delivering quality, reliability, security and

performance on your data lake — for both streaming and batch

operations — Delta Lake eliminates data silos and makes analytics

accessible across the enterprise. With Delta Lake, customers can

build a cost-efficient, highly scalable lakehouse that eliminates

data silos and provides self-serving analytics to end users.

4All Roads Lead to the Lakehouse

https://databricks.com/product/delta-lake-on-databricks
https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

Ingesting From Cloud Object Stores

There are a number of common ways in which data engineers ingest data into Delta Lake. First and foremost is ingesting files from

cloud object stores such as Azure Data Lake Storage, AWS S3 or Google Cloud Storage. Typically, customers are looking to migrate

existing tables or perform incremental ingestion into Delta Lake, and to do so, they can leverage tools like CONVERT TO DELTA,

COPY INTO, and Auto Loader. We will focus on Auto Loader and COPY INTO here.

COPY INTO
COPY INTO is a SQL command that allows you to perform batch file ingestion into Delta

Lake. COPY INTO is a command that ingests files with exactly-once semantics, best used

when the input directory contains thousands of files or fewer, and the user prefers SQL.

COPY INTO can be used over JDBC to push data into Delta Lake at your convenience.

Auto Loader

Auto Loader is an optimized data ingestion tool that incrementally and efficiently

processes new data files as they arrive in cloud storage with minimal DevOps effort. You

just need to provide a source directory path and start a streaming job. The new structured

streaming source, called “cloudFiles”, will automatically set up file notification services that

subscribe file events from the input directory and process new files as they arrive, with the

option of also processing existing files in that directory. Auto Loader has interfaces through

Python and Scala, and can be used with SQL through Delta Live Tables.

5All Roads Lead to the Lakehouse

https://docs.databricks.com/spark/latest/spark-sql/language-manual/delta-convert-to-delta.html
https://docs.databricks.com/spark/latest/spark-sql/language-manual/delta-copy-into.html
https://docs.databricks.com/spark/latest/structured-streaming/auto-loader.html
https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

COPY INTO is a powerful yet simple SQL command that allows you to perform batch file

ingestion into Delta Lake and perform many of the use cases outlined in this section. COPY

INTO can be run once, in an ad hoc manner, and can be scheduled through Databricks jobs.

While COPY INTO does not support low latencies, you can trigger a COPY INTO based on

events by using cloud functions such as AWS Lambda or through orchestrators like Apache

Airflow. COPY INTO supports incremental appends and simple transformations.

COPY INTO is a great command to use when your source directory contains a small number

of files (i.e., thousands of files or less). To ingest a larger number of files, we recommend

Auto Loader, which we will cover later in this eBook.

Common Use Cases for COPY INTO
Ingesting data to a new Delta table

A common ad hoc ingestion use case using COPY INTO is to ingest data into a new Delta

table. To copy data into a new Delta table, users can use CREATE TABLE command first,

followed by COPY INTO.

Step 1: CREATE TABLE my_table (id INT, name STRING, age INT);
Step 21: COPY INTO my_table
FROM ‘s3://my_bucket/my_path’ WITH (
 CREDENTIAL (
 AWS_ACCESS_KEY = ‘*****’,
 AWS_SECRET_KEY = ‘*****’,
 AWS_SESSION_TOKEN = ‘*****’
)
 ENCRYPTION (
 TYPE = ‘AWS_SSE_C’,
 MASTER_KEY = ‘*****’
)
)

FILEFORMAT = CSV
FORMAT_OPTIONS (‘header’ = ‘true’)

The code block above covers the AWS temporary in-line credential format. When you use

in-line credentials in Azure and AWS, the following parameters are required for each type of

credential and encryption:

Credential Name Required Parameters

AWS temporary credentials
AWS_ACCESS_KEY

AWS_SECRET_KEY

AWS_SESSION_TOKEN

Azure SAS token AZURE_SAS_TOKEN

Encryption Name Required Parameters

AWS server-side encryption with

customer-provided encryption key

TYPE = ‘AWS_SSE_C’

MASTER_KEY

Azure client-provided encryption key
ATYPE = ‘AZURE_CSE’

MASTER_KEY

Appending data to your Delta table

To append data to a Delta table, users can leverage the COPY INTO command. COPY INTO

is a powerful SQL command that is idempotent and incremental. When using COPY INTO,

users point to a location of files, and once those files are ingested, Delta Lake will keep

COPY INTO

1 If you only have temporary access to a cloud object store, you can use temporary in-line credentials to ingest data from
the cloud object store. When you are an admin or with ANY FILE access, and the instance profile has been set for the
cloud object store, you do not need to specify credentials in-line for COPY INTO.

6All Roads Lead to the Lakehouse

https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

CREATE TABLE my_delta_table (dummy string);
COPY INTO my_delta_table
FROM ‘s3://my-bucket/path/to/csv_files’
FILEFORMAT = CSV
FORMAT_OPTIONS (
 ‘header’ = ‘true’,
 ‘inferSchema’ = ‘true’,
 ‘mergeSchema’ = ‘true’
)
COPY_OPTIONS (‘overwrite’ = ‘true’, ‘overwriteSchema’ = ‘true’)

Ingesting a CSV file without headers

If you are looking to ingest a CSV file that doesn’t have headers, columns will be named as

_c0 or _c1, with the index of the column. You can use the double colon syntax to cast the

data type that you want and then alias these columns to whatever you want to call them.

COPY INTO my_delta_table
FROM (SELECT
 _c0::int as key,
 _c1::double value,
 _c2::timestamp event_time
 FROM ‘s3://my-bucket/path/to/csv_files’)
FILEFORMAT = CSV

track of the state of files that have been ingested. Unlike commands like INSERT INTO, users

get idempotency with COPY INTO, which means users are prevented from ingesting the

same data twice to the same table.

COPY INTO table_identifier
FROM [file_location | (SELECT expression_list FROM file_location)]
FILEFORMAT = JSON | CSV | TEXT | PARQUET | AVRO | ORC | BINARYFILE
[FILES = [file_name [,...] | PATTERN = ‘regex_pattern’]
[FORMAT_OPTIONS (‘data_source_reader_option’ = ‘value’ [, ...])]
[COPY_OPTIONS (’OPTION’ = ‘VALUE’ [,...])]

One of the main benefits of COPY INTO is that users don’t have to worry about providing a

schema, because the schema is automatically inferred from your data files. Here is a very

simple example of how you would ingest data from CSV files that have headers, where you

leave the tool to infer the schema and the proper data types. It’s as simple as that.

COPY INTO my_delta_table
FROM ‘s3://my-bucket/path/to/csv_files’
FILEFORMAT = CSV
FORMAT_OPTIONS (‘header’ = ‘true’, ‘inferSchema’ = ‘true’)

Using COPY INTO without an existing table2

In the most common case, in order to use COPY INTO, a table definition is required.

However, if you would like to get started quickly and don’t have an existing table or require

a specific schema, you can create your table with a dummy schema. Then, once you run

COPY INTO, you can overwrite the table and overwrite the schema. COPY INTO will actually

infer the data types, and then change your Delta table to have the required schema.

2 This use case will not work in Databricks SQL workspace, as it currently only works on clusters without table ACLs.

7All Roads Lead to the Lakehouse

https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

Evolving schema over time for CSV files3

When ingesting CSV files that have a different number of columns than your existing table,

you can use the option “‘mergeSchema’ = ‘true’”. This option needs to be provided both

as FORMAT_OPTIONS and COPY_OPTIONS. FORMAT_OPTIONS applies to the source data.

Once “mergeSchema” is provided as a format option, Databricks will look at multiple CSV

files and infer the schema across those files. COPY_OPTIONS applies to your Delta table

when you’re running the COPY INTO command. When “mergeSchema” is provided as a

copy option, you’re instructing Delta Lake that it is safe to evolve the schema. Schema

evolution only allows the addition of new columns. Data type changes for existing columns

are not supported.

COPY INTO my_delta_table
FROM (SELECT
 _C0::int as key,
 _C1::double value,
 _C2::timestamp event_time,
 ...
 FROM ‘s3://my-bucket/path/to/csv_files’)
FILEFORMAT = CSV
FORMAT_OPTIONS (‘mergeSchema’ = ‘true’)
COPY_OPTIONS (‘mergeSchema’ = ‘true’)

Fixing bad data

If you find that there is a mistake in the source data file and some of the data you ingested

is bad, you can use RESTORE on your Delta table and set it to the timestamp or version of

the Delta table that you want to roll back to (e.g., to restore to yesterday’s data). Then you

can rerun your COPY INTO command.

Alternatively, if running a RESTORE is not possible, COPY INTO supports reloading files by

the use of the “force” copy option. You can manually remove the old data from your Delta

Lake table by running a DELETE operation and then using COPY INTO with “force” = “true”.

You can use the PATTERN keyword to provide a file name pattern, or you can specify the file

names with the FILES keyword to reload a subset of files in conjunction with “force”.

RESTORE my_delta_table TO TIMESTAMP AS OF date_sub(current_date(),
1);
COPY INTO my_delta_table
FROM ‘s3://my-bucket/path/to/csv_files’
FILEFORMAT = CSV
PATTERN = ‘2021-09-08*.csv’
FORMAT_OPTIONS (‘header’ = ‘true’, ‘inferSchema’ = ‘true’)
COPY_OPTIONS (‘force’ = ‘true’)

3 Limitation: schema evolution with “mergeSchema” in COPY_OPTIONS does not work in Databricks SQL workspace or
clusters enabled with table ACLs.

8All Roads Lead to the Lakehouse

https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

While COPY INTO can solve a lot of the key use cases our customers face, due to its

limitations (scalability), there are many scenarios where we recommend Auto Loader

for data ingestion. Auto Loader is a data source on Databricks that incrementally and

efficiently processes new data files as they arrive in cloud storage with minimal DevOps

effort. Auto Loader is available in Python and Scala, and also in SQL in Delta Live Tables.

Auto Loader is an incremental streaming source that provides exactly-once ingestion

guarantees. It keeps track of which files have been ingested using a durable key-value store.

It can discover new files very efficiently and is extremely scalable. Auto Loader has been

battle tested. We have seen customers running Auto Loader on millions of files an hour, and

petabytes of data per day.

To use Auto Loader, you simply specify ‘readStream’ and the format “cloudFiles”, indicating

that you will use Auto Loader to load files from the cloud object stores. Next, you specify

the format of the file — for example, JSON — as an option to Auto Loader, and you specify

where to load it from.

df = spark.readStream.format(“cloudFiles”)
 .option(“cloudfiles.format”, “json”)
 .load(“/path/to/table”)

Under the hood, when data lands in your cloud storage, Auto Loader discovers files either

through directory listing or file notifications. Given permissions to the underlying storage

bucket or container, Auto Loader can list the directory that you want to load data from

in an efficient and scalable manner and load data immediately. Alternatively, Auto Loader

can also automatically set up file notifications on your storage account, which allows it

to efficiently discover newly arriving files. When a file lands in file notification mode, the

cloud storage system sends a notification to a queuing system. For example, in AWS, S3

will send a notification to AWS SQS. On Azure, a notification is sent to Azure queue storage.

On Google, it’ll be sent to Pub/Sub. Auto Loader can then fetch these event notifications

Auto Loader

from queues, deduplicate these notifications using its key-value store and then process

the underlying files. If there are any failures, Auto Loader will replay what hasn’t been

processed, giving you exactly-once semantics.

Directory listing mode is very easy to get started with. If your files are uploaded to your

cloud storage system in a lexicographical order, Auto Loader will optimize the discovery of

files by starting directory listing from the latest uploaded files, saving you both time and

money. If files cannot be uploaded in a lexicographical order and you need Auto Loader

to scale to high volumes, Databricks recommends using the file notification mode. Cloud

services such as AWS Kinesis Firehose, AWS DMS and Azure Data Factory can be configured

to upload files in a lexical order, typically by providing the upload time of records in the file

path, such as /base/path/yyyy/MM/dd/HH/file.format.

Common Use Cases for Auto Loader
New to Auto Loader

As a new user to the Databricks Lakehouse, you’ll want to ingest data from cloud object

stores into Delta Lake as part of your data pipeline for incremental loading. Here is a simple

example using Python to demonstrate the ease and flexibility of Auto Loader with a few

defined options. You can run the code in a notebook.

stream = spark.readStream \
 .format(“cloudFiles”) \
 .option(“cloudFiles.format”, “csv”) \
 .option(“cloudFiles.schemaLocation”, schema_location) \
 .load(raw_data_location)

9All Roads Lead to the Lakehouse

https://databricks.com/product/delta-live-tables
https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

In order to write to a Delta table from the stream, follow the example below:

stream.writeStream \
 .option(“mergeSchema”, “true”) \
 .option(“checkpointLocation”, checkpoint_location) \
 .start(target_delta_table_location)

Migrating to Auto Loader

As a Spark user, you may be using an existing Spark structured streaming to process data.

To migrate to Auto Loader, all a user needs to do is take existing streaming code and turn

two lines of it into ‘cloudFiles’, specifying the file format within an option.

df = spark.readStream
 .format(“json”)
 .options(format_options)
 .schema(schema)
 .load(“/path/to/table”)

Once it’s converted, users will see instant benefits like scalability and cost reduction. Auto

Loader can scale to trillions of files, unlike the open-source file streaming source. One of

the ways that Auto Loader does this is with asynchronous backfills. Instead of needing

to discover files first, then plan, Auto Loader discovers and processes files concurrently,

making it much more efficient and leading to cost reductions in compute resources.

Migrating a livestreaming pipeline

Migrating a livestreaming pipeline can be challenging, but with Auto Loader, as with COPY

INTO, you can specify a timestamp when the source files are updated or created and Auto

Loader will ingest all modified data after that point.

df = spark.readStream
 .format(“cloudFiles”)
 .option(“cloudFiles.format”, “json”)
 .option(“modifiedAfter”, “2021-09-09 00:00:00”)
 .options(format_options)
 .schema(schema)
 .load(“/path/to/table”)

Schema inference and evolution

Auto Loader provides schema inference and management capabilities. With a schema

location specified, Auto Loader can store the changes to the inferred schema over time. For

file formats like JSON and CSV, where the schemas can get fuzzy, schema inference on Auto

Loader can automatically infer data types or treat everything as a string.

When data does not match your schema (e.g., an unknown column or format), Auto Loader

has a data rescue capability that will “rescue” all data in a separate column, stored as a

JSON string, to investigate later. See rescued data column for more details.

Auto Loader supports three schema evolution modes: add new columns as they are

discovered, fail if an unexpected column is seen, or rescue new columns.

df = spark.readStream
 .format(“cloudFiles”)
 .option(“cloudFiles.
format”, “json”)
 .options(format_options)
 .schema(schema)
 .load(“/path/to/table”)

1 0All Roads Lead to the Lakehouse

https://docs.databricks.com/spark/latest/structured-streaming/auto-loader-schema.html#rescued-data-column
https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

Fixing a file that was processed with Auto Loader

To fix a file that was already processed, Auto Loader supports an option called

‘allowOverwrites’. With this option, Auto Loader can re-ingest and reprocess a file with a

new timestamp. If you want to enable this option in an existing Auto Loader stream, you

need to stop and restart the Auto Loader stream with the enabled option.

df = spark.readStream
 .format(“cloudFiles”)
 .option(“cloudFiles.format”, “json”)
 .schema(schema)
 .option(“cloudFiles.allowOverwrites”, “true”)
 .options(format_options)
 .load(“/path/to/table”)

Discover missing data

While event notification is a very scalable method to collect all data, it relies on cloud

services, which are distributed systems and are not always reliable. With Auto Loader, you

can additionally specify a backfill interval, where Auto Loader will perform asynchronous

backfills at whatever interval you set up. This can be enabled with a once trigger,

processing time trigger and available now trigger. The following example shows how to use

backfill internal and trigger availableNow together:

df = spark.readStream
 .format(“cloudFiles”)
 .option(“cloudFiles.format”, “json”)
 .schema(schema)
 .option(“cloudFiles.backfillInterval”, “1 week”)
 .options(format_options)
 .load(“/path/to/table”)
 .writeStream
 .trigger(Trigger.AvailableNow())
 .option(“checkpointLocation”, checkpointDir)
 .start()

The trigger tells Auto Loader how frequently to process incoming data. A processing time

trigger will have Auto Loader run continuously and schedule micro-batches at the trigger

interval which you have set. The “Once” and “AvailableNow” triggers instruct Auto Loader to

process all new data that has been added until the start of your application. Once the data

is processed, Auto Loader will automatically shut down. Trigger Once will have Auto Loader

process all the new data in a single micro-batch, which requires it to first discover all the

new files. With Trigger AvailableNow, Auto Loader can discover and process files concurrently

and perform rate limiting, which makes it a preferable alternative to Trigger Once.

1 1All Roads Lead to the Lakehouse

https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

Using Auto Loader in SQL with Delta Live Tables

Delta Live Tables is a cloud-native ETL service on Databricks that provides a reliable

framework to develop, test, monitor, manage and operationalize data pipelines at scale to

drive insights for data science, machine learning and analytics. Auto Loader is available in

Delta Live Tables.

CREATE INCREMENTAL LIVE TABLE
 autoloader_test
AS
SELECT
 *,
 id + id2 AS new_id
FROM
 CLOUD_FILES(
 “some/cloud/path”, – the path to the data
 “json” – the file format
);

Live Tables understands

and coordinates data flow

between your queries

1 2All Roads Lead to the Lakehouse

https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

While Auto Loader and COPY INTO are powerful tools, not all data is available as files

in cloud object stores. In order to enable a lakehouse, it is critical to incorporate all of

your data and break down the silos between sources and downstream teams. To do this,

customers need to discover and connect a broad set of data, BI and AI tools, and systems

to the data within their lakehouse.

Partner Connect
Historically, stitching multiple enterprise tools and data sources together has been a burden

on the end user, making it very complicated and expensive to execute at any scale. Partner

Connect solves this challenge by making it easy for you to integrate data, analytics and AI

tools directly within their Databricks Lakehouse. It also allows you to discover new, pre-

validated solutions from Databricks partners that support your expanding analytics needs.

To ingest into the lakehouse, select the partner tile in Partner Connect via the left

navigation bar in Databricks. Partner Connect will automatically configure resources such

as clusters, tokens and connection files for you to connect with your data ingestion tools

of choice. You can finish signing up for a trial account on the partner’s website or directly

log in if you already used Partner Connect to create a trial account. Once you log in, you will

see that Databricks is already configured as a destination in the partner portal and ready

to be used.

Ingesting Data From External Applications

1 3All Roads Lead to the Lakehouse

https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

Common Use Case for Partner Connect
Ingest Salesforce data via Fivetran into Delta Lake

Clicking on the Fivetran tile in Partner Connect starts an automated workflow between

the two products. Databricks automatically provisions a SQL endpoint and associated

credentials for Fivetran to interact with, and passes the user’s identity and the SQL

endpoint configuration to Fivetran automatically via a secure API. Within Fivetran, a

Databricks destination is automatically created. This destination is configured to ingest into

Delta via the SQL endpoint that was auto-configured by Partner Connect.

The customer now selects their choice of data source in Fivetran from hundreds of pre-

built connectors — for example, Salesforce. The user authenticates to the Salesforce

source, chooses the Salesforce objects they want to ingest into Delta Lake on Databricks

1 4All Roads Lead to the Lakehouse

https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

(in this case the Account & Contact objects) and starts the initial sync. This automation

has saved users dozens of manual steps and copying/pasting of configuration if they

manually set up the connection. It also protects the user from making any unintentional

configuration errors and spending time debugging those errors. The Salesforce tables

are now available to query, join and analyze in Databricks SQL. Watch the demo for more

details or check out the Partner Connect guide to learn more.

1 5All Roads Lead to the Lakehouse

https://databricks.com/partnerconnect#partner-demos
https://docs.databricks.com/integrations/partner-connect/index.html?_gl=1*1mz2ts6*_gcl_aw*R0NMLjE2MzY2NzU1NDcuQ2p3S0NBaUFtN09NQmhBUUVpd0FydkdpM0ZHS3ptZTR5Z2YzR3E4ajVrYTNaUExOUEFnaTZIMnNRU05EMC1RYzl0dGxXQjl6ajRuNU14b0N0OGdRQXZEX0J3RQ..&_ga=2.83627156.328510291.1641248936-1825366797.1612985070
https://databricks.com/try-databricks?utm_source=ebook&utm_medium=referral&utm_campaign=20171019-uap-ebook2

Databricks is the data and AI company. More than 5,000 organizations worldwide — including Comcast,

Condé Nast, H&M and over 40% of the Fortune 500 — rely on the Databricks Lakehouse Platform to

unify their data, analytics and AI. Databricks is headquartered in San Francisco, with offices around the

globe. Founded by the original creators of Apache Spark™, Delta Lake and MLflow, Databricks is on a

mission to help data teams solve the world’s toughest problems. To learn more, follow Databricks on

Twitter, LinkedIn and Facebook.

About Databricks

© Databricks 2022. All rights reserved. Apache, Apache Spark, Spark and the Spark logo are trademarks of the Apache Software Foundation. Privacy Policy | Terms of Use

https://twitter.com/databricks
http://www.apache.org/
http://www.apache.org/
http://www.apache.org/

	Ingesting From Cloud Object Stores
	COPY INTO

	
	Auto Loader
	Partner Connect

	Ingesting Data From External Sources
	
	About Databricks

