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Preface

The goal of this book is to provide data practitioners with practical instructions on
how to set up Delta Lake and start using its unique features. This book is designed for
an audience that fits any of the following profiles:

o Data practitioners with a Spark background

« Data practitioners unfamiliar with or new to Delta Lake needing an introduction
to the technology, the problems it solves, its main features and terminology, as
well as how to get started using it

o Data practitioners looking to learn about the features and benefits of modern
lakehouse architectures

It is important to note that this book and the features discussed apply to the Delta
Lake open source framework (Delta Lake OSS). Proprietary features and optimiza-

tions that some companies offer around Delta Lake are considered out of the scope of
this book.

First, we discuss why Delta Lake is an important tool for building modern enterprise
data platforms and data science and Al solutions, followed by instructions on how
to set up Delta Lake with Spark. Each of the subsequent chapters will walk you
through the fundamental functions and operations of Delta Lake using step-by-step
instructions and real-world examples.

The code examples in the book range from snippets that can be used in a PySpark
shell to those designed to be run with a complete end-to-end notebook. In this book,
all code snippets will be in Python, SQL, and, where necessary, shell commands.

A GitHub repository is provided to aid readers in following along throughout the
book. Datasets, files, and code samples are provided in the repo and referred to
throughout the book. Below are some important things to note about using the
GitHub repo:



https://oreil.ly/NMohm
https://oreil.ly/NMohm
https://github.com/benniehaelen/delta-lake-up-and-running

Code samples

Code samples are organized in the repo by chapter, and for most chapters a
chapter initialization script is intended to be executed before executing any of
the related code for that particular chapter. This chapter initialization code is
required before executing code in order to set up the appropriate Delta tables
and datasets to best demonstrate the topics being discussed. These chapter initial-
ization scripts are explicitly called out in the text of the book before executing the
first set of sample code for a given chapter.

Code sample data files

Data files required to execute the provided code samples live in the GitHub
repository. The data files in the GitHub repo come from the popular NYC
Yellow and Green taxi trip records. These files were downloaded and curated for
effective demonstration throughout this book.

Method for running Delta Lake for this book

The method for running Delta Lake for the purposes of this book and the
code in the provided GitHub repo is Databricks Community Edition. Databricks
Community Edition was chosen to develop and run the code samples because
it is free, simplifies setup of Spark and Delta Lake, and does not require your
own cloud account or for you to supply cloud compute or storage resources.
The Delta tables, datasets, and code samples used in this book and the GitHub
repo were developed and tested on Databricks Community Edition hosted on
Azure, using Azure Data Lake Storage Gen2 as the underlying storage layer
and Databricks Runtime 12.2 LTS. Please note that if you are running the code
samples on Spark and Delta Lake outside of Databricks (e.g., on your local
machine), then there will be additional setup, configuration, and potential editor
syntax options to be accounted for by the reader.

Notebooks

You will also see the term notebook. A notebook refers to a Databricks notebook,
the primary tool for developing code and presenting results throughout the book.

Code languages

Delta Lake supports multiple languages (Scala, Java, Python, and SQL) for a
variety of functionality. This book will focus primarily on Python and SQL. Code
samples will provide code in the language deemed most appropriate to the topic
being discussed. Alternatives for similar functionality in other languages will not
always be provided. Please refer to the Delta Lake documentation to view similar
functionality in alternative languages.

For code snippets used throughout this book, the default language is Python.
To indicate use of a language other than Python in a code snippet, you will see
language magic commands, that is, %<language> (e.g., %sql). You can assume
that code snippets without a language magic command are using Python.

X
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How to Contact Us

Please address comments and questions concerning this book to the publisher:

O'Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-889-8969 (in the United States or Canada)
707-829-7019 (international or local)
707-829-0104 (fax)

support@oreilly.com
https://www.oreilly.com/about/contact.html

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://oreil.ly/delta-lake-up-and-running-1e.

For news and information about our books and courses, visit https://oreilly.com.
Find us on LinkedIn: https://linkedin.com/company/oreilly-media.
Follow us on Twitter: https://twitter.com/oreillymedia.

Watch us on YouTube: https://youtube.com/oreillymedia.

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program
elements such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.
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This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

\

Using Code Examples

Supplemental material (code examples, exercises, etc.) is available for download at
https://github.com/benniehaelen/delta-lake-up-and-running.

If you have a technical question or a problem using the code examples, please send
email to support@oreilly.com.

This book is here to help you get your job done. In general, if example code is
offered with this book, you may use it in your programs and documentation. You
do not need to contact us for permission unless youre reproducing a significant
portion of the code. For example, writing a program that uses several chunks of code
from this book does not require permission. Selling or distributing examples from
O'Reilly books does require permission. Answering a question by citing this book
and quoting example code does not require permission. Incorporating a significant
amount of example code from this book into your product’s documentation does
require permission.

We appreciate, but generally do not require, attribution. An attribution usually
includes the title, author, publisher, and ISBN. For example: “Delta Lake: Up and
Running by Bennie Haelen and Dan Davis (O’Reilly). Copyright 2024 O’Reilly Media,
Inc., 978-1-098-13972-8”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.
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CHAPTER 1
The Evolution of Data Architectures

As a data engineer, you want to build large-scale data, machine learning, data science,
and Al solutions that offer state-of-the-art performance. You build these solutions by
ingesting large amounts of source data, then cleansing, normalizing, and combining
the data, and ultimately presenting this data to the downstream applications through
an easy-to-consume data model.

As the amount of data you need to ingest and process is ever increasing, you need
the ability to scale your storage horizontally. Additionally, you need the ability to
dynamically scale your compute resources to address processing and consumption
spikes. Since you are combining your data sources into one data model, you not only
need to append data to tables, but you often need to insert, update, or delete (i.e.,
MERGE or UPSERT) records based upon complex business logic. You want to be
able to perform these operations with transactional guarantees, and without having to
constantly rewrite large data files.

In the past, the preceding set of requirements was addressed by two distinct toolsets.
The horizontal scalability and decoupling of storage and compute were offered by
cloud-based data lakes, while relational data warehouses offered transactional guar-
antees. However, traditional data warehouses tightly coupled storage and compute
into an on-premises appliance and did not have the degree of horizontal scalability
associated with data lakes.

Delta Lake brings capabilities such as transactional reliability and support for
UPSERTs and MERGEs to data lakes while maintaining the dynamic horizontal
scalability and separation of storage and compute of data lakes. Delta Lake is one
solution for building data lakehouses, an open data architecture combining the best of
data warehouses and data lakes.




In this introduction, we will take a brief look at relational databases and how they
evolved into data warehouses. Next, we will look at the key drivers behind the emer-
gence of data lakes. We will address the benefits and drawbacks of each architecture,
and finally show how the Delta Lake storage layer combines the benefits of each
architecture, enabling the creation of data lakehouse solutions.

A Brief History of Relational Databases

In his historic 1970 paper,' E.E. Codd introduced the concept of looking at data as
logical relations, independent of physical data storage. This logical relation between
data entities became known as a database model or schema. Codd’s writings led to the
birth of the relational database. The first relational database systems were introduced
in the mid-1970s by IBM and UBC.

Relational databases and their underlying SQL language became the standard storage
technology for enterprise applications throughout the 1980s and 1990s. One of the
main reasons behind this popularity was that relational databases offered a concept
called transactions. A database transaction is a sequence of operations on a database
that satisfies four properties: atomicity, consistency, isolation, and durability, com-
monly referred to by their acronym ACID.

Atomicity ensures that all changes made to the database are executed as a single
operation. This means that the transaction succeeds only when all changes have
been performed successfully. For example, when the online banking system is used
to transfer money from savings to checking, the atomicity property will guarantee
that the operation will only succeed when the money is deducted from my savings
account and added to my checking account. The complete operation will either
succeed or fail as a complete unit.

The consistency property guarantees that the database transitions from one consistent
state at the beginning of the transaction to another consistent state at the end of the
transaction. In our earlier example, the transfer of the money would only happen if
the savings account had sufficient funds. If not, the transaction would fail, and the
balances would stay in their original, consistent state.

Isolation ensures that concurrent operations happening within the database are not
affecting each other. This property ensures that when multiple transactions are exe-
cuted concurrently, their operations do not interfere with each other.

1 Codd, E.E (1970). Relational Database: A Practical Foundation for Productivity. San Jose: San Jose Research
Laboratory.
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Durability refers to the persistence of committed transactions. It guarantees that once
a transaction is completed successfully, it will result in a permanent state even in
the event of a system failure. In our money transfer example, durability will ensure
that updates made to both my savings and checking account are persistent and can
survive a potential system failure.

Database systems continued to mature throughout the 1990s, and the advent of the
internet in the mid-1990s led to an explosive growth of data and the need to store
this data. Enterprise applications were using relational database management system
(RDBMS) technology very effectively. Flagship products such as SAP and Salesforce
would collect and maintain massive amounts of data.

However, this development was not without its drawbacks. Enterprise applications
would store the data in their own, proprietary formats, leading to the rise of data
silos. These data silos were owned and controlled by one department or business unit.
Over time, organizations recognized the need to develop an enterprise view across
these different data silos, leading to the rise of data warehouses.

Data Warehouses

While each enterprise application has some type of reporting built in, business
opportunities were missed because of the lack of a comprehensive view across the
organization. At the same time, organizations recognized the value of analyzing data
over longer periods of time. Additionally, they wanted to be able to slice and dice
the data over several cross-cutting subject matters, such as customers, products, and
other business entities.

This led to the introduction of the data warehouse, a central relational repository of
integrated, historical data from multiple data sources that presents a single integrated,
historical view of the business with a unified schema, covering all perspectives of the
enterprise.

Data Warehouse Architecture

A simple representation of a typical data warehouse architecture is shown in
Figure 1-1.
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)
Data source o)
layer Presentation
) )
- >
: . Data warehouse O
Operational DW staging
system OLAP
) R ——
CRM Staging Rawdata || Metadata [jAg8regated .
| system area data Reporting
2 < =
)
= L B
ERP Data
system mining
N~/ ~——
K|
External
data
—

Figure 1-1. Data warehouse architecture

When we look at the diagram in Figure 1-1, we start with the data source layer on
the left. Organizations need to ingest data from a set of heterogeneous data sources.
While the data from the organization’s enterprise resource planning (ERP) system(s)
forms the backbone of the organizational model, we need to augment this data with
the data from the operational systems running the day-to-day operations, such as
human resources (HR) systems and workflow management software. Additionally,
organizations might want to leverage the customer interaction data covered by their
customer relationship management (CRM) and point of sale (POS) systems. In addi-
tion to the core data sources listed here, there is a need to ingest data from a wide
array of external data sources, in a variety of formats, such as spreadsheets, CSV
files, etc.

These different source systems each might have their own data format. Therefore,
the data warehouse contains a staging area where the data from the different sources
can be combined into one common format. To do this the system must ingest the
data from the original data sources. The actual ingestion process varies by data source
type. Some systems allow direct database access, and others allow data to be ingested
through an API, while many data sources still rely on file extracts.

Next, the data warehouse needs to transform the data into a standardized format,
allowing the downstream processes to access the data easily. Finally, the transformed
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data is loaded into the staging area. In relational data warehouses, this staging area is
typically a set of flat relational staging tables without any primary or foreign keys or
simple data types.

This process of extracting data, transforming it to a standard format, and loading
it into the data warehouse is commonly referred to as extract, transform, and load
(ETL). ETL tools can perform several other tasks on the ingested data before finally
loading the data into the data warehouse. These tasks include the elimination of
duplicate records. Since a data warehouse will be the one source of truth, we do not
want it to contain multiple copies of the same data. Additionally, duplicate records
prevent the generation of a unique key for each record.

ETL tools also allow us to combine data from multiple data sources. For example, one
view of our customers might be captured in CRM systems, while other attributes are
found in an ERP system. The organization needs to combine these different aspects
into one comprehensive view of a customer. This is where we start to introduce a
schema to the data warehouse. In our example of a customer, the schema will define
the different columns for the customer table, which columns are required, the data
type and constraints of each column, and so on.

Having canonical, standardized representations of columns, such as date and time, is
important. ETL tools can ensure that all temporal columns are formatted using the
same standard throughout the data warehouse.

Finally, organizations want to perform quality checks on the data in keeping with
their data governance standards. This might include dropping low-quality data rows
that do not meet this minimal standard.

Data warehouses are physically implemented on a monolithic physical architecture,
made up of a single large node, combining memory, compute, and storage. This
monolithic architecture forces organizations to scale their infrastructure vertically,
resulting in expensive, often overdimensioned infrastructure, which was provisioned
for peak user load, while being near idle at other times.

A data warehouse typically contains data that can be classified as follows:

Metadata
Contextual information about the data. This data is often stored in a data catalog.
It enables the data analysts to describe, classify, and easily locate the data stored
in the data warehouse.

Raw data
Maintained in its original format without any processing. Having access to the
raw data enables the data warehouse system to reprocess data in case of load
failures.
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Summary data
Automatically created by the underlying data management system. The summary
data will automatically be updated as new data is loaded into the warehouse. It
contains aggregations across several conformed dimensions. The main purpose
of the summary data is to accelerate query performance.

The data in the warehouse is consumed in the presentation layer. This is where
the consumers can interact with the data stored in the warehouse. We can broadly
identify two large groups of consumers:

Human consumers
These are the people within the organization who have a need to consume the
data in the warehouse. These consumers can vary from knowledge workers,
who need access to the data as an essential part of their job, to executives who
typically consume highly summarized data, often in the form of dashboards and
key performance indicators (KPIs).

Internal or external systems
The data in a data warehouse can be consumed by a variety of internal or
external systems. This can include machine learning and AI toolsets, or internal
applications that need to consume warehouse data. Some systems might directly
access the data, others might work with data extracts, while still others might
directly consume the data in a pub-sub model.

Human consumers will leverage various analytical tools and technologies to create
actionable insights into the data, including:

Reporting tools
These tools enable the user to develop insights into the data through visualiza-
tions such as tabular reports and a wide array of graphical representations.

Online analytical processing (OLAP) tools
Consumers need to slice and dice the data in a variety of ways. OLAP tools
present the data in a multidimensional format, allowing it to be queried from
multiple perspectives. They leverage pre-stored aggregations, often stored in
memory, to serve up the data with fast performance.

Data mining
These tools allow a data analyst to find patterns in the data through mathematical
correlations and classifications. They assist the analysts in recognizing previously
hidden relationships between different data sources. In a way, data mining tools
can be seen as a precursor to modern data science tools.
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Dimensional Modeling

Data warehouses introduced the need for a comprehensive data model that spans the
different subject areas in a corporate enterprise. The technique used to create these
models became known as dimensional modeling.

Driven by the writings and ideas of visionaries such as Bill Inmon and Ralph Kimball,
dimensional modeling was first introduced in Kimball's seminal book The Data
Warehouse Toolkit: The Complete Guide to Dimensional Modeling.? Kimball defines a
methodology that focuses on a bottom-up approach, ensuring that the team delivers
real value with the data warehouse as soon as possible.

A dimensional model is described by a star schema. A star schema organizes data for
a given business process (e.g., sales) into a structure that facilitates easy analytics. It
consists of two types of tables:

o A fact table, which is the primary, or central table for the schema. The fact table
captures the primary measurements, metrics, or “facts” of the business process.
Staying with our sales business process example, a sales fact table would include
units sold and sales amount.

— Fact tables have a well-defined grain. Grain is determined by the combination
of dimensions (columns) represented in the table. A sales fact table can be of
low granularity if it is just an annual rollup of sales, or high granularity if it
includes sales by date, store, and customer identifier.

» Multiple dimension tables that are related to the fact table. A dimension provides
the context surrounding the selected business process. In a sales scenario exam-
ple, the list of dimensions could include product, customer, salesperson, and
store.

The dimension tables “surround” the fact table, which is why these types of schemas
are referred to as “star schemas.” A star schema consists of fact tables, linked to their
associated dimensional tables through primary and foreign key relationships. A star
schema for our sales subject area is shown in Figure 1-2.

2 Kimball, R. (1996). The Data Warehouse Toolkit: The Complete Guide to Dimensional Modeling. The Kimball
Group.
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Figure 1-2. Sales dimensional model

Data Warehouse Benefits and Challenges

Data warehouses have inherent strengths that have served the business community
well. They serve up high-quality, cleansed, and normalized data from different data
sources in a common format. Since data from the different departments is presented
in a common format, each department will review results in line with the other
departments. Having timely, accurate data is the basis for strong business decisions.

o Since they store large amounts of historical data, they enable historical insights,
allowing users to analyze different periods and trends.

» Data warehouses tend to be very reliable, based on the underlying relational
database technology, which executes ACID transactions.

8
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o Warehouses are modeled with standard star-schema modeling techniques, creat-
ing fact tables and dimensions. More and more prebuilt template models became
available for various subject areas, such as sales and CRM, further accelerating
the development of such models.

o Data warehouses are ideally suited for business intelligence and reporting, basi-
cally addressing the “What happened?” question of the data maturity curve.
A data warehouse combined with business intelligence (BI) tools can generate
actionable insights for marketing, finance, operations, and sales.

The fast rise of the internet and social media and the availability of multimedia
devices such as smartphones disrupted the traditional data landscape, giving rise to
the term big data. Big data is defined as data that arrives in ever higher volumes, with
more velocity, in a greater variety of formats with higher veracity. These are known as
the four Vs of data:

Volume
The volume of data created, captured, copied, and consumed globally is increas-
ing rapidly. As described in Statista, over the next two years, global data creation
is projected to grow to more than 200 zettabytes (a zettabyte is a 2 to the power
70 number of bytes).

Velocity
In today’s modern business climate, timely decisions are critical. To make these
decisions, organizations need their information to flow quickly, ideally as close to
real time as possible. For example, stock trading applications need to have access
to near-real-time data so advanced trading algorithms can make millisecond
decisions, and need to communicate these decisions to their stakeholders. Access
to timely data can give organizations a competitive advantage.

Variety

Variety refers to the number of different “types” of data that are now available.
The traditional data types were all structured and typically offered as relational
databases, or extracts thereof. With the rise of big data, data now arrives in new
unstructured types. Unstructured and semi-structured data types, such as Inter-
net of Things (IoT) device messages, text, audio, and video, require additional
preprocessing to derive business meaning. Variety is also expressed through the
different types of ingestion. Some data sources are best ingested in batch mode,
while others lend themselves to incremental ingestion, or real-time, event-based
ingestion such as IoT data streams.

Veracity
Veracity defines the trustworthiness of the data. Here, we want to make sure
that the data is accurate and of high quality. Data can be ingested from several
sources; it is important to understand the chain of custody of the data, ensure
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we have rich metadata, and understand the context under which the data was
collected. Additionally, we want to ensure that our view of the data is complete,
with no missing components or late-arriving facts.

Data warehouses have a hard time addressing these four Vs.

Traditional data warehouse architectures struggle to facilitate exponentially increas-
ing data volumes. They suffer from both storage and scalability issues. With vol-
umes reaching petabytes, it becomes challenging to scale storage capabilities without
spending large amounts of money. Traditional data warehouse architectures do not
use in-memory and parallel processing techniques, preventing them from scaling the
data warehouse vertically.

Data warehouse architectures are also not a good fit to address the velocity of big
data. Data warehouses do not support the types of streaming architecture required to
support near-real-time data. ETL data load windows can only be shortened so much
until the infrastructure starts to buckle.

While data warehouses are very good at storing structured data, they are not well
suited to store and query the variety of semi-structured or unstructured data.

Data warehouses have no built-in support for tracking the trustworthiness of the
data. Data warehouse metadata is mainly focused on schema, and less on lineage, data
quality, and other veracity variables.

Further, data warehouses are based upon a closed, proprietary format and typically
only support SQL-based query tools. Because of their proprietary format, data ware-
houses do not offer good support for data science and machine learning tools.

Because of these limitations, data warehouses are expensive to build. As a result,
projects often fail before going live, and those that do go live have a hard time
keeping up with the ever-changing requirements of the modern business climate and
the four Vs.

The limitations of the traditional data warehouse architecture gave rise to a more
modern architecture, based upon the concept of a data lake.

Introducing Data Lakes

A data lake is a cost-effective central repository to store structured, semi-structured,
or unstructured data at any scale, in the form of files and blobs. The term “data lake”
came from the analogy of a real river or lake, holding the water, or in this case data,
with several tributaries that are flowing the water (aka “data”) into the lake in real
time. A canonical representation of a typical data lake is shown in Figure 1-3.
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Figure 1-3. Canonical data lake

The initial data lakes and big data solutions were built with on-premises clusters,
based upon the Apache Hadoop open source set of frameworks. Hadoop was used to
efficiently store and process large datasets ranging in size from gigabytes to petabytes
of data. Instead of using one large computer to store and process the data, Hadoop
leveraged the clustering of multiple commodity compute nodes to analyze large
volumes of datasets in parallel more quickly.

Hadoop would leverage the MapReduce framework to parallelize compute tasks over
multiple compute nodes. The Hadoop Distributed File System (HDEFS) was a file
system that was designed to run on standard or low-end hardware. HDFS was very
fault-tolerant and supported large datasets.

Starting in 2015, cloud data lakes, such as Amazon Simple Storage Service (Amazon
S3), Azure Data Lake Storage Gen 2 (ADLS), and Google Cloud Storage (GCS),

Introducing Data Lakes | 11



started replacing HDFS. These cloud-based storage systems have superior service-
level agreements (SLAs) (often greater than 10 nines), offer geo-replication, and,
most importantly, offer extremely low cost with the option to utilize even lower-cost
cold storage for archival purposes.

At the lowest level, the unit of storage in a data lake is a blob of data. Blobs are
by nature unstructured, enabling the storage of semi-structured and unstructured
data, such as large audio and video files. At a higher level, the cloud storage systems
provide file semantics and file-level security on top of the blob storage, enabling the
storage of highly structured data. Because of their high bandwidth ingress and egress
channels, data lakes also enable streaming use cases, such as the continuous ingestion
of large volumes of IoT data or streaming media.

Compute engines enable large volumes of data to be processed in an ETL-like fashion
and delivered to consumers, such as traditional data warehouses and machine learn-
ing and AI toolsets. Streaming data can be stored in real-time databases, and reports
can be created with traditional BI and reporting tools.

Data lakes are enabled through a variety of components:

Storage

Data lakes require very large, scalable storage systems, like the ones typically
offered in cloud environments. The storage needs to be durable and scalable
and should offer interoperability with a variety of third-party tools, libraries, and
drivers. Note that data lakes separate the concepts of storage and compute, allow-
ing both to scale independently. Independent scaling of storage and compute
allows for on-demand, elastic fine-tuning of resources, allowing our solution
architectures to be more flexible. The ingress and egress channels to the storage
systems should support high bandwidths, enabling the ingestion or consumption
of large batch volumes, or the continuous flow of large volumes of streaming
data, such as IoT and streaming media.

Compute
High amounts of compute power are required to process the large amounts of
data stored in the storage layer. Several compute engines are available on the
different cloud platforms. The go-to compute engine for data lakes is Apache
Spark. Spark is an open source unified analytics engine, which can be deployed
through various solutions such as Databricks or other cloud providers’ developed
solutions. Big data compute engines will leverage compute clusters. Compute
clusters pool compute nodes to tackle complete data collection and processing
tasks.
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Formats
The shape of the data on disk defines the formats. A wide array of storage
formats are available. Data lakes use mostly standardized, open source formats,
such as Parquet, Avro JSON, or CSV.

Metadata
Modern, cloud-based storage systems maintain metadata (i.e., contextual infor-
mation about the data). This includes various timestamps that describe when
data was written or accessed, data schemas, and a variety of tags which contain
information about the usage and owner of the data.

Data lakes have some very strong benefits. A data lake architecture enables the
consolidation of an organization’s data assets into one central location. Data lakes are
format agnostic and rely on open source formats, such as Parquet and Avro. These
formats are well understood by a variety of tools, drivers, and libraries, enabling
smooth interoperability.

Data lakes are deployed on mature cloud storage subsystems, allowing them to
benefit from the scalability, monitoring, ease of deployment, and low storage costs
associated with these systems. Automated DevOps tools, such as Terraform, have
well-established drivers, enabling automated deployments and maintenance.

Unlike data warehouses, data lakes support all data types, including semi-structured
and unstructured data, enabling workloads such as media processing. Because of
their high throughput ingress channels, they are very well suited for streaming use
cases, such as ingesting IoT sensor data, media streaming, or web clickstreams.

However, as data lakes become more popular and widely used, organizations started
recognizing some challenges with traditional data lakes. While the underlying cloud
storage is relatively inexpensive, building and maintaining an effective data lake
requires expert skills, resulting in high-end staffing or increased consulting services
costs.

While it is easy to ingest data in its raw form, transforming the data into a form that
can deliver business values can be very expensive. Traditional data lakes have poor
latency query performance, so they cannot be used for interactive queries. As a result,
the organization’s data teams must still transform and load the data into something
like a data warehouse, resulting in an extended time to value. This resulted in a data
lake + warehouse architecture. This architecture continued to dominate the industry
for quite a while (we have personally implemented dozens of those types of these
systems), but is now declining because of the rise of lakehouses.

Data lakes typically use a “schema on read” strategy, where data can be ingested in
any format without schema enforcement. Only when the data is read can some type
of schema be applied. This lack of schema enforcement can result in data quality
issues, allowing the pristine data lake to become a “data swamp.
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Data lakes do not offer any kind of transactional guarantees. Data files can only
be appended to, leading to expensive rewrites of previously written data to make a
simple update. This leads to an issue called the “small file problem,” where multiple
small files are created for a single entity. If this issue is not managed well, these
small files slow the read performance of the overall data lake, leading to stale data
and wasted storage. Data lake administrators need to run repeated operations to
consolidate these smaller files into larger files optimized for efficient read operations.

Now that we have discussed the strengths and weaknesses of both data warehouses
and data lakes, we will introduce the data lakehouse, which combines the strengths
and addresses the weaknesses of both technologies.

Data Lakehouse

Armbrust, Ghodsi, Xin, and Zaharia first introduced the concept of the data lake-
house in 2021. The authors define a lakehouse as “a data management system based
upon low-cost and directly accessible storage that also provides analytics DBMS
management and performance features such as ACID transactions, data versioning,
auditing, indexing, caching and query optimization.”

When we unpack this statement, we can define a lakehouse as a system that merges
the flexibility, low cost, and scale of a data lake with the data management and ACID
transactions of data warehouses, addressing the limitations of both. Like data lakes,
the lakehouse architecture leverages low-cost cloud storage systems with the inherent
flexibility and horizontal scalability of those systems. The goal of a lakehouse is to
use existing high-performance data formats, such as Parquet, while also enabling
ACID transactions (and other features). To add these capabilities, lakehouses use
an open-table format, which adds features like ACID transactions, record-level opera-
tions, indexing, and key metadata to those existing data formats. This enables data
assets stored on low-cost storage systems to have the same reliability that used to be
exclusive to the domain of an RDBMS. Delta Lake is an example of an open-table
format that supports these types of capabilities.

Lakehouses are an especially good match for most, if not all, cloud environments
with separate compute and storage resources. Different computing applications can
run on demand on completely separate computing nodes, such as a Spark cluster,
while directly accessing the same storage data. It is, however, conceivable that one
could implement a lakehouse over an on-premises storage system such as the afore-
mentioned HDFS.
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Data Lakehouse Benefits

An overview of the lakehouse architecture is shown in Figure 1-4.
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Figure 1-4. Lakehouse architecture overview

With the lakehouse architecture, we no longer need to have a copy of our data in
the data lake, and another copy in some type of data warehouse storage. Indeed, we
can source our data from the data lake through the Delta Lake storage format and
protocol with comparable performance to a traditional data warehouse.

Since we can continue to leverage the low-cost cloud-based storage technologies and
no longer need to copy data from the data lake to a data warehouse, we can realize
significant cost savings, both in infrastructure and in staff and consulting overhead.

Since less data movement takes place and our ETL is simplified, opportunities
for data quality issues are significantly reduced, and finally, because the lakehouse
combines the ability to store large data volumes and refined dimensional models,
development cycles are reduced, and the time to value is significantly reduced.
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The evolution from data warehouses to data lakes to a lakehouse architecture is
shown in Figure 1-5.
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Figure 1-5. Evolution of data architectures

Implementing a Lakehouse

As we mentioned earlier, lakehouses leverage low-cost object stores, like Amazon
S3, ADLS, or GCS, storing the data in an open source table format, such as Apache
Parquet. However, since lakehouse implementations run ACID transactions against
this data, we need a transactional metadata layer on top of the cloud storage, defining
which objects are part of the table version.
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This will allow a lakehouse to implement features such as ACID transactions and
versioning within that metadata layer, while keeping the bulk of the data in the
low-cost object storage. The lakehouse client is able to keep using data in an open
source format that they are already familiar with.

Next, we need to address system performance. As we mentioned earlier, lakehouse
implementations need to achieve great SQL performance to be effective. Data ware-
houses were very good at optimizing performance because they worked with a closed
storage format and a well-known schema. This allowed them to maintain statistics,
build clustered indexes, move hot data on fast SSD devices, etc.

In a lakehouse, which is based upon open source standard formats, we do not have
that luxury, since we cannot change the storage format. However, lakehouses can
leverage a plethora of other optimizations which leave the data files unchanged. This
includes caching, auxiliary data structures such as indexes and statistics, and data
layout optimizations.

The final tool that can speed up analytic workloads is the development of a standard
DataFrame API. Most of the popular ML tools out there, such as TensorFlow and
Spark MLIib, have support for DataFrames. DataFrames were first introduced by R
and pandas and provide a simple table abstraction of the data with a multitude of
transformation operations, most of which originate from relational algebra.

In Spark, the DataFrame API is declarative, and lazy evaluation is used to build an
execution DAG (directed acyclic graph). This graph can then be optimized before
any action consumes the underlying data in the DataFrame. This gives the lakehouse
several new optimization features, such as caching and auxiliary data. Figure 1-6
shows how these requirements fit into an overall lakehouse system design.

Since Delta Lake is the focus of this book, we will illustrate how Delta Lake facilitates
the requirements for implementing a lakehouse.
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Figure 1-6. Lakehouse implementation

Delta Lake

As mentioned in the previous section, a possible lakehouse solution can be built
on top of Delta Lake. Delta Lake is an open-table format that combines metadata,
caching, and indexing with a data lake storage format. Together these provide an
abstraction level to serve ACID transactions and other management features.

The Delta Lake open-table format, open source metadata layer ultimately enables
lakehouse implementations. Delta Lake provides ACID transactions, scalable meta-
data handling, a unified process model that spans batch and streaming, full audit
history, and support for SQL data manipulation language (DML) statements. It can
run on existing data lakes and is fully compatible with several processing engines,
including Apache Spark.

Delta Lake is an open source framework, the specification of which can be found at
https://delta.io. The work of Armbrust et al. offers a detailed description of how Delta
Lake provides ACID transactions.
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Delta Lake provides the following features:

Transactional ACID guarantees
Delta Lake will make sure that all data lake transactions using Spark, or any other
processing engine, are committed for durability and exposed to other readers in
an atomic fashion. This is made possible through the Delta transaction log. In
Chapter 2, we will cover the transaction log in detail.

Full DML support
Traditional data lakes do not support transactional, atomic updates to the data.
Delta Lake fully supports all DML operations, including deletes and updates,
and complex data merge or upsert scenarios. This support greatly simplifies the
creation of dimensions and fact tables when building a modern data warehouse
(MDW).

Audit history
The Delta Lake transaction log records every change made to the data, in the
order that these changes were made. Therefore, the transaction log becomes
the full audit trail of any changes made to the data. This enables admins and
developers to roll back to earlier versions of data after accidental deletions and
edits. This feature is called time travel and is covered in detail in Chapter 6.

Unification of batch and streaming into one processing model
Delta Lake can work with batch and streaming sinks or sources. It can perform
MERGEs on a data stream, which is a common requirement when merging IoT
data with device reference data. It also enables use cases where we receive CDC
data from external data sources. We will cover streaming in detail in Chapter 8.

Schema enforcement and evolution
Delta Lake enforces a schema when writing or reading data from the lake.
However, when explicitly enabled for a data entity, it allows for a safe schema
evolution, enabling use cases where the data needs to evolve. Schema enforce-
ment and evolution are covered in Chapter 7.

Rich metadata support and scaling
Having the ability to support large volumes of data is great, but if the metadata
cannot scale accordingly, the solution will fall short. Delta Lake scales out all
metadata processing operations by leveraging Spark or other compute engines,
allowing it to efficiently process the metadata for petabytes of data.

A lakehouse architecture is made up of three layers, as shown in Figure 1-7. The
lakehouse storage layer is built on standard cloud-storage technology, such as ADLS,
GCS, or Amazon S3 storage. This provides the lakehouse with a highly scalable,
low-cost storage layer.
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Figure 1-7. Lakehouse layered architecture

The transactional layer of the lakehouse is provided by Delta Lake. This brings ACID
guarantees to the lakehouse, enabling an efficient transformation of raw data into
curated, actionable data. Besides the ACID support, Delta Lake offers a rich set of
additional features, such as DML support, scalable metadata processing, streaming
support, and a rich audit log. The top layer of the lakehouse stack is made up of
high-performance query and processing engines, which leverage underlying cloud
compute resources. Supported query engines include:

o Apache Spark
o Apache Hive
 Presto

o Trino

Please consult the Delta Lake website for a complete list of supported compute
engines.
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The Medallion Architecture

An example of a Delta Lake-based lakehouse architecture is provided in Figure 1-8.
This architectural pattern with Bronze, Silver, and Gold layers is often referred to
as the medallion architecture. While it is only one of many lakehouse architecture

patterns, it is a great fit for modern data warehouses, data marts, and other analytical
solutions.
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Figure 1-8. Data lakehouse solution architecture

At the highest level, we have three components in this solution. To the left we have
the different data sources. A data source can take on many forms; some examples are
provided here:

+ Aset of CSV or TXT files on an external data lake
» An on-premises database, such as Oracle or SQL Server
o Streaming data sources, such as Kafka or Azure Event Hubs

o REST APIs from a SAS service, such as Salesforce or ADP

The central component implements the medallion architecture. A medallion architec-
ture is a data design pattern used to logically organize data in a lakehouse, through
Bronze, Silver, and Gold layers. The Bronze layer is where we land the data ingested
from our source systems on the left. Data in the Bronze zone is typically landed “as
is,” but can be augmented with additional metadata, such as the loading date and
time, processing identifiers, etc.

In the Silver layer, the data from the Bronze layer is cleansed, normalized, merged,
and conformed. This is where the enterprise view of the data across the different
subject areas is gradually coming together.
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The data in the Gold layer is “consumption-ready” data. This data can be in the
format of a classic star schema, containing dimensions and fact tables, or it could be
in any data model that is befitting to the consuming use case.

The goal of the medallion architecture is to improve the structure and quality of
the data incrementally and progressively as it flows through each layer of the archi-
tecture, with each layer having an inherent purpose. This data design pattern will be
covered in much greater depth in Chapter 10, but it is important to understand how
a lakehouse, together with Delta Lake, can support reliable, performant data design
patterns, or multihop architectures. Design patterns, like the medallion architecture,
provide some of the architectural foundations for unifying your data pipelines in a
lakehouse in order to support multiple use cases (e.g., batch data, streaming data, and
machine learning).

The Delta Ecosystem

As we have laid out in this chapter, Delta Lake enables us to build data lakehouse
architectures, which enable data warehousing and machine learning/AI applications
to be hosted directly on a data lake. Today, Delta Lake is the most widely utilized
lakehouse format, currently used by over 7,000 organizations, processing exabytes of
data per day.

However, data warehouses and machine learning applications are not the only appli-
cation target of Delta Lake. Beyond its core transactional ACID support, which
brings reliability to data lakes, Delta Lake enables us to seamlessly ingest and con-
sume both streaming and batch data with one solution architecture.

Another important component of Delta Lake is Delta Sharing, which enables compa-
nies to share data sets in a secure manner. Delta Lake 3.0 now supports standalone
readers and writers, enabling any client (Python, Ruby, or Rust) to write data directly
to Delta Lake without requiring any big data engine, such as Spark or Flink. Delta
Lake ships with an extended set of open source connectors, including Presto, Flink,
and Trino. The Delta Lake storage layer is now used extensively on many platforms,
including ADLS, Amazon S3, and GCS. All components of Delta Lake 2.0 have been
open sourced by Databricks.

The success of Delta Lake and lakehouses has spawned a completely new ecosystem,
built around the Delta technology. This ecosystem is made up of a variety of individ-
ual components, including the Delta Lake storage format, Delta Sharing, and Delta
Connectors.

Delta Lake Storage

The Delta Lake storage format is an open source storage layer that runs on top of
cloud-based data lakes. It adds transactional capabilities to data lake files and tables,
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bringing data warehouse-like features to a standard data lake. Delta Lake storage is
the core component of the ecosystem because all other components depend on this
layer.

Delta Sharing

Data sharing is a common use case in business. For example, a mining company
might want to securely share IoT information from its massive mining truck engines
with the manufacturer for preventative maintenance and diagnostic purposes. A ther-
mostat manufacturer might want to securely share HVAC data with a public utility to
optimize the power grid load on high-usage days. However, in the past, implementing
a secure, reliable data sharing solution was very challenging, and required expensive,
custom development.

Delta Sharing is an open source protocol for securely sharing large datasets of Delta
Lake data. It allows users to securely share data stored in Amazon S3, ADLS, or GCS.
With Delta Sharing, users can directly connect to the shared data, using their favorite
toolsets like Spark, Rust, Power BI, etc., without having to deploy any additional
components. Notice that the data can be shared across cloud providers, without any
custom development.

Delta Sharing enables use cases such as:

o Data stored in ADLS can be processed by a Spark Engine on AWS.
o Data stored in Amazon S3 can be processed by Rust on GCP.

Please refer to Chapter 9 for a detailed discussion of Delta Sharing.

Delta Connectors

The main goal of Delta Connectors®* is to bring Delta Lake to other big data engines
outside of Apache Spark. Delta Connectors are open source connectors that directly
connect to Delta Lake. The framework includes Delta Standalone, a Java native library
that allows direct reading and writing of the Delta Lake tables without requiring an
Apache Spark cluster. Consuming applications can use Delta Standalone to directly
connect to Delta tables written by their big data infrastructure. This eliminates the
need for data duplication into another format before it can be consumed.

3 Delta Lake Integrations
4 Delta Lake Connectors
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Other native libraries are available for:

Hive
The Hive Connector reads Delta tables directly from Apache Hive.

Flink
The Flink/Delta Connector reads and writes Delta tables from the Apache Flink
application. The connector includes a sink for writing to Delta tables from
Apache Flink, and a source for reading Delta tables using Flink.

sql-delta-import
This connector allows for importing data from a JDBC data source directly into a
Delta table.

Power BI
The Power BI connector is a custom Power Query function that allows Power
BI to read a Delta table from any file-based data source supported by Microsoft
Power BI.

Delta Connectors is a fast-growing ecosystem, with more connectors becoming avail-
able regularly. In fact, included in the recently announced Delta Lake 3.0 release is
Delta Kernel. Delta Kernel and its simplified libraries remove the need to understand
Delta protocol details, thus making it much easier to build and maintain connectors.

Conclusion

Given the volume, velocity, variety, and veracity of data, the limitations and chal-
lenges of both data warehouses and data lakes have driven a new paradigm of data
architectures. The lakehouse architecture, set forth by advancements in open-table
formats such as Delta Lake, provides a modern data architecture that harnesses the
best elements of its predecessors to bring a unified approach to a data platform.

As mentioned in the Preface, this book will do more than just scratch the surface;
it will dive into some of the core features of Delta Lake already touched on in this
chapter. You will learn how to best set up Delta Lake, identify use cases for different
features, learn about best practices and different things to consider, and much more.
It will continually provide data practitioners with context and evidence of how this
open-table format supports a modern data platform in the form of a lakehouse
architecture. By the end of this book you will feel confident in getting up and running
with Delta Lake and building a modern data lakehouse architecture.
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CHAPTER 2
Getting Started with Delta Lake

In the previous chapter we introduced Delta Lake and saw how it adds transactional
guarantees, DML support, auditing, a unified streaming and batch model, schema
enforcement, and a scalable metadata model to traditional data lakes.

In this chapter, we will go hands-on with Delta Lake. We will first set up Delta Lake
on a local machine with Spark installed. We will run Delta Lake samples in two
interactive shells:

1. First, we will run the PySpark interactive shell with the Delta Lake packages. This
will allow us to type in and run a simple two-line Python program that creates a
Delta table.

2. Next, we will run a similar program with the Spark Scala shell. Although we do
not cover the Scala language extensively in this book, we want to demonstrate
that both the Spark shell and Scala are options with Delta Lake.

Next, we will create a helloDeltaLake starter program in Python inside your favorite
editor and run the program interactively in the PySpark shell. The environment we
set up in this chapter, and the helloDeltaLake program, will be the basis for most
other programs we create in this book.

Once the environment is up and running, we are ready to look deeper into the Delta
table format. Since Delta Lake uses Parquet as the underlying storage medium, we
first take a brief look at the Parquet format. Since partitions and partition files play an
important role when we study the transaction log later, we will study the mechanism
of both automatic and manual partitioning. Next, we move on to Delta tables and
investigate how a Delta table adds a transaction log in the _delta_log directory.

The remainder of this chapter is dedicated to the transaction log. We will create
and run several Python programs to investigate the details of transaction log entries,
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what kind of actions are recorded, and what Parquet data files are written when
and how they relate to the transaction log entries. We will look at more complex
update examples and their impact on the transaction log. Finally, we will introduce
the concept of checkpoint files and how they help Delta Lake implement a scalable
metadata system.

Getting a Standard Spark Image

Setting up Spark on a local machine can be daunting. You have to adjust many
different settings, update packages, and so on. Therefore, we chose to use a Docker
container. If you do not have Docker installed, you can download it free from their
website. The specific container that we used was the standard Apache Spark image.
To download the image, you can use the following command:

docker pull apache/spark

Once you have pulled down the image, you can start the container with the following
command:

docker run -it apache/spark /bin/sh

The Spark installation is in the /opt/spark directory. PySpark, spark-sql, and all other
tools are in the /opt/spark/bin directory. We have included several instructions on
how to work with the container in the readme of the book’s GitHub repository.

Using Delta Lake with PySpark

As mentioned before, Delta Lake runs on top of your existing storage and is fully
compatible with the existing Apache Spark APIs. This means it is easy to start with
Delta Lake if you already have Spark installed or a container as specified in the
previous section.

With Spark in place, you can install the delta-spark 2.4.0 package. You can find the
delta-spark package in its PySpark directory. Enter the following command in a
command shell:

pip install delta-spark
Once you have delta-spark installed, you can run the Python shell interactively like
this:

pyspark --packages io.delta:<delta_version>
--conf "spark.sql.extensions=1o.delta.sql.DeltaSparkSessionExtension"
--conf "spark.sql.catalog.spark_catalog=
org.apache.spark.sql.delta.catalog.DeltaCatalog"

This will give you a PySpark shell from which you can interactively run commands:
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Welcome to

Il /_

NN N2 ) ]

/| __/\_,_/_] /_/\_\ version 3.2.2
/_/

Using Python version 3.9.13 (tags/v3.9.13:6de2ca5, May 17 2022 16:36:42)
Spark context Web UI available at http://host.docker.internal:4040
Spark context available as ’sc’ (master = local[*],

app id = local-1665944381326).

SparkSession available as ’spark’.

Inside the shell, you can now run interactive PySpark commands. We always do a
quick test by creating a range() with Spark, resulting in a DataFrame that we can

then save in Delta Lake format (more details on this in “Creating and Running a
Spark Program: helloDeltaLake” on page 29).

The full code is provided here:

data = spark.range(0, 10)
data.write.format("delta").mode("overwrite").save("/book/testShell")

The following is a full run:

>>> data = spark.range(0, 10)
>>> data.write.format("delta").mode("overwrite").save("/book/testShell")
>>>

Here we see the statement to create the range(), followed by the write statement. We
see that the Spark Executors do run. When you open up the output directory, you
will find the generated Delta table (more details on the Delta table format in the next
section).

Running Delta Lake in the Spark Scala Shell

You can also run Delta Lake in the interactive Spark Scala shell. As specified in the
Delta Lake Quickstart, you can start the Scala shell with the Delta Lake packages as
follows:

spark-shell --packages 1o.delta:<delta_version>
--conf "spark.sql.extensions=10.delta.sql.DeltaSparkSessionExtension
--conf "spark.sql.catalog.spark_catalog=
org.apache.spark.sql.delta.catalog.DeltaCatalog"

This will start up the interactive Scala shell:

Spark context Web UI available at http://host.docker.internal:4040
Spark context available as 'sc' (master = local[*],
app id = local-1665950762666).
Spark session available as 'spark'.
Welcome to

Running Delta Lake in the Spark Scala Shell | 27


https://oreil.ly/EcHRO

[ /]

NN N2

/| __/\_,_/_] /_/\_\ version 3.2.2
/-]

Using Scala version 2.12.15 (Java HotSpot(TM) 64-Bit Server VM, Java 1.8.0_311)
Type in expressions to have them evaluated.
Type :help for more information.

scala>

Inside the shell, you can now run interactive Scala commands. Let’s do a similar test
on Scala as you did for the PySpark shell:

val data = spark.range(0, 10)
data.write.format("delta").mode("overwrite").save("/book/testShell")

Here is a full run:

cala> val data = spark.range(0, 10)
data: org.apache.spark.sql.Dataset[Long] = [1d: bigint]

scala> data.write.format("delta").mode("overwrite").save("/book/testShell")

Again, when you check your output, you can find the generated Delta table.

Running Delta Lake on Databricks

For the examples later on in this book, the Databricks Community Edition was
chosen to run Delta Lake. This was chosen to develop and run the code samples
because it is free, simplifies setup of Spark and Delta Lake, and does not require your
own cloud account or for you to supply cloud compute or storage resources. With the
Databricks Community Edition, users can access a cluster with a complete notebook
environment and an up-to-date runtime with Delta Lake installed on this platform.

If you do not want to run Spark and Delta Lake on your local machine, you can
also run Delta Lake on Databricks on a cloud platform, like Azure, AWS, or Google
Cloud. These environments make it easy to get started with Delta Lake, since their
installed runtimes already have a version of Delta Lake installed.

The additional benefit of the cloud is that you can create real Spark clusters of
arbitrary size, potentially up to thousands of cores spanning hundreds of nodes to
process terabytes or petabytes of data.

When using Databricks in the cloud, you have two options. You can use its popular
notebooks or you can connect your favorite development environment to a cloud-
based Databricks cluster with dbx. dbx by Databricks labs is an open source tool that
allows you to connect to a Databricks cluster from an editing environment.
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Creating and Running a Spark Program: helloDeltalLake

Once you have the delta-spark package installed, creating your first PySpark program
is very straightforward. Follow these steps to create the PySpark program.

Create a new file (we named ours helloDeltaLake.py). Add the necessary imports. At a
minimum you need to import PySpark and Delta Lake:

import pyspark
from delta import *

Next, create a SparkSession builder, which loads up the Delta Lake extensions, as
follows:

# Create a builder with the Delta extensions
builder = pyspark.sql.SparkSession.builder.appName("MyApp")
.config("spark.sqgl.extensions",
"{o.delta.sql.DeltaSparkSessionExtension")
.config("spark.sql.catalog.spark_catalog",
"org.apache.spark.sql.delta.catalog.DeltaCatalog")

\
\
\
\

Next, we can create the SparkSession object itself. We will create the SparkSession
object and print out its version to ensure that the object is valid:

# Create a Spark instance with the builder

# As a result, you now can read and write Delta tables

spark = configure_spark_with_delta_pip(builder).getOrCreate()
print(f"Hello, Spark version: {spark.version}")

To verify that our Delta Lake extensions are working correctly, we create a range and
write it out in Delta Lake format:

# Create a range, and save it in Delta Lake format to ensure
# that your Delta Lake extensions are indeed working
df = spark.range(0, 10)
df.write \
.format("delta") \
.mode("overwrite") \
.save("/book/chapter02/helloDeltaLake")

That completes the code for your starter program. You can find the full code file in
the /chapter02/helloDeltaLake.py location of the book’s code repository. This code is a
good place to start if you want to write your own code.

To run the program, we can simply start a command prompt on Windows, or a
terminal on MacOS, and navigate to the folder with our code. We simply start
PySpark with the program as input:

pyspark < helloDeltalLake.py

When we run the program, we get our Spark version output (the displayed version
will depend on the version of Spark the reader has installed):
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Hello, Spark version: 3.4.1

And when we look at the output, we can see that we have written a valid Delta table.
The details of the Delta Lake format are covered in the next section.

At this point, we have PySpark and Delta Lake installed successfully, and we were able
to code and run a full-fledged PySpark program with Delta Lake extensions. Now that
you can run your own programs, we are ready to explore the Delta Lake format in
detail in the next section.

The Delta Lake Format

In this section we will dive deeper into the Delta Lake open-table format. When
we save a file using this format, we are just writing a standard Parquet file with
additional metadata. This additional metadata is the foundation for enabling the core
features of Delta Lake, and even just performing DML operations typically seen in
traditional RDBMSs such as INSERT, UPDATE, and DELETE, among a vast array of other
operations.

Since Delta Lake writes out data as a Parquet file, we will take a more in-depth look
at the Parquet file format. We first write out a simple Parquet file and take a detailed
look at the artifacts written by Spark. This will give us a good understanding of files
we will leverage throughout this book.

Next, we will write out a file in Delta Lake format, noticing how it triggers the
creation of the _delta_log directory, containing the transaction log. We will take a
detailed look at this transaction log and how it is used to generate a single source of
truth. We will see how the transaction log implements the ACID atomicity property
mentioned in Chapter 1.

We will see how Delta Lake breaks down a transaction into individual, atomic com-
mit actions, and how it records these actions in the transaction log as ordered, atomic
units. Finally, we will look at several use cases and investigate what Parquet data files
and transaction log entries are written, and what is stored in these entries.

Since a transaction log entry is written for every transaction, we might end up with
multiple small files. To ensure that this approach remains scalable, Delta Lake will
create a checkpoint file every 10 transactions (at the time of writing) with the full
transactional state. This way, a Delta Lake reader can simply process the checkpoint
file and the few transaction entries written afterward. This results in a fast, scalable
metadata system.
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Parquet Files

The Apache Parquet file format has been one of the most popular big data formats for
the last 20 years. Parquet is open source, so it is free to use under the Apache Hadoop
license and is compatible with most Hadoop data processing frameworks.

Unlike row-based formats such as CSV or Avro, Parquet is a column-oriented format,
meaning that the values of each column/field are stored next to each other, rather
than in each record. Figure 2-1 shows the differences between a row-based layout and
a column-oriented layout and how that is represented in a logical table.

Logical table representation

Column Column Column
string int date

Row O 2023-01
Row1 2023-02
Row 2

1 I 2 I 3 12023-0112023-0212023-03J

Figure 2-1. Difference between row-based and column-oriented layouts

Encoded chunk

Figure 2-1 demonstrates that instead of sequentially storing row values, as in the row
layout, the column layout sequentially stores column values. This columnar format
helps with compression on a column-by-column basis. This format is also built to
support flexible compression options and extendable encoding schemas for each data
type, meaning a different encoding can be used for compressing integer versus string

data types.

Parquet files are also comprised of row groups and metadata. Row groups contain
data from the same column, and thus each column is stored together in a row group.
The metadata in a Parquet file not only contains information about these row groups,
but also information about columns (e.g., min/max values, number of values) and the
data schema, which makes Parquet a self-describing file with additional metadata to
enable better data skipping.

Figure 2-2 shows how Parquet files are comprised of row groups and metadata. Each
row group consists of a column chunk for each column in the dataset, and each
column chunk consists of one or more pages with the column data. To explore more
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documentation and dive deeper into the Parquet file formats, you can look at the
Apache Parquet website and documentation.

Parquet file

Row group O Page O

Column Achunk 0 Page metadata
Column B chunk 0

Row group N
Footer (file, row group, and column metadata)

Figure 2-2. Parquet file composition

Advantages of Parquet files

Due to the column-oriented format, storage layout, metadata, and long-standing
popularity, Parquet files have several strong advantages for analytical workloads and
when working with big data:

High performance
Because Parquet files are a column-oriented format, they enable better compres-
sion and encoding since these algorithms can take advantage of the similar
values and data types stored in each column. For I/O-intensive operations, this
compressed data can improve performance significantly.

When column values are stored together in the case of Parquet files, queries only
need to read the columns required for that query, as opposed to requiring all
columns be read in the case of row-based formats. This means that the columnar
format can reduce the amount of data that needs to be read for operations,
resulting in better performance.

The metadata contained in Parquet files describes some of the features of the
data. It contains information about row groups, data schemas, and, most impor-
tantly, columns. Column metadata includes information such as min/max values
and the number of values. Together, this metadata reduces the amount of data
that needs to be read for each operation (i.e., data skipping) and enables far better
query performance.
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Cost-effective
Since Parquet files are able to leverage better compression and encoding, this
inherently makes the data more cost-effective to store. By nature, compressed
data consumes less space on disk when storing files, which inevitably results in
reduced storage space and reduced storage costs.

Interoperability
Since Parquet files have been very popular for the past 20 years, especially for leg-
acy big data processing frameworks and tools (e.g., Hadoop), they are very widely
supported across different tools and engines, and offer great interoperability.

Writing a Parquet file

In the book repository, the /chapter02/writeParquetFile Python program creates a
Spark DataFrame in memory, and writes it in Parquet format to the /parquetData
folder using the standard PySpark API:

data = spark.range(0, 100)

data.write.format("parquet") \
.mode("overwrite") \
.save('/book/chapter®2/parquetData’)

In our case, when we look at what is written to disk, we see the following (you may
see a different result, depending on your local machine):

Directory of C:\book\chapter®2\parquetData

10/17/2022

10/17/2022 511 part-00000-a3885270-...-c000.snappy.parquet
10/17/2022 513 part-00001-33885270-...-c000.snappy.parquet
10/17/2022 517 part-00002-a3885270-...-c000.snappy.parquet
10/17/2022 513 part-00003-a3885270-...-c000.snappy.parquet
10/17/2022 513 part-00004-a3885270-...-c000.snappy.parquet
10/17/2022 517 part-00005-33885270-...-c000.snappy.parquet
10/17/2022 513 part-00006-a3885270-...-c000.snappy.parquet
10/17/2022 513 part-00007-33885270-...-c000.snappy.parquet
10/17/2022 517 part-00008-a3885270-...-c000.snappy.parquet
10/17/2022 513 part-00009-33885270-...-c000.snappy.parquet
10/17/2022 513 part-00010-a3885270-...-c000.snappy.parquet
10/17/2022 517 part-00011-33885270-...-c000.snappy.parquet

A developer new to the big data world might be a bit shocked at this point. We only

did a single write of 100 numbers, so how did we end up with 12 Parquet files? A bit
of elaboration might be in order.

First, the filename we specified in the write is really the name of a directory, not a file.
As you can see, the directory /parquetData contains 12 Parquet files.

When we look at the .parquet files, we may see that we have 12 files. Spark is a highly
parallel computational environment, where the system is attempting to keep each
CPU core in your Spark cluster busy. In our case, we are running on a local machine,
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which means there is one machine in our cluster. When we look at the information
for our system, we see that we have 12 cores.

When we look at the number of .parquet files that were written, we see that we have
12 files, which is equal to the number of cores on our cluster. And that is Spark’s
default behavior in this scenario. The number of files will be equal to the number of
available cores. Assume we add the following statement to our code:

data = spark.range(0, 100)

data.write.format("parquet") \
.mode("overwrite") \
.save('/book/chapter®2/parquetData’)

print(f"The number of partitions is: {data.rdd.getNumPartitions()}")

We can see in the output that we indeed have 12 files:
The number of partitions is: 12

While this might look like overkill for a scenario where you are only writing 100
numbers, one can imagine a scenario where you are reading or writing very large
files. Having the ability to split the files and process them in parallel can dramatically
increase performance.

The .crc files you see in the output are cyclic redundancy check files. Spark uses them
to ensure that data hasn't been corrupted. These files are always very small, so their
overhead is very minimal compared to the utility that they provide. While there is a
way to turn off the generation of these files, we would not recommend doing so since
their benefit far outweighs their overhead.

The final files in your output are the _SUCCESS and _SUCCESS.crc files. Spark
uses these files to provide a method to confirm that all partitions have been written
correctly.

Writing a Delta Table

So far, we have been working with Parquet files. Now, lets take the first example
from the previous section and save it in Delta Lake format instead of Parquet
(code: /chapter02/writeDeltaFile.py). All we need to do is replace the Parquet format
with Delta format, as shown in the code:

data = spark.range(0, 100)
data.write \
.format("delta") \
.mode("overwrite") '\
.save('/book/chapter02/deltaData')
print(f"The number of filesis: {data.rdd.getNumPartitions()}")

We get the same number of partitions:

The number of files is: 12
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And when we look at the output, we see the addition of the _delta_log file:

Directory of C:\book\chapter®2\deltaData
10/17/2022 16 .part-00000-...-c000.snappy.parquet.crc
10/17/2022 16 .part-00001-...-c000.snappy.parquet.crc
10/17/2022 16 .part-00002-...-c000.snappy.parquet.crc
10/17/2022 16 .part-00003-...-c000.snappy.parquet.crc
10/17/2022 16 .part-00004-...-c000.snappy.parquet.crc
10/17/2022 16 .part-00005-...-c000.snappy.parquet.crc
10/17/2022 16 .part-00006-...-c000.snappy.parquet.crc
10/17/2022 16 .part-00007-...-c000.snappy.parquet.crc
10/17/2022 16 .part-00008-...-c000.snappy.parquet.crc
10/17/2022 16 .part-00009-...-c000.snappy.parquet.crc
10/17/2022 16 .part-00010-...-c000.snappy.parquet.crc
10/17/2022 16 .part-00011-...-c000.snappy.parquet.crc
10/17/2022 524 part-00000-...-c000.snappy.parquet
10/17/2022 519 part-00001-...-c000.snappy.parquet
10/17/2022 523 part-00002-...-c000.snappy.parquet
10/17/2022 519 part-00003-...-c000.snappy.parquet
10/17/2022 519 part-00004-...-c000.snappy.parquet
10/17/2022 522 part-00005-...-c000.snappy.parquet
10/17/2022 519 part-00006-...-c000.snappy.parquet
10/17/2022 519 part-00007-...-c000.snappy.parquet
10/17/2022 523 part-00008-...-c000.snappy.parquet
10/17/2022 519 part-00009-...-c000.snappy.parquet
10/17/2022 519 part-00010-...-c000.snappy.parquet
10/17/2022 523 part-00011-...-c000.snappy.parquet
10/17/2022 <DIR> _delta_log

24 File(s) 6,440 bytes

The _delta_log file contains a transaction log with every single operation performed
on your data.

Delta Lake 3.0 includes UniForm (short for “Universal Format™).
With UniForm enabled, Delta tables can be read as if they were
other open-table formats, such as Iceberg. This enables you to
use a broader range of tools without worrying about table format
compatibility.

%sql
CREATE TABLE T
TBLPROPERTIES(
'delta.columnMapping.mode' = 'name',
'delta.universalFormat.enabledFormats' = 'iceberg')
AS

SELECT * FROM source_table;

UniForm automatically generates Apache Iceberg metadata along-
side Delta metadata, atop one copy of the underlying Parquet data.
The metadata for Iceberg is automatically generated on table cre-
ation and is updated whenever the table is updated.
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The Delta Lake Transaction Log

The Delta Lake transaction log (also known as DeltaLog) is a sequential record of
every transaction performed on a Delta Lake table since its creation. It is central to
Delta Lake functionality because it is at the core of its important features, including
ACID transactions, scalable metadata handling, and time travel.

The main goal of the transaction log is to enable multiple readers and writers to
operate on a given version of a dataset file simultaneously and to provide additional
information, like data skipping indexes to the execution engine for more performant
operations. The Delta Lake transaction log always shows the user a consistent view of
the data and serves as a single source of truth. It is the central repository that tracks all
changes the user makes to a Delta table.

When a Delta table reader reads a Delta table for the first time or runs a new query
on an open file that has been modified since the last time it was read, Delta Lake
looks at the transaction log to get the latest version of the table. This ensures that a
user’s version of a file is always synchronized with the master record as of the most
recent query and that users cannot make divergent, conflicting changes to a file.

How the Transaction Log Implements Atomicity

In Chapter 1, we learned that atomicity guarantees that all operations (e.g., INSERT,
UPDATE, DELETE, or MERGE) performed on your file will either succeed as a whole or
not succeed at all. Without atomicity, any hardware failure or software bug can cause
a data file to be written partially, resulting in corrupted or, at a minimum, invalid
data.

The transaction log is the mechanism through which Delta Lake can offer the atomic-
ity guarantee. The transaction log is also responsible for metadata, time travel, and
significantly faster metadata operations for large tabular datasets.

The transaction log is an ordered record of every transaction made against a Delta
table since it was created. It acts as a single source of truth and tracks all changes
made to the table. The transaction log allows users to reason about their data and
trust its completeness and quality. The simple rule is if an operation is not recorded
in the transaction log, it never happened. In the following sections, we will illustrate
these principles with several examples.

Breaking Down Transactions into Atomic Commits

Whenever you perform a set of operations to modify a table or storage file (such as
INSERTs, UPDATEs, DELETEs, or MERGEs), Delta Lake will break down that operation
into a series of atomic, discrete steps composed of one or more of the actions shown
in Table 2-1.
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Table 2-1. List of possible actions in a transaction log entry

Action Description

Add file Adds a file.
Remove file Removes a file.

Update metadata Updates the table’s metadata (e.g., changing the table or file’s name, schema, or partitioning). A table
or file’s first transaction log entry will always contain an update metadata action with the schema, the
partition columns, and other information.

Set transaction  Records that a structured streaming job has committed a micro-batch with the given stream ID. For
more information, see Chapter 8.

Change protocol  Enables new features by switching the Delta Lake transaction log to the newest software protocol.

Commit info Contains information about the commit, which operation was made, from where, and at what time.
Every transaction log entry will contain a commit info action.

These actions are recorded in the transaction log entries (*.json) as ordered, atomic
units known as commits. This is similar to how the Git source control system tracks
changes as atomic commits. This also implies that you can replay each of the commits
in the transaction log to get to the current state of the file.

For example, if a user creates a transaction to add a new column to a table and then
adds data to it, Delta Lake would break this transaction down into its component
action parts, and once the transaction completes, add them to the transaction log as
the following commits:

1. Update metadata: change the schema to include the new column
2. Add file: for each new file added

The Transaction Log at the File Level

When you write a Delta table, that file’s transaction log is automatically created in the
_delta_log subdirectory. As you continue to make changes to the Delta table, these
changes will be automatically recorded as ordered atomic commits in the transaction
log. Each commit is written as a JSON file, starting with 0000000000000000000.json.
If you make additional changes to the file, Delta Lake will generate additional
JSON files in ascending numerical order, so the next commit is written as
0000000000000000001.json, the following one as 0000000000000000002.json, and
so on.

In the remainder of this chapter, we will use an abbreviated form for the transaction
log entries for readability purposes. Instead of showing up to 19 digits, we will use an
abbreviated form with up to 5 digits (so you will use 00001.json instead of the longer
notation).
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Additionally, we will be shortening the name of the Parquet files. These names
typically look as follows:

part-00007-71c70d7f-c7a8-4a8¢-8¢29-57300cfd929b-c000.snappy.parquet

For demonstration and explanation, we will abbreviate a name like this to
part-00007.parquet, leaving off the GUID and the snappy.parquet portion.

In our example visualizations, we will visualize each transaction entry with the action
name and the data filename affected; for example, in Figure 2-3, we have a remove
(file) action and another add (file) action in a single transaction file.

Part name
Remove part-00001
l Add part-00004 J
00002.json

Figure 2-3. Notation for a transaction log entry

Write multiple writes to the same file

Throughout this section, we will use a set of figures that describe each code step in
detail. We show the following information for each step:

o The actual code snippet is shown in the second column.

o Next to the code snippet we show the Parquet data files written as a result of the
code snippet execution.

o In the last column we show the transaction log entry’s JSON files. We show the
action and the affected Parquet data filename for each transaction log entry.

For this first example you will use chapter02/MultipleWriteOperations.py from the
book’s repository to show multiple writes to the same file.

Here is a step-by-step description of the different steps in Figure 2-4:

1. First, a new Delta table is written to the path. One Parquet file was written to
the output path (part-00000.parquet). The first transaction log entry (00000.json)
has been created in the _delta_log directory. Since this is the first transaction
log entry for the file, a metadata action and an add file action are recorded,
indicating a single partition file was added.

2. Next we append data to the table. We can see a new Parquet file (part-00001.par-
quet) has been written, and we created an additional entry (00001.json) in the
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transaction log. Like the first step, the entry contains an add file action, because
we added a new file.

3. We append more data. Again, a new data file is written (part-00002.parquet), and
a new transaction log file (00002.json) is added to the transaction log with an add

file action.
Step Code Parquet files written JSON filesin_delta_log
part-00000.parquet Action Part name
.coalesce(1)
1 .write Metadata N/A
.format(”delta”)
. save (DATALAKE_PATH) [ Add part-00000 J
00000.json
, o e 0 part-00001.parquet Action Part name
writ
.¥g1r.m:t(”delta”) Add part-00001
.node (”append”) -
. ::v:(DA'T'ZE:EE_PATH) 00001. Json
df. coalesce(1) [ part-00002.parquet ] [ Action Part name ]
3 .write
.format(”delta”) l Add pGI’t-OOOOZ J
.mode (”append”) "
. save(DATALAKE_PATH) 00002.json

Figure 2-4. Multiple writes to the same file

Note that each transaction log entry will also have a commit info action, which
contains the audit information for the transaction. We omitted the commit info log
entries on the figures for readability purposes.

The sequence of operations for writes is very important. For each write operation, the
data file is always written first, and only when that operation succeeds, a transaction
log file is added to the _delta_log folder. The transaction is only considered complete
when the transaction log entry is written successfully.

Reading the latest version of a Delta table

When the system reads a Delta table, it will iterate through the transaction log to
“compile” the current state of the table. The sequence of events when reading a file is
as follows:
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1. The transaction log files are read first.

2. The data files are read based on the log files.

Next, we will describe that sequence for the Delta table written by the previous
example (multipleWriteOperations.py). Delta will read all the log files (00000.json,
00001.json, and 00002.json). It will read the three data files based upon the log
information, as shown in Figure 2-5.

s N\ N\

JSON files in _delta_log Parquet files written

00000.json Part-00000.parquet

00001.json Part-00001.parquet

00002.json Part-00002.parquet

Step1 Step 2

\ J U J

Figure 2-5. Read operations

Note that the sequence of operations also implies that there could be data files that
are no longer referenced in the transaction log. Indeed, this is a common occurrence
in UPDATE or DELETE scenarios. Delta Lake does not delete these data files since they
might be required again if the user uses the time travel feature of Delta Lake (covered
in Chapter 6). You can remove old, obsolete data files with the VACUUM command
(also covered in Chapter 6).

Failure scenario with a write operation

Next, let’s see what happens if a write operation fails. In the previous write scenario,
let’s assume the write operation in step 3 of Figure 2-4 fails halfway through. Part of
the Parquet file might have been written, but the transaction log entry 00002.json was
not. We would have the scenario shown in Figure 2-6.
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Step Code Parquet files written JSON filesin _delta_log

df part-00000.parquet Action Part name
.coalesce(1)
1 .write Metadata N/A
.format("delta")
.save (DATALAKE_PATH) L Add part-00000 J
00000.json
_coalesce(1) part-00001.parquet Action Part name
2 ?;:;:t( "delta") Add part-00001
.mode ("append") "
.save(DATALAKE_PATH) 00001.json
df
.coalesce(1) [part-OOOOZ.parquet ]
3 .write

.format("delta")
.mode ("append")
.save (DATALAKE_PATH)

Figure 2-6. Failure during the last write operation.

As you can see in Figure 2-6, the last transaction file is missing. According to the read
sequence specified earlier, Delta Lake will read the first and second JSON transaction
files, and the corresponding part-00000 and part-00001 Parquet files. The Delta Lake
reader will not read inconsistent data; it will read a consistent view through the first
two transaction log files.

Update scenario

The last scenario is contained in the chapter02/UpdateOperation.py code repo. To
keep things simple, we have a small Delta table with patient information. We are
only tracking the patientId and the PatientName of each patient. In this use case,
we create a Delta table with four patients, two in each file. Next, we add data from
two more patients. Finally, we update the name of the first patient. As you will see,
this update has a bigger impact than expected. The full update scenario is shown in
Figure 2-7.
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, ; JSON files
Step Code Parquet files written in_delta log

+Read 00.json df. costesce(d) patientlD Name | patientlD Name || operation Filename
* Include part-0 .write.format("delta")
« Include part-1 .save(DATALAKE_PATH)
. [ 2 P2 Jl 4 P4 J
«Read 01.json
« Include part-2 part-0.parquet  part-1.parquet 00000.json
«Read 02.json ]
* Remove part-0 df:coa'l.esce(l) patienti - Name Operation Filename
* Include part-3 .write. format("delta") 5 P5
. .mode ("append") -
Final result: .save (DATALAKE_PATH) P P Add part2
: ggg;‘z 1 00001.son
< part3 part-2.parquet
are included in
deltaTable = DeltaTable \ . ) ( )
latest data _forPath(spark, patientiD] Name Action |Part name
DATALAKE_PATH) : o
deltaTable.update( Remove part0
condition = 2 P2
col("patientId") == 1, \ Add part3
set = {'name': lit("p11")} £3 t —
) part>.parque 00002 json

Figure 2-7. Updates and the transaction log
In this example, we execute the following steps:

1. The first code snippet creates a Spark DataFrame, with the patientId and Name
of four patients. We write the DataFrame to a Delta table, forcing the data into
two files with .coalesce(2). As a result, we write two files. A transaction log
entry is created (00000.json) once the part-00000.parquet and part-00001.parquet
files are written. Note the transaction log entry contains two add file actions
indicating the part-00000.parquet and the part-00001.parquet files were added.

2. The next code snippet appends the data for two more patients (P5 and P6).
This results in the creation of the part-00002.parquet file. Again, once the file is
written, the transaction log entry is written (00001.json), and the transaction is
complete. Again, the transaction log file has one add file action, indicating that a
file (part-00002.parquet) was added.
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3. The code performs an update. In this case, we want to update the patient’s

name with patientId 1 from P1 to P11. Currently, the record for patientId 1
is present in part-0. To perform an update, part-0 is read and a map operator
is used to update any record matching the patientId of 1 from P1 to P11. A
new file is written as part-3. Finally, Delta Lake writes the transaction log entry
(00002.json). Notice it writes a remove file action, saying that the part-0 file is
removed, and an add action, saying that the part-3 file has been added. This is
because the data from part-0 was rewritten into part-3, and all modified rows
(along with the unmodified rows) have been added to part-3, rendering the
part-0 file obsolete.

Notice that Delta Lake does not delete the part-0 file, since a user might want to
go back in time with time travel, in which case the file is required. The VACUUM
command can clean up unused files like this (Chapter 6 covers time travel and
cleaning up unused files in detail).

Now that we have seen how the data is written during an update, let’s look at how a
read would determine what to read, as illustrated in Figure 2-8.

Final data read:
3 P3
4 P4
5 P5
6 P6
1 PTI
| 2 P2 )

Figure 2-8. Reading after an update

The read would proceed as follows:

1.

The first transaction log entry is read (00000.json). This entry tells Delta Lake to
include the part-0 and part-1 files.

. The next entry (00001.json) is read telling Delta Lake to include the part-2 file.
. The last entry (00002.json) is read, which informs the reader to remove the part-0

file and include part-3.

As a result, the reader ends up reading part-1, part-2, and part-3, resulting in the
correct data shown in Figure 2-8.
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Scaling Massive Metadata

Now that we have seen how the transaction log records each operation, we can have
many very large files with thousands of transaction log entries for a single Parquet
file. How does Delta Lake scale its metadata handling without needing to read
thousands of small files, which would negatively impact Spark’s reading performance?
Spark tends to be most effective when reading large files, so how do we resolve this?

Once the Delta Lake writer has made the commits to the transaction log, it will save
a checkpoint file in Parquet format in the _delta_log folder. The Delta Lake writer will
continue to generate a new checkpoint every 10 commits.

A checkpoint file saves the entire state of the table at a given point in time. Note
that “state” refers to the different actions, not the files actual content. So, it will
contain the add file, remove file, update metadata, commit info, etc., actions, with all
the context information. It will save this list in native Parquet format. This will allow
Spark to read the checkpoint quickly. This gives the Spark reader a “shortcut” to fully
reproduce a table’s state and avoid reprocessing thousands of small JSON files, which
could be inefficient.

Checkpoint file example

Following is an example (illustrated in Figure 2-9) where we execute multiple com-
mits, and a checkpoint file is generated as a result. This example uses the code file
chap02/ TransactionLogCheckPointExample.py from the booK’s repository.
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Step Code Parquet files written| JSON filesin _delta_log
df part-00000.parquet Action  Partname
.coalesce(1)
-I .write
.format("delta")
.save(DATALAKE_PATH) .
00000.json
A N part-00001.parquet Action  Partname
# create a patient tuple Add part-OOOOI
patientID = 10 + index
t = (patientID, .
Fihatient {patientiD}", 00001.json
RICEm) part-00002.parquet
# Create and write the dataframe Action Part name
df = spark.createDataFrame(
[t], columns)
2 df
writ .
“Fornat("delta") 00002.json
.mode("append") oo eee
.save(DATALAKE_PATH) cee
XX}
part-00009.parquet Action  Partname
00009.json
e patient To. fipatient [part-OOOlO.parquet] Action | Part name
{patient ID}", "Phoenix")
3 df = spark.createDataFrame( Add part-OOOlO
[t], columns) ~ 7
¥ rtte 00010.json
.fo;nas(“delg?“) - ~
I'SLZEoZ?KfRKEprm) 00010.checkpoint.
parquet
for index 1 H 1
e R part-00012.parquet Action  Part name
t = {patientID,
f"Patient{patientID}", Add part.OOO]Z
part-00013.parquet .
df = spark.createDataFrame( 0000’]50"
4 [t], columns)
df b
. Action  Partname
.format("delta")
.mode("append") Add part-OOOB
.save(DATALAKE_PATH)
00002.json

Figure 2-9. Checkpoint file example

The Delta Lake Transaction Log |

45



This example has the following steps:

1. The first code snippet creates a standard Spark DataFrame with several patients.

Note that we apply a coalesce(1) transaction to the DataFrame, forcing that
data into one partition.

Next, we write the DataFrame in Delta Lake format to a storage file. We verify
that a single part-0001.parquet file was written. We also see that a single trans-
action log entry (00000.json) has been created in the _delta_log directory. This
directory entry contains an add file action for the part-00001.parquet file.

. In the next step, we set up a loop over a range(@, 9), which will loop nine

times, creating a new patient row, then creating a DataFrame from that tuple, and
writing the DataFrame to your storage file. Since you loop nine times, we create
nine additional Parquet files, from part-00001.parquet through part-00009.par-
quet. We also see nine additional transaction log entries, from 00001.json through
00009.json.

. In step 3, we create one more patient tuple, convert it to a DataFrame, and write

it to the Delta table. This creates one additional data file (part-00010.parquet).
The transaction log has a standard log entry (00010.json) with the add file action
for the part-00010.parquet file. But the interesting fact is that it also creates
a 000010.checkpoint.parquet file. This is the checkpoint mentioned earlier. A
checkpoint is generated every 10 commits. This Parquet file contains the entire
state of your table at the time of the commit in native Parquet format.

. In the last step, the code generates two more commits, creating the

part-00011.parquet and part-00012.parquet, and two new log entries with add
file entries pointing to these files.

If Delta Lake needs to re-create the state of the table, it will simply read the check-
point file (000010.checkpoint.parquet), and reapply the two additional log entries
(00011.json and 00012.json).

Displaying the checkpoint file

Now that we have generated the checkpoint.parquet file, let’s take a look at its content
using the /chapter02/readCheckPointFile.py Python file:
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# Set your output path for your Delta table

DATALAKE_PATH = "/book/chapter02/transactionLogCheckPointExample"
CHECKPOINT_PATH = "/_delta_log/00000000000000000010.checkpoint.parquet"
# Read the checkpoint.parquet file

checkpoint_df =
spark
.read
.format("parquet")

— — —

.load (f"{DATALAKE_PATH}{CHECKPOINT_PATH}")

# Display the checkpoint dataframe

checkpoint_df.show()

Notice how we do a Parquet format read here, because the checkpoint file is indeed
stored in Parquet format, not Delta format.

The content of the checkpoint_df DataFrame is shown here:

B TR +o-m--- R R R B +
| txn]| add|remove| metaData|protocol|
B T R to-m- - R R R B +
|null]|{part-00000-f7dof...| null| null| null|
|null|{part-00000-a65€0...| null]| null] null]
|null|{part-00000-4c3ea...| null| null| null|
|null|{part-00000-8ebif...| null| null] null]
|null|{part-00000-2e143...| null| null| null|
|null|{part-00000-d1d13...| null| null] null]
|null]|{part-00000-650bf...| null| null| null|
|null|{part-00000-eab6e...| null| null] null]
|null|{part-00000-79258...| null| null| null|
|null|{part-00000-23558...| null| null]| null]
|null] null] null] null] {1, 2}|
|null] null] null|{376ce2d6-11b1-46...| null]
|null|{part-00000-eb29a...| null| null| null|
B T R to-m- - R R R B +

As you can see, the checkpoint file contains columns for the different actions (add,
remove, metadata, and protocol). We see add file actions for the different Parquet
data files, an update metadata action from when we created the Delta table, and a
change protocol action resulting from the initial Delta table write.

Note that DataFrame.show() will not show the DataFrame records in order. The
change protocol and update metadata records are always the first records in the
checkpoint file, followed by the different add file actions.

The Delta Lake Transaction Log

47



Conclusion

As we begin the journey into Delta Lake, it all starts with the initial setup. This
chapter walked through how to set up Delta Lake with PySpark and the Spark
Scala shell on your local machine, while covering necessary libraries and packages
to enable you to run a PySpark program with Delta Lake extensions. You can also
simplify this setup process using a cloud-based tool like Databricks to develop, run,
and share Spark-based applications like Delta Lake.

After reading about getting Delta Lake up and running, we began to learn about
the foundational components of Delta Lake that inevitably enable most of the core
features we will discuss throughout this book. By adding checkpoint files to enable
scalable metadata and a transaction log to standard Parquet files to support ACID
transactions, Delta Lake has the key elements to support reliability and scalability.
And now that we have established these foundational components, you will learn
more about basic operations on a Delta table in the next chapter.
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CHAPTER 3
Basic Operations on Delta Tables

Delta tables can be created in a variety of ways. How you create your tables largely
depends on your familiarity with the toolset. If you are primarily a SQL developer,
you can use SQLs CREATE TABLE to create a Delta table, while Python users may pre-
fer the DataFrameWriter API or the fine-grained and easy to use DeltaTableBuilder
APL

When creating tables you can define GENERATED columns, the values of which are
automatically generated based on a user-specified function over other columns in the
Delta table. While some restrictions apply, generated columns are a powerful way to
enrich your Delta table schemas.

Delta tables can be read by standard ANSI SQL or using the popular PySpark
DataFrameReader API. You can write to a Delta table by using the classic SQL INSERT
statement, or you can append a DataFrame to the table. Finally, leveraging the SQL
COPY INTO option is a great way to append large amounts of data quickly.

Partitioning a Delta table based upon your frequently used query pattern can dramat-
ically improve your query and DML performance. The individual files that make up
your Delta table will be organized in subdirectories that align to the values of your
partitioning columns.

Delta Lake allows you to associate custom metadata with the commit entries in your
transaction log. This can be leveraged to tag sensitive commits for auditing purposes.
You can also store custom tags in your table properties, so just like you can have tags
for your cloud resources, you can now associate those tags with your Delta tables.
You can also modify certain Delta capabilities. For example, you can associate the
delta.appendonly property to a table to prevent deletes and updates.
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Creating a Delta Table

Delta Lake enables us to create tables in three different ways:

SQL Data Definition Language (DDL) commands
SQL developers are already very familiar with the classic CREATE TABLE com-
mand, and you will be able to use it to create a Delta table by adding just a few
attributes.

PySpark DataFrameWriter API
Big data Python (and Scala) developers will very likely already be very familiar
with this API, and you will be able to continue to use it with Delta tables.

DeltaTableBuilder API
This is a new API specifically designed for Delta tables. It uses the popular
Builder pattern, and it gives very fine-grained control over every Delta table and
column attribute.

In the following sections we get hands-on with each of these table creation methods.

Creating a Delta Table with SQL DDL

The version of SQL used in Spark compute environments is called Spark SQL, which
is a variant of ANSI SQL supported by Spark. Spark SQL is generally compatible with
ANSI standard SQL. Refer to the Spark documentation for additional details on the
Spark SQL variant.

As mentioned earlier, you can use the standard SQL DDL commands in Spark SQL to
create a Delta table:'

%sql
- Create a Delta table by specifying the delta format, followed
-- by the path in quotes
CREATE TABLE IF NOT EXISTS delta.'/mnt/datalake/book/chapter03/rateCard’

(
rateCodeId INT,
rateCodeDesc STRING

)

USING DELTA
The notation that you are using for the table name is the file_format |
‘path_to_table' notation, where the file_format is delta, and path_to_table is
the path to the Delta table.

1 GitHub repo location: /Chapter03/02 - CreateDeltaTable WithSql
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Using this format can get tedious, since filepaths can get rather long in the real
world. This is where catalogs come in. A catalog allows you to register a table with
a database.table_name notation, where database is a logical grouping of tables, and
table_name is a shorthand for the table. For example, if you first created a database
named taxidb as follows:

%sql
CREATE DATABASE IF NOT EXISTS taxidb;

Then you could create the above table as follows:

%sql
-- Create the table using the taxidb catalog
CREATE TABLE IF NOT EXISTS taxidb.rateCard
(
rateCodeId INT,
rateCodeDesc STRING

)
USING DELTA

LOCATION '/mnt/datalake/book/chapter03/rateCard'’

From this point forward, you can refer to this Delta table as taxidb.rateCard, which
is easier to remember and type than delta./mnt/datalake/book/chapter®3/rate
Card, or possibly an even longer pathname. The most widely used catalog in the
Spark ecosystem is the Hive catalog.

When running a directory listing on the data lake location where the table was
created, you can see that our directory is empty (since you have not loaded any data),
except for the _delta_log directory, which contains the table’s transaction log:

%sh

1s -al /dbfs/mnt/datalake/book/chapter03/rateCard
total 12

drwxrwxrwx 2 root root 4096 Dec 2 19:02 .
drwxrwxrwx 2 root root 4096 Dec 2 19:02 ..
drwxrwxrwx 2 root root 4096 Dec 2 16:40 _delta_log

Please note that since you are running this as a shell command
in the Databricks Community Edition environment, you have to
prefix our path for the 1s command with /dbfs.
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When you open the _delta_log directory, you see our first transaction log entry:

%sh

1s -al /dbfs/mnt/datalake/book/chapter03/rateCard/_delta_log
total 15

drwxrwxrwx root root 4096 Dec 2 19:02 .

- TWXTWXTWX root root 1886 Dec 2 19:02 00000000000000000000.crc

2
drwxrwxrwx 2 root root 4096 Dec 2 19:02 ..
1
-rwxrwxrwx 1 root root 939 Dec 2 19:02 000OCOOOEOOOEOOO000.json

In the transaction log discussion in Chapter 2, you read about the different actions
that can be written to your transaction log entry. One of those actions is the meta-
data action, which describes the schema of the table, the partitioning columns (if
applicable), and other information. This metadata action is always written to the first
transaction log entry created for our new table.

To find this metadata action, you can do a search for the string metadata in the
transaction entry:

%sh

grep metadata /dbfs/mnt/datalake/book/chapter@3/rateCard
/_delta_log/00000.json > /tmp/metadata.json

python -m json.tool /tmp/metadata.json

This produces the following output:

{
"metaData": {
"id": "f79c4c11-a807-49bc-93f4-2bbe778e2a04",
"format": {
"provider": "parquet",
"options": {}
1,
"schemaString": "{\"type\":\"struct\",
\"fields\":[{\"name\":\"rateCodelId\",
\"type\":\"integer\",\"nullable\":true,
\"metadata\":{}},{\"name\":\"rateCodeDesc\",
\"type\":\"string\",\"nullable\":true,
\"metadata\":{}}1}",
"partitionColumns": [],
"configuration": {3},
"createdTime": 1670007736533
}
}

Here, you see that Delta Lake has written the schema of the table to the transaction
log entry, together with some auditing and partitioning information.

52 | Chapter3:Basic Operations on Delta Tables



In the preceding command, we first perform a grep command,
which searches for the string metadata in the transaction log entry.
We then write the output of that to a temp file. The next line uses
python -m json.tool with the temp file as input. The json.tool
Python module will “pretty print” the content of a JSON file, which
can be very handy for readability.

The DESCRIBE Statement

The SQL DESCRIBE command can be used to return the basic metadata for a Parquet
file or Delta table. The metadata returned for a table includes one line for each
column with the following information:

o The column name

o The column data type

+ Any comments that were applied to the column

Following is an example of the DESCRIBE command at the table level:

%sql
DESCRIBE TABLE taxidb.rateCard;

e LT Hommmmmea +
| col_name | data_type | comment |
e LT Hommmmmea +
| rateCodeld | int | <null> |
| rateCodeDesc | string | <null> |
o oo - +

When you want to find the Delta Lake-specific attributes, you can also use the
DESCRIBE TABLE EXTENDED command, which provides more detailed metadata infor-
mation, including the following generic attributes:

o The catalog name for the database in which the table was created (in this case the
Hive metastore)

o The Hive database

o The table name

o The location of the underlying files

+ The owner of the table

o The table properties
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The following Delta Lake-specific attributes are also included:

delta.minReaderVersion

The minimum required protocol reader version for a reader that can read from

this Delta table.

delta.minWriterVersion

The minimum required protocol writer version for a writer that can write to this
Delta table. Please refer to the Delta Lake documentation for a full listing of all

available table properties.

Following is an example of the DESCRIBE TABLE EXTENDED command:

%sql

DESCRIBE TABLE EXTENDED taxidb.rateCard;

The generates the following output:

mm e e s
| col_name
mm e e e
rateCodeld
rateCodeDesc

I

|

I

| # Detailed Table Information
| Catalog

| Database

| Table

| Type

| Location

| Provider

| Owner

| Table Properties

I

g

+
I

+
I
|
I
|
I
|
I
|
I
|
I
|
I

+

int
string

hive_metastore

taxidb

ratecard

EXTERNAL

dbfs:/.../chapter03/rateCard

delta

root

[delta.minReaderVersion=1,
delta.minWriterVersion=2]

+
I

+
I
|
I
|
I
|
I
|
I
|
I
|
I

+

--------- +
comment |
--------- +
<null>
<null>

--------- +

So far, we have covered the creation of Delta tables with the SQL DDL. In the next
section, we will switch back to Python, and look at how you can use the familiar
PySpark DataFrames to create new Delta tables.

Creating Delta Tables with the DataFrameWriter API

Spark DataFrames resemble relational database tables or Excel spreadsheets with
headers. The data resides in rows and columns of different data types. The collection
of functions that lets us read, write, and manipulate DataFrames is collectively known

as the Spark DataFrameWriter API.
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Creating a managed table

When you read the Spark and/or Delta documentation, you will
hear the terms managed and unmanaged table. A Delta table that
is created with a location is known as an unmanaged table. For
these tables, Spark only manages the metadata, and requires the
user to specify the exact location where you wish to save the under-
lying data for the table, or alternatively, the source directory from
which data will be pulled to create the table (if you are using the
DataFrameWriter API).

A Delta table that is created without a location is referred to
as a managed table. Spark manages both the metadata and the
actual data for managed tables. The data is stored under the /spark-
warehouse subfolder (in the Apache Spark scenario) or the /user/
hive/warehouse folder (when running on Databricks), which is the
default for managed tables.

One of the benefits of the DataFrameWriter API is that you can simultaneously create
a table and insert data into it from a Spark DataFrame, as shown in the following

code snippet:

INPUT_PATH = '/databricks-datasets/nyctaxi/taxizone/taxi_rate_code.csv'
DELTALAKE_PATH = \
'dbfs:/mnt/datalake/book/chapter®3/createDeltaTableWithDataFrameWriter'

# Read the DataFrame from the input path

df_rate_codes = spark

.read

.format("csv")
.option("inferSchema", True)
.option("header", True)
.Load (INPUT_PATH)

— - -

# Save our DataFrame as a managed Hive table
df_rate_codes.write.format("delta").saveAsTable('taxidb.rateCard"')

Here, we first populate the DataFrame from the taxi_rate_code.csv file, and then save
the DataFrame as a Delta table by specifying the .format("delta") option. The
schema of the table will be the schema of our DataFrame. Notice that this will be a
managed table since we did not specify a location for our data file. You can verify this
by running the SQL DESCRIBE TABLE EXTENDED command:

2 GitHub repo location: /chapter03/04 - The DataFrameWriter API
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%sql
DESCRIBE TABLE EXTENDED taxidb.rateCard;

R R e +
| col_name | data_type |
R R e +
| RateCodelD | int |
| RateCodeDesc | string |
| | |
| # Detailed Table Information | |
| Catalog | hive_metastore |
| Database | taxidb |
| Table | ratecard |
| Type | MANAGED |
| Location | dbfs:/user/hive/warehouse/taxidb.db/ratecard |
| Provider | delta |
| Owner | root |
| Is_managed_location | true |
| Table Properties | [delta.minReaderVersion=1, |
| | delta.minWriterVersion=2]

e o m e m e e +

We see that the data for the table lives in the /user/hive/warehouse location, and that
the type of the table is set to MANAGED.

If you run a SELECT on the table, you can see the data was indeed loaded successfully
from the CSV file:

%sql

SELECT * FROM taxidb.rateCard

B R R R +
| RateCodeID | RateCodeDesc |
B R R R +
| 1 | Standard Rate [
| 2 | JFK

| 3 | Newark |
| 4 | Nassau or Westchester |
| 5 | Negotiated fare [
| 6 | Group ride |
Fommmm e e +

Creating an unmanaged table

You can create an unmanaged table by specifying both the path and the name of the
Delta table. In the following code, we execute both steps in sequence. First, drop the
existing table:

%sql
-- Drop the existing table
DROP TABLE IF EXISTS taxidb.rateCard;

Next, write out and create the table:
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# Next, create our Delta table, specifying both
# the path and the Delta table N=name
df_rate_codes
.write
.format("delta")
.mode("overwrite")
.option('path', DELTALAKE_PATH) \
.saveAsTable('taxidb.rateCard')

— -

Again by performing a simple SELECT we can verify that the data of the DataFrame
has been loaded:

%sql
SELECT * FROM taxidb.rateCard

D R +
| RateCodeDesc
D R +
| Standard Rate |
| JFK |
| Newark |
| Nassau or Westchester |
| Negotiated fare

| Group ride |
T +

Creating a Delta Table with the DeltaTableBuilder API

The last way to create a Delta table is by using the DeltaTableBuilder API. Since
it is designed to work with Delta tables, it offers a higher degree of fine-grained
control versus the traditional DataFrameWriter API It is easier for a user to specify
additional information such as column comments, table properties, and generated
columns.

The Builder design pattern is popular in software languages. The Builder pattern aims
to “separate the construction of a complex object from its representation so that the
same construction process can create different representations.” It is used to construct
a complex object step-by-step, where the final step will return the object.

The complex object we are building in this case is a Delta table. Delta tables support
so many options that it is challenging to design a standard API with many arguments
for a single function. Instead, the DeltaTableBuilder has a number of small meth-
ods, such as addColumn(), which all return a reference to the Builder object. That
way we can keep adding other calls to addColumn(), or other methods of the Builder.
The final method we call is execute(), which gathers up all the attributes received,
creates the Delta table, and returns a reference to the table to the caller. To use the
DeltaTableBuilder, we will need the following import:

from delta.tables import *
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This example creates a managed table:*

# In this Create Table, you do NOT specify a location, so you are
# creating a MANAGED table
DeltaTable.createIfNotExists(spark)
.tableName("taxidb.greenTaxis")
.addColumn("RideId", "INT", comment = "Primary Key")
.addColumn("VendorId", "INT", comment = "Ride Vendor")
.addColumn("EventType", "STRING")
.addColumn("PickupTime", "TIMESTAMP")
.addColumn("PickupLocationId", "INT")
.addColumn("CabLicense", "STRING")
.addColumn("DriversLicense", "STRING")
.addColumn("PassengerCount", "INT")
.addColumn("DropTime", "TIMESTAMP")
.addColumn("DropLocationId", "INT")
.addColumn("RateCodeId", "INT", comment = "Ref to RateCard")
.addColumn("PaymentType", "INT")
.addColumn("TripDistance", "DOUBLE")
.addColumn("TotalAmount", "DOUBLE")
.execute()

o T T T T T T T T T o e e e —

Since each method returns a reference to the Builder object, we can keep call-
ing .addColumn() to add each column. Finally, we call .execute() to create the Delta
table.

Generated Columns

Delta Lake supports generated columns, which are a special type of column, the values
of which are automatically generated based on a user-specified function over other
columns in the Delta table. When you write to a Delta table with generated columns
and don’t explicitly provide values for them, Delta Lake automatically computes the
values.

Lets create an example next. To stay with our taxi theme, we will create a simple
version of a yellow taxi table:

%sql

CREATE TABLE taxidb.YellowTaxis

(
RidelId INT COMMENT 'This is our primary Key column',
VendorId INT,
PickupTime TIMESTAMP,
PickupYear INT GENERATED ALWAYS AS(YEAR (PickupTime)),
PickupMonth INT GENERATED ALWAYS AS(MONTH (PickupTime)),
PickupDay INT GENERATED ALWAYS AS(DAY  (PickupTime)),
DropTime TIMESTAMP,
CabNumber STRING COMMENT 'Official Yellow Cab Number'

3 GitHub repo location: /chapter03/05 - The DeltaTableBuilder API
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) USING DELTA
LOCATION "/mnt/datalake/book/chapter03/YellowTaxis.delta"
COMMENT 'Table to store Yellow Taxi data'

We see the columns with GENERATED ALWAYS AS, which extracts the YEAR, MONTH, and
DAY from the PickupTime column. The values for these columns will automatically be
populated when we insert a record:

%sql
INSERT INTO taxidb.YellowTaxis
(Rideld, VendorId, PickupTime, DropTime, CabNumber)
VALUES
(5, 101, '2021-7-1T8:43:28UTC+3', '2021-7-1T8:43:28UTC+3"', '51-986')

When we select the record, we see that the generated columns are automatically
populated:

%sql
SELECT PickupTime, PickupYear, PickupMonth, PickupDay FROM taxidb.YellowTaxis

B R B R R L +
| pickupTime | pickupYear | pickupMonth | pickupDay |
B R B R R L +
| 2021-07-01 05:43:28+00:00 | 2021 | 7 1 |
B R B R R L +

When we do explicitly provide a value for a generated column, the value must satisfy
the constraint (<value> < generation expression) IS TRUE or the insert will fail
with an error.

The expression you use in GENERATED ALWAYS AS can be any Spark SQL function
that always returns the same result when given the same argument values, with a
few exceptions we will touch on soon. You might think you could use a GENERATED
column to generate a column with a unique ID like this:

%sql
CREATE OR REPLACE TABLE default.dummy

(
ID STRING GENERATED ALWAYS AS (UUID()),
Name STRING

) USING DELTA

However, when you try to run this, you get the following error message:
Found uuid(). A generated column cannot use a non deterministic expression.

The UUID() function will return a different value for each invocation, which violates
the preceding rule. There are a few exceptions to this rule for the following types of
functions:

o User-defined functions
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« Aggregate functions
« Window functions

« Functions returning multiple rows

GENERATED ALWAYS AS columns using the functions listed are valid, and can be very
useful in several scenarios, like calculating a standard deviation of a given sample of
records.

Reading a Delta Table

We have a few options when reading a table: SQL and PySpark using the
DataFrameReader. When we use a notebook in the Databricks Community Edition,
we tend to use both SQL and PySpark cells within the notebook. Some things, like a
quick SELECT, are just easier and faster to do in SQL, while complex operations are
sometimes easier expressed in PySpark and the DataFrameReader. This is of course
also dependent on the experience and preferences of the engineer. We recommend a
pragmatic approach using a healthy mix of both, depending on the problem you are
currently solving.

Reading a Delta Table with SQL

To read a Delta table, we can simply open a SQL cell and write your SQL query. If
we set up your environment as specified in the GitHub READ.ME file, we will have a
Delta table in the /mnt/datalake/book/chapter03/Yellow TaxisDelta folder:

%sh
1s -al /dbfs/mnt/datalake/book/chapter®3/YellowTaxisDelta
total 236955

drwxrwxrwx 2 root root 4096 Dec 4 18:04 .

drwxrwxrwx 2 root root 4096 Dec 2 19:02 ..

drwxrwxrwx 2 root root 4096 Dec 4 16:41 _delta_log

-rwxrwxrwx 1 root root 134759123 Dec 4 18:04 part-00000-...-c000.snappy.parquet
-rwxrwxrwx 1 root root 107869302 Dec 4 18:04 part-00001-...-c000.snappy.parquet

We can quickly register a Delta table location in the metastore, as follows:*

%sql

CREATE TABLE taxidb.YellowTaxis

USING DELTA

LOCATION "/mnt/datalake/book/chapter®3/YellowTaxisDelta/"

Once we have created the table, we can do a quick count on the number of records:

%sql
SELECT

4 GitHub repo location: /chapter03/07 - Read Table with SQL
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COUNT(*)
FROM
taxidb.yellowtaxis

This gives us the following count:

We can see there are almost 10 million rows to work with. We can use another
DESCRIBE command variant to get the details of the table:

%sql
DESCRIBE TABLE FORMATTED taxidb.YellowTaxis;

DESCRIBE TABLE FORMATTED formats the output, making it a bit more readable:

B R R +
| col_name | data_type |
R R R T +
| RideId | int

| VendorId | int

| PickupTime | timestamp |
| DropTime | timestamp |
| PickupLocationId | int |
| DropLocationId | int |
| CabNumber | string |
| DriverLicenseNumber | string |
| PassengerCount | int |
| TripDistance | double |
| Ratecodeld | int

| PaymentType | int |
| TotalAmount | double |
| FareAmount | double |
| Extra | double |
| MtaTax | double |
| TipAmount | double |
| TollsAmount | double |
| ImprovementSurcharge | double |
I I I
| # Detailed Table Information | |
| Catalog | hive_metastore |
| Database | taxidb |
| Table | YellowTaxis |
| Type | EXTERNAL |
| Location | dbfs:/.../chapter03/YellowTaxisDelta |
| Provider | delta |
| Owner | root |
| Table Properties | [delta.minReaderVersion=1,

| | delta.minWriterVersion=2]
Ao Ao +
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Because Spark SQL supports most of the ANSI SQL subset, we can use any type
of complex query. Following is an example that returns CabNumbers with the most
expensive FareAmounts over $50:

%sql
SELECT
CabNumber,
AVG(FareAmount) AS AverageFare
FROM
taxidb.yellowtaxis
GROUP BY
CabNumber
HAVING
AVG(FareAmount) > 50
ORDER BY
2 DESC
LIMIT 5

This gives us:

dommm e Fommmmm e +
| cabnumber | AverageFare |
dommm e Fommmmm e +
| SIR104 | 111.5 |
| T628190C | 109.0 |
| PEACE16 | 89.7 |
| T439972C | 89.5 |
| T802013C | 85.0 |
dommm e Fommmmm e +

We can also use SQL directly in Python with spark.sql, using standard SQL as the
argument. Following is a simple Python snippet that performs the same query as the
previous SQL query:

number_of_results = 5
sql_statement = f"""
SELECT

CabNumber,

AVG(FareAmount) AS AverageFare
FROM

taxidb.yellowtaxis
GROUP BY

CabNumber
HAVING

AVG(FareAmount) > 50
ORDER BY

2 DESC
LIMIT {number_of_results}"""

df = spark.sql(sql_statement)
display(df)

This produces the same results as the SQL:
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B B LR +
| cabnumber | AverageFare |
B B LR +
| SIR104 | 111.5 |
| T628190C | 109.0 |
| PEACE16 | 89.7 |
| T439972C | 89.5 |
| T802013C | 85.0 |
B B LR +

We recommend using the triple-quotes syntax, which makes it easy to span strings
over multiple lines without having to use continuation lines. Also, notice how we
have the variable number_of_results, and then convert the triple-quote string into
an f-string and use the {} syntax to insert the variable for the limit.

Reading a Table with PySpark

To read the same table in PySpark, you can use the DataFrameReader. For example, to
implement the count of records, we use:*

df = spark.read.format("delta").table("taxidb.YellowTaxis")
print(f"Number of records: {df.count():,}")

Output:
Number of records: 9,999,995

Note that we specify the Delta format, since our table is a Delta table and we can use
the .table() method to specify that we want to read the entire table. Finally, we use
an f-string, this time with the “:” formatter, which uses a comma separator for every
three digits.

Next, let’s re-create the code for the top five average fares by cab number, which we
did in SQL earlier. The Python code follows:

# Make sure to import the functions you want to use
from pyspark.sql.functions import col, avg, desc

# Read YellowTaxis into our DataFrame
df = spark.read.format("delta").table("taxidb.YellowTaxis")

# Perform the GROUP BY, average (AVG), HAVING and order by equivalents

# in pySpark

results = df.groupBy("CabNumber")
.agg(avg("FareAmount").alias("AverageFare"))
.filter(col("AverageFare") > 50)
.sort(col("AverageFare").desc())
.take(5)

— — —

5 GitHub repo location: /chapter03/Read Table with PySpark
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# Print out the result, since this is a list and not a DataFrame
# you an use list comprehension to output the results in a single
# line

[print(result) for result in results]

We'll get the following the output:

Row(CabNumber="'SIR104', AverageFare=111.5)
Row(CabNumber="'T628190C', AverageFare=109.0)
Row(CabNumber="'PEACE16', AverageFare=89.7)
Row(CabNumber="'T439972C', AverageFare=89.5)
Row(CabNumber="'T802013C"', AverageFare=85.0)

We can simply use the groupBy () function to group by a column:

Note that the result of this is no longer a DataFrame, but a
pyspark.sql.GroupedData instance, as illustrated in this code
snippet:

# Perform a groupBy, and print out the type
print(type(df.groupBy("CabNumber")))

This prints out:
<class 'pyspark.sql.group.GroupedData'>

Often, a developer new to PySpark might assume that groupBy()
returns a DataFrame, but it returns a GroupedData instance, so you
have to use GroupedData methods such as agg() and filter()
instead of DataFrame functions such as avg() and where().

To calculate an average, we first have to use the .agg() method. Within the method
we can specify which aggregate you want to calculate, which in this case is .avg()
(average). In Python, the equivalent of the HAVING condition is the .filter()
method, within which we can specify the filter using a filter expression. Finally, we
use the .sort() method to sort the data, and then use .take() to extract the first five
results. Note that the .take() function will return a Python list. Since we have a list
here, we can use list comprehension to output each result in the list.

Writing to a Delta Table

There are various ways to write to a Delta table. You might want to rewrite an entire
table, or you might want to append to a table. The more advanced topics, such as
updates and merges, will be discussed in Chapter 4.

We first will clean out our YellowTaxis table, so that we have a clean slate, and then
we will use a traditional SQL INSERT statement to insert data. Next, we will append
the data from a smaller CSV file. We will also take a quick look at the overwrite mode

64 | Chapter3:Basic Operations on Delta Tables



when writing a Delta table, and finally we will use the SQL COPY INTO feature to
merge in a large CSV file.

Cleaning Out the YellowTaxis Table

We can re-create our Delta table with a CREATE TABLE statement:®

%sql

CREATE TABLE taxidb.YellowTaxis

(

Rideld

VendorId

PickupTime

DropTime
PickupLocationId
DropLocationId
CabNumber
DriverLicenseNumber
PassengerCount
TripDistance
Ratecodeld
PaymentType
TotalAmount
FareAmount

Extra

MtaTax

TipAmount
TollsAmount
ImprovementSurcharge

) USING DELTA
LOCATION "/mnt/datalake/book/chapter®3/YellowTaxisDelta"

INT,

INT,
TIMESTAMP,
TIMESTAMP,
INT,

INT,
STRING,
STRING,
INT,
DOUBLE,
INT,

INT,
DOUBLE,
DOUBLE,
DOUBLE,
DOUBLE,
DOUBLE,
DOUBLE,
DOUBLE

With the table set up, we are ready to insert data.

Inserting Data with SQL INSERT

To insert a record into the YellowTaxis Delta table, we can use the SQL INSERT
command:

%sql
INSERT INTO taxidb.yellowtaxis
(Rideld, VendorId, PickupTime, DropTime,

PickupLocationId, DropLocationId, CabNumber,
DriverLicenseNumber, PassengerCount, TripDistance,
Ratecodeld, PaymentType, TotalAmount,

FareAmount, Extra, MtaTax, TipAmount,

TollsAmount, ImprovementSurcharge)

6 GitHub repo location: /chapter03/10 - Writing to a Delta Table
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VALUES(9999995, 1, '2019-11-01T00:00:00.000Z',
'2019-11-01T00:02:23.573Z2", 65, 71, 'TAC304',
'453987', 2, 4.5, 1, 1, 20.34, 15.0, 0.5,
0.4, 2.0, 2.0, 1.1)

This will insert one row:

B T T R T TP +
| num_affected_rows | num_inserted_rows |

B T T R T TP +
| 1 | 1 |
B T T R T TP +

Verify the data has loaded correctly with a SQL SELECT statement and WHERE clause
for the inserted RideId:
%sql

SELECT count(RideId) AS count FROM taxidb.YellowTaxis
WHERE RideId = 9999995

Output:
ommmmn +
| count |
ommmmn +
[ 1 |
ommmmn +

The output shows that all data has been loaded correctly.

Appending a DataFrame to a Table

Now let’s append a DataFrame to our table. In this case we will load the DataFrame
from a CSV file. In order to correctly load the data, we don’t want to infer the schema.
Instead we will use the schema of the YellowTaxis table that we know is correct.

We can easily extract the schema by loading up a DataFrame from the table:

df = spark.read.format("delta").table("taxidb.YellowTaxis")
yellowTaxiSchema = df.schema
print(yellowTaxiSchema)

This shows the table schema is as follows:

|-- RideId: integer (nullable = true)

|-- VendorId: integer (nullable = true)

|-- PickupTime: timestamp (nullable = true)

|-- DropTime: timestamp (nullable = true)

| -- PickupLocationId: integer (nullable = true)

| -- DropLocationId: integer (nullable = true)

| -- CabNumber: string (nullable = true)

|-- DriverLicenseNumber: string (nullable = true)
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| -- PassengerCount: integer (nullable = true)
|-- TripDistance: double (nullable = true)

| -- RatecodeId: integer (nullable = true)

|-- PaymentType: integer (nullable = true)
|-- TotalAmount: double (nullable = true)

|-- FareAmount: double (nullable = true)

|-- Extra: double (nullable = true)

|-- MtaTax: double (nullable = true)

|-- TipAmount: double (nullable = true)

|-- TollsAmount: double (nullable = true)

| -- ImprovementSurcharge: double (nullable = true)

Now that we have the schema, we can load a new DataFrame (df_for_append) from
the appended CSV file:

df_for_append = spark.read \
.option("header", "true") \
.schema(yellowTaxiSchema) \
.csv("/mnt/datalake/book/data files/YellowTaxis_append.csv")
display(df_for_append)

We see the following output (partial output is displayed):

Fommme e P R T T o +
| RideId | VendorId | PickupTime | DropTime

Fommme e P R T T o +
| 9999996 | 1 | 2019-01-01T00:00:00 | 2022-03-01T00:13:13 |
Fommmem - P R T T o +
| 9999997 | 1 | 2019-01-01T00:00:00 | 2022-03-01T00:09:21 |
Fommmem - P R T T o +
| 9999998 | 1 | 2019-01-01T00:00:00 | 2022-03-01T00:09:15 |
Fommmem - P R T T o +
| 9999999 | 1 | 2019-01-01T00:00:00 | 2022-03-01T00:10:01 |
Fommmem - P R T T o +

We now have four additional rows, all with a VendorId of 1. We can now append this
CSV file to the Delta table:

df_for_append.write \
.mode("append") \
.format("delta") \

.save("/mnt/datalake/book/chapter03/YellowTaxisDelta")

This appends the data directly to the Delta table. Since we had one row in the table
before from the INSERT statement and we inserted four additional rows, we know that
we should now have five rows in the YellowTaxis table:
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%sql

SELECT
COUNT(*)

FROM
taxidb.YellowTaxis

We now have five rows.

Using the OverWrite Mode When Writing to a Delta Table

In the previous example we used .mode("append") when using the DataFrameWriter
API to write to a Delta table. Delta Lake also supports the overwrite mode when
writing to a Delta table. When you use this mode you will atomically replace all of the
data in the table.

If we had used .mode("overwrite") in the previous code block, we would have over-
written the entire YellowTaxis Delta table with just the df_for_append DataFrame.

Even if you use .mode("overwrite") in your code, the old part files are not immedi-
ately physically deleted. In order to support features such as time travel, these files
cannot be deleted immediately. We can use commands such as VACUUM to physically
delete these files later when we are sure they are no longer needed. Time travel and
the VACUUM command are covered in Chapter 6.

Inserting Data with the SQL COPY INTO Command

We can use the SQL COPY INTO command to append data to our table. This com-
mand is especially useful when we need to quickly append very large amounts of data.

We can use the following command to append the data from a CSV file:

%sql
COPY INTO taxidb.yellowtaxis
FROM (

SELECT Rideld::Int
VendorId::Int
PickupTime: :Timestamp
DropTime::Timestamp
PickupLocationId::Int
DropLocationId::Int
CabNumber::String
DriverLicenseNumber::String
PassengerCount::Int
TripDistance: :Double
RateCodeld::Int

L
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, PaymentType::Int

, TotalAmount: :Double

, FareAmount: :Double

, Extra::Double

, MtaTax::Double

, TipAmount: :Double

, TollsAmount: :Double

, ImprovementSurcharge: :Double

FROM '/mnt/datalake/book/DataFiles/YellowTaxisLargeAppend.csv'

)
FILEFORMAT = CSV
FORMAT_OPTIONS ("header" = "true")

All fields in a CSV file would be strings, so we need to provide some type of schema
with a SQL SELECT statement when we load the data. This provides the type of each
column, ensuring that we are loading the right schema. Note that the FILEFORMAT, in
this case CSV, is specified. Finally, because our file has a header, we need to specify the
header with FORMAT_OPTIONS.

The output of this statement is:

R R B T T +
| num_affected_rows | num_inserted_rows |
R R B T T +
| 9999995 | 9999995 |
R R B T T +

You can see that we inserted almost 10 million rows in just a few seconds. The COPY
INTO command also keeps track of and will not reload any previously loaded files. We
can test this by running the COPY INTO command again:

_____________________ +
num_inserted_rows |

+
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As you can see, no additional rows were loaded. Finally, when we check the final row
count, we will see that we now have one million rows:

%sql

SELECT
COUNT(*)

FROM
taxidb.YellowTaxis
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Partitions

Delta tables are often accessed with a standard query pattern. For example, data from
IoT systems tends to be accessed by day, hour, or even minute. The analysts querying
the yellow taxi data might want to access the data by VendorId and so on.

These use cases lend themselves well to partitioning. Partitioning your data to align
with your query patterns can dramatically speed up query performance, especially
when combined with other performance optimizations, such as Z-ordering.” A Delta
table partition is composed of a folder with a subset of data rows that share the same
value for one or more column(s).

Note that this type of on-disk partitioning should rnot be confused
with the partitioning that Spark applies when processing a Data-
Frame. Spark applies in-memory partitioning to enable tasks to
run in parallel and independently on a large number of nodes in a
Spark cluster.

For example, for the yellow taxi data, the partitioning column could be VendorId.
After partitioning your table, individual folders will be created for each VendorId.
The last part of the folder name will have Vendor Id=XXx:

drwxrwxrwx 2 root root 4096 Dec 13 15:16 VendorId=1
drwxrwxrwx 2 root root 4096 Dec 13 15:16 VendorId=2
drwxrwxrwx 2 root root 4096 Dec 13 15:16 VendorId=4

Once the table is partitioned, all queries with predicates that include the partition
columns will run much faster, since Spark can immediately select the folder with the
correct partition. You can partition data when you create a Delta table by specifying a
PARTITIONED BY clause.

7 Z-ordering is covered in Chapter 5.
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At the time of writing, partitions are the recommended approach
to align data to your query patterns to increase query performance.
A new feature in Delta Lake called liquid clustering is currently in
preview, which you will learn about in Chapter 5. We felt that it was
important for readers to understand how partitions work and how
you can apply them manually before learning about features that
automate and replace these commands. The new feature, liquid
clustering, will be generally available in the near future. You can
learn more and stay up-to-date on the status of liquid clustering at
the Delta Lake documentation website and this feature request.

Partitioning by a single column

Lets take our YellowTaxis table and create a new version that is partitioned by
VendorId. First, create the partitioned table:®
%sql

CREATE TABLE taxidb.YellowTaxisPartitioned
(

Rideld INT,
VendorId INT,
PickupTime TIMESTAMP,
DropTime TIMESTAMP,
PickupLocationId INT,
DropLocationId INT,
CabNumber STRING,
DriverLicenseNumber STRING,
PassengerCount INT,
TripDistance DOUBLE,
Ratecodeld INT,
PaymentType INT,
TotalAmount DOUBLE,
FareAmount DOUBLE,
Extra DOUBLE,
MtaTax DOUBLE,
TipAmount DOUBLE,
TollsAmount DOUBLE,
ImprovementSurcharge DOUBLE

) USING DELTA

PARTITIONED BY(VendorId)

LOCATION "/mnt/datalake/book/chapter®3/YellowTaxisDeltaPartitioned"
Notice the PARTITIONED BY(VendorId) clause. Now that you have your table, you will
load the data from our old YellowTaxis table, and write that data to the new table.
First, read the data with the DataFrameReader:

8 GitHub repo location: /chapter03/11 - Partitions
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input_df = spark.read.format("delta").table("taxidb.YellowTaxis")
Next, use the DataFrameWriter to write the data to the partitioned Delta table:

input_df
.write
.format("delta")
.mode("overwrite")
.save("/mnt/datalake/book/chapter03/YellowTaxisDeltaPartitioned")

— -

Now when we look at the table’s directory, we'll see a subdirectory for every VendorID:

%sh

1s -al /dbfs/mnt/datalake/book/chapter03/YellowTaxisDeltaPartitioned
drwxrwxrwx 2 root root 4096 Dec 5 17:39 .

drwxrwxrwx 2 root root 4096 Dec 2 19:02 ..

drwxrwxrwx 2 root root 4096 Dec 16:44 VendorId=1

drwxrwxrwx 2 root root 4096 Dec 16:44 VendorId=2

drwxrwxrwx 2 root root 4096 Dec 16:44 VendorId=4

drwxrwxrwx 2 root root 4096 Dec 16:44 _delta_log

(VAR BV RV, |

When we look at the distinct VendorId, we see that you indeed only have those three
IDs:

%sql

SELECT
DISTINCT(VendorlId)

FROM
taxidb.YellowTaxisPartitioned;

We will see the same IDs:

dommmm e +
| Vendorld |
dommmm e +
| 2 I
|1 |
| 4 I
dommmm e +

The VendorId subdirectories contain the individual Parquet files, as shown here for
VendorId=4:

%sh

1s -al /dbfs/mnt/datalake/book/chapter03/YellowTaxisDeltaPartitioned/VendorId=4
total 3378

drwxrwxrwx 2 root root 4096 Dec 17:41 .

drwxrwxrwx root root 4096 Dec 17:39

- TWXTWXTWX root root 627551 Dec

2

2 ..
1 17:41 part-00000-...parquet

-rwxrwxrwx 1 root root 618844 Dec

1

1

1

1

17:41 part-00001-...parquet
17:41 part-00002-...parquet
17:41 part-00003-...parquet
17:41 part-00004-...parquet
17:41 part-00005-...parquet

- TWXTWXTWX root root 616377 Dec
- TWXTWXTWX root root 614035 Dec
- TWXTWXTWX root root 612410 Dec
- TWXTWXTWX root root 360432 Dec

[V RV, RV, RV, RV, BV, RV, RV, |
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Partitioning by multiple columns

You don’t have to partition by just one column. We can use multiple hierarchical
columns as partitioning columns. For example, for IoT data, we might want to
partition by day, hour, and minute, because that is the most commonly used query

pattern.

For example, let’s assume that we would not only want our YellowTaxtis table parti-
tioned by VendorId, but also by RateCodeId. First, we would have to drop the existing
YellowTaxisPartitioned table and its underlying files. Next, we can re-create the

table:

%sql

-- Create the table
CREATE TABLE taxidb.YellowTaxisPartitioned

(
Rideld

) USING DELTA

PARTITIONED BY(VendorId, RatecodeId) -- Partition by VendorId AND rateCodelId
LOCATION "/mnt/datalake/book/chapter®3/YellowTaxisDeltaPartitioned"

Notice the updated partition clause: PARTITIONED BY(VendorId, Ratecodeld).

After this, we can reload the table the same way we did before. Once the table is
loaded, we can take another look at the directory structure. The first level still looks

the same:

%sh

1s -al /dbfs/mnt/datalake/book/chapter03/YellowTaxisDeltaPartitioned
15:
19:
15:
15:

drwxrwxrwx
drwxrwxrwx
drwxrwxrwx
drwxrwxrwx
drwxrwxrwx
drwxrwxrwx

2

2
2
2
2
2

When we take

Ratecodeld:

%sh

1s -al /dbfs/mnt/datalake/book/chapter®3/YellowTaxisDeltaPartitioned/VendorId=1
15:
15:
15:
15:
15:
15:
15:
15:
15:

drwxrwxrwx
drwxrwxrwx
drwxrwxrwx
drwxrwxrwx
drwxrwxrwx
drwxrwxrwx
drwxrwxrwx
drwxrwxrwx
drwxrwxrwx

2

2
2
2
2
2
2
2
2

root
root
root
root
root
root

a look at the VendorId=1 directory, we see the partitioning by

root
root
root
root
root
root
root
root
root

root 4096
root 4096
root 4096
root 4096
root 4096
root 4096

root 4096
root 4096
root 4096
root 4096
root 4096
root 4096
root 4096
root 4096
root 4096

INT,

Dec
Dec
Dec
Dec
Dec
Dec

Dec
Dec
Dec
Dec
Dec
Dec
Dec
Dec
Dec

13

2
13
13
13
13

13
13
13
13
13
13
13
13
13

15

15:

33 .
02 ..
16 VendorId=1
16 VendorlId=2

16

:16 VendorId=4
_delta_log

35 .

33
16
16
16
16
16
16
16

Ratecodeld=1
Ratecodeld=2
Ratecodeld=3
Ratecodeld=4
Ratecodeld=5
Ratecodeld=6
RatecodeId=99
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Finally, when we query at the RatecodeId level:

%sh
1s -al /dbfs/.../chapter03/YellowTaxisDeltaPartitioned/VendorId=1/Ratecodeld=1

We can see the Parquet files for that partition:

root root 4096 Dec 13 15:35 .
root root 4096 Dec 13 15:35 ..
root root 10621353 Dec 13 15:35 part-00000-...parquet
-rwxrwxrwx 1 root root 10547673 Dec 13 15:35 part-00001-...parquet
- TWXTWXTWX root root 10566377 Dec 13 15:35 part-00002-...parquet

drwxrwxrwx 2
2
1
1
1

-rwxrwxrwx 1 root root 10597523 Dec 13 15:35 part-00003-...parquet
1
1
1
1
1

drwxrwxrwx
- FWXTWXTWX

- TWXTWXTWX root root 10570937 Dec 13 15:35 part-00004-...parquet
-rwxrwxrwx 1 root root 6119491 Dec 13 15:35 part-00005-...parquet
- TWXTWXTWX root root 13820133 Dec 13 15:35 part-00007-...parquet
-rwxrwxrwx 1 root root 24076060 Dec 13 15:35 part-00008-...parquet
- TWXTWXTWX root root 6772609 Dec 13 15:35 part-00009-...parquet

While this type of partitioning by multiple columns is supported,
we want to point out some pitfalls. The number of files created
will be the product of the cardinality of both columns, so in this
case the number of vendors times the number of rate cards. This
can lead to the “small file problem” where a large number of small
Parquet part files are created.

Sometimes other solutions, such as Z-ordering, can be more effec-
tive than partitioning. Chapter 5 covers performance tuning and
this topic in greater detail.

Checking if a partition exists
To determine whether a table contains a specific partition, you can use the statement:
SELECT COUNT(*) > O FROM <table-name> WHERE <partition-column> = <value>

If the partition exists, true is returned. The following SQL statement checks if the
partition for VendorId = 1and RatecodeId = 99 exists:

%sql
SELECT

COUNT(*) > O AS “Partition exists’
FROM

taxidb.YellowTaxisPartitioned
WHERE

VendorId = 2 AND RateCodeld = 99

This will return true since this partition exists as was shown earlier.
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Selectively updating Delta partitions with replaceWhere

In the previous section, we saw how we can significantly speed up query operations
by partitioning data. We can also selectively update one or more partitions with the
replaceWhere option. Selectively applying updates to certain partitions is not always
possible; some updates need to apply to the entire data lake. But, when applicable,
these selective updates can result in significant speed gains. Delta Lake can update
partitions with excellent performance, while at the same time guaranteeing data
integrity.

To see replacelhere in action, let’s take a look at a particular partition:

%sql
SELECT
Rideld, VendorId, PaymentType
FROM
taxidb.yellowtaxispartitioned
WHERE
VendorID = 1 AND RatecodeId = 99 LIMIT 5

We see a mixture of payment types in the results:

B E TR D R +
| RideId | VendorId | PaymentType |
B E TR D R +
| 1137733 | 1 | 1 |
| 1144423 | 1 | 2 I
| 1214030 | 1 | 1 |
| 1223028 | 1 | 1 [
| 1300054 | 1 | 2 |
B E TR D R +

Let’s assume that we have a business reason that states that all PaymentTypes for
VendorId = 1 and RatecodeId = 9 should be 3. We can use the following PySpark
expression with replaceWhere to achieve that result:

from pyspark.sql.functions import *

spark.read
.format("delta")
.load("/mnt/datalake/book/chapter03/YellowTaxisDeltaPartitioned")
.where((col("VendorId") == 1) & (col("RatecodeId") == 99))
.withColumn("PaymentType", 1it(3))
.write
.format("delta")
.option("replacelWhere", "VendorId = 1 AND RateCodeId = 99")
.mode("overwrite")
.save("/mnt/datalake/book/chapter03/YellowTaxisDeltaPartitioned")

e e e e —
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When we now look for the distinct PaymentTypes for this partition:

%sql
SELECT
DISTINCT(PaymentType)
FROM
taxidb.yellowtaxispartitioned
WHERE
VendorID = 1 AND RatecodeId = 99

We see that we only have PaymentType = 3:

Fommm e +
| PaymentType |
Fommm e +
|3 I
Fommm e +

We can verify that the other partitions are not affected:

%sql
SELECT
DISTINCT(PaymentType)
FROM
taxidb.yellowtaxispartitioned
ORDER BY
PaymentType

This shows all PaymentTypes:

R R +
| PaymentType |
R R +
|1 I
| 2 I
|3 I
| 4 I
R EEEEE T +

replaceWhere can be particularly useful when you have to run an operation that can
be computationally expensive, but you only need to run it on certain partitions.

In the yellow taxi scenario, let’s assume that the data science team has requested that
you run one of their algorithms on the YellowTaxis table. Initially, you can run it on
your smallest partition and quickly retrieve the results and, when approved, run the
algorithm on all remaining partitions overnight.

User-Defined Metadata

For auditing or regulatory purposes, we might want to add a tag to certain SQL
operations. For example, our project might require that you tag INSERTs to certain
tables with a General Data Protection Regulation (GDPR) tag. Once we tag the
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INSERT with this tag, the auditing tool will be able to generate a complete list of
statements that contain this particular tag.

We can specify these tags as user-defined strings in metadata commits made by
a SQL operation. We can do this either by using the DataFrameWriter’s option
userMetadata, or the SparkSession configuration spark.databricks.delta.commit
Info.userMetadata. If both options are specified, the DataFrameWriter’s option
takes precedence.

Using SparkSession to Set Custom Metadata

Lets look at the SparkSession configuration first. Assume that we have an INSERT
operation, to which we want to assign a GDPR tag for auditing purposes. Following is a
SQL example:

%sql
SET spark.databricks.delta.commitInfo.userMetadata=my-custom-metadata=
{ "GDPR": "INSERT Request 1x965383" };

This tag will apply to the next operation, which is a standard INSERT:

INSERT INTO taxidb.yellowtaxisPartitioned

(Rideld, VendorId, PickupTime, DropTime,

PickupLocationId, DropLocationId, CabNumber,

DriverLicenseNumber, PassengerCount, TripDistance,

Ratecodeld, PaymentType, TotalAmount,

FareAmount, Extra, MtaTax, TipAmount,

TollsAmount, ImprovementSurcharge)

VALUES(10000000, 3, '2019-11-01T00:00:00.000Z',
'2019-11-01T00:02:23.573Z2', 65, 71, 'TAC304',
'453987', 2, 4.5, 1, 1, 20.34, 15.0, 0.5,
0.4, 2.0, 2.0, 1.1)

Note that there is nothing special in the INSERT; it is a standard operation. The GDPR
tag will automatically be applied to the commit info in the transaction log. If we search
the transaction log for the latest .json file, we'll see that 00004.json is the last log entry:

%sh

1s -al /dbfs/.../YellowTaxisDeltaPartitioned/_delta_log/*.json
Output:

-rwxrwxrwx 1 .../_delta_log/00000000000000000000. json

-rwxrwxrwx 1 .../_delta_log/00000000000000000001. json

-rwxrwxrwx 1 .../_delta_log/00000000000000000002. json

-rwxrwxrwx 1 .../_delta_log/00000000000000000003. json

-rwxrwxrwx 1 .../_delta_log/00000000000000000004. json

User-Defined Metadata | 77



When we look at the 00004.json commit file, we can see the GDPR entry:

%sh

grep commit /dbfs/.../YellowTaxisDeltaPartitioned/_delta_log/...00004.json >
/tmp/commit. json

python -m json.tool /tmp/commit.json

This is the GDPR entry:
{

"commitInfo": {

"notebook": {

"notebookId": "1106853862465676"
1,
"clusterId": "0605-014705-r8puunyx",
"readVersion": 3,
"{solationLevel": "WriteSerializable",
"{sBlindAppend": true,
"operationMetrics": {

1,

"userMetadata": "my-custom-metadata=

{ \"GDPR\": \"INSERT Request 1x965383\" }",
"engineInfo": "Databricks-Runtime/10.4.x-scala2.12",
"txnId": "99f2f31c-8c01-4eal-9e23-cOcbae9eb82a"

The SET statement will stay in effect for subsequent operations
within your current Spark session, so if you want to continue
inserting data without adding the GDPR metadata, you need to
update the SET to an empty string or use the RESET operation.
Be aware that RESET will reset all Spark properties, not just the
metadata one!

Using the DataFrameWriter to Set Custom Metadata

We can also use DataFrameWriter with the userMetadata option to insert custom
tags, as shown here:

df_for_append.write
.mode("append")
.format("delta")
.option("userMetadata", '{"PII": "Confidential XYZ"}') \
.save("/mnt/datalake/book/chapter03/YellowTaxisDeltaPartitioned")

——
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When we look at the corresponding JSON entry, we will see the tags in commitInfo:

%sh

grep commit /dbfs/.../YellowTaxisDeltaPartitioned/_delta_log/...00005.json >
/tmp/commit. json

python -m json.tool /tmp/commit.json

{
"commitInfo": {
:userMetadata": "{\"PII\": \"Confidential XYz\"}",
i
}
Conclusion

This chapter reviewed the fundamentals for using Delta Lake by discussing the basic
operations of Delta tables. Delta Lake provides a number of different ways to perform
different types of operations using different types of APIs. For example, you can
create Delta tables using SQL DDL, the DataFrameWriter API, or the DeltaTable
Builder API, each of which has its own set of features and syntax. And when you
create tables, you can specify a specific location to write the underlying data to create
unmanaged tables, or you can let Spark manage both the metadata and underlying
data by creating managed tables.

Once a table has been created, you can then read and write to the table using the
various APIs mentioned here. This chapter primarily covered different ways to insert,
append, or overwrite data using SQL or the DataFrame API, as more sophisticated
write operations (e.g., MERGE) will be covered in subsequent chapters.

We also explored the capabilities of Delta Lake partitioning on disk. Whether parti-
tioning on a single column or multiple, Delta tables provide simple methods for
partitioning tables that allow us to achieve significant data processing improvements
and efficiency. And not only can we partition tables, but powerful, built-in Delta
Lake features such as replaceWhere allow us to selectively apply updates to certain
partitions in order to apply updates faster and more efficiently.

Lastly, we learned that you can add user-defined metadata to Delta tables to aid
in search and discovery, which can be particularly useful for auditing or regulatory
purposes. Custom metadata allows us to compile a list of statements or operations on
Delta tables that contain particular tags.

Having dipped our toes into Delta Lake and Delta table basic operations, the follow-
ing chapter will dive deeper into more sophisticated Delta table DML operations.
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CHAPTER 4
Table Deletes, Updates, and Merges

Since Delta Lake adds a transactional layer to classic data lakes, we can perform
classic DML operations, such as updates, deletes, and merges. When you perform
a DELETE operation on a Delta table, the operation is performed at the data file
level, removing and adding data files as needed. Removed data files are no longer
part of the current version of the Delta table, but should not be physically deleted
immediately since you might want to revert to an older version of the table with time
travel (time travel is covered in Chapter 6). The same is true when you run an UPDATE
operation. Data files will be added and removed from your Delta table as required.

The most powerful Delta Lake DML operation is the MERGE operation, which allows
you to perform an “upsert” operation, which is a mix of UPDATE, DELETE, and INSERT
operations, on your Delta table. You join a source and a target table, write a match
condition, and then specify what should happen with the records that either match or
don’t match.

Deleting Data from a Delta Table

We will start with a clean taxidb.YellowTaxis table. This table is created by the
“Chapter Initialization” script for Chapter 4.! It has 9,999,995 million rows:

%sql

SELECT
COUNT(id)

FROM
taxidb.YellowTaxis

Output:

1 GitHub repo location: /chapter04/00 - Chapter Initialization
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Table Creation and DESCRIBE HISTORY

The taxidb.YellowTaxis Delta table was created in the “Chapter Initialization” script
and copied into our /chapter04 folder. Let’s look at DESCRIBE HISTORY for the table:

%sql
DESCRIBE HISTORY taxidb.YellowTaxis

Output (only relevant portions shown):

B R R T +
| operation | operationParameters | operationMetrics |
B R B R T +
| WRITE | [('mode', 'Overwrite'), (...)] | [('numFiles', '2'), |
| | | ('numOutputRows', |

| | '9999995'), ...1 |
B R B R T +

We can see that we have one transaction containing a WRITE operation, writing two
data files for a total of 9,999,995 rows. Let’s find out some details about both of those
files.

In Chapter 2 you learned how you can use the transaction log to see the add and
remove file actions. Let’s take a look at the _delta_log directory:

%sh
1s /dbfs/mnt/datalake/book/chapter04/YellowTaxisDelta/_delta_log/*.json

As expected, we see only one transaction log entry:
/dbfs/mnt/datalake/book/chapter04/YellowTaxisDelta/_delta_log/...0000. json

This log entry should have two file add actions, since the numfiles entry in DESCRIBE
HISTORY was two. Again, let’s use our grep command to find those sections:

%sh

grep \"add\" /dbfs/../chapter04/YellowTaxisDelta/_delta_log/..0000.json |
sed -n 1p > /tmp/commit.json

python -m json.tool < /tmp/commit.json

One variation of the previous command is that since you now have two entries, we
need to use the sed command to extract the right add entry.

2 GitHub repo location: /chapter04/01 - Delete Operations
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You can pipe the grep command output to the sed® command.
sed is a stream editor that performs basic text transformations on
an input stream and writes the result to an output stream. The
-n option suppresses normal output, and the 1p command prints
only the first line of the input. To find the next add entry, you can
simply use sed -n 2p, which outputs the second line.

Produced output (only relevant portions shown):

{
"add": {
"path": "part-00000-...-c000.snappy.parquet",
"stats": "{\"numRecords\":5530100,...}}",
"tags": {
}
}

Here, we see the name of the first data file created for our table, and the number of
records in that file. We can use the same command with sed -n 2p to get the second
add action to get the second data file:
{
"3dd": {
"path": "part-00001-...-c000.snappy.parquet"”,

' NI

stats”: {\"numRecords\":4469895,...}}",
"tagS": {

3
}

Now we know that our table has the following data files:

Table 4-1. Parquet files created

Parquet filename Number of records

part-00000-d39cbaa’l-ea7a-4913-a416-e229aald5616-c000.snappy.parquet 5,530,100
part-00001-947cccf8-41ae-4212-a474-fedaa0f6623d-c000.snappy.parquet 4,469,895

These files correspond with our directory listing, so the transaction log and the
directory listing report are consistent:

%sh
1s -al /dbfs/mnt/datalake/book/chapter®4/YellowTaxisDelta

3 Manual page for sed
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drwxrwxrwx 2 _delta_log
-rwxrwxrwx 1 part-00000-d39cbaal-ea7a-4913-a416-e229aa1d5616-c000.snappy.parquet
-rwxrwxrwx 1 part-00001-947cccf8-41ae-4212-a474-fedaa0f6623d-c000.snappy.parquet

Performing the DELETE Operation

Let’s assume that we want to delete a single record, in this case the record with RideId
= 100000. First, we should make sure that the record is indeed still in the table with a
SQL SELECT:*

%sql
-- First, show that you have data for Rideld = 10000
SELECT

Rideld,

VendorId,

CabNumber,

TotalAmount
FROM

taxidb.YellowTaxis
WHERE

RideId = 100000

Output

o R LR Fmmmmmmmma LR +
| RideId | VendorId | CabNumber | TotalAmount |
o R LR Fmmmmmmmma LR +
| 100000 | 2 | T478827C | 7.56
ommmmmn- R LT o LR +

To delete this row, we can use a simple SQL DELETE. We can use the DELETE command
to selectively delete rows based upon a predicate, or filtering, condition:

%sql

DELETE FROM
taxidb.YellowTaxis

WHERE RidelId = 100000

Output:
S ELETEEE +
|num_affected_rows |
S ELETEEE +
| 1 |
S ELETEEE +

4 GitHub repo location: /chapter04/01 - Delete Operations
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We can confirm that we did in fact delete one row. When we use the DESCRIBE
HISTORY command to look at the different operations on the table, we get the follow-
ing for version 1 (the output of the row is pivoted for readability):

version:

timestamp:
operation:
operationParameters:

operationMetrics:

1

2022-12-14T17:50:23.000+0000

DELETE

[('predicate’,

'["(spark_catalog.taxidb.YellowTaxis.RideId = 100000)"]')]
[('numRemovedFiles', '1'),

('numCopiedRows', '5530099'),
('numAddedChangeFiles', '0'),
('executionTimeMs', '32534'),
('numDeletedRows', '1'),
('scanTimeMs', '1524'),
('numAddedFiles', '1'),
('rewriteTimeMs', '31009')]

We can see the operation was a DELETE and the predicate we used for the deletion was
WHERE RideId = 100000. Delta Lake removed one file (numRemovedFiles = 1) and

added one new file (numAddedFiles = 1).If we use our trusted grep command to find
out the details, things look as follows:

Table 4-2. Result of DELETE operation

Action  Filename # of records
Add part-00000-96¢2f047-99cc-4a43-b2ea-0d3e0e77c4c1-c000.snappy.parquet 5,530,099
Remove  part-00000-d39cbaal-ea7a-4913-a416-e229aa1d5616-c000.snappy.parquet - 4,469,895

Figure 4-1 illustrates Delta Lake’s actions when we deleted the record.

( After delete
€2292ald5616 |

Before delete t=77~® (5530100 records) X

e29aaldsel6 | Y . !
(5,530,100 records) VellowTaxis 0d3e0e77c4cl

Delta table (5,530,099 records) ) VellowTaxis

fedaadfe623d | \| _______ , ™ Delta table

(4,469,895 records) ' fedaa0f6623d
=== (4,469,895 records)

Figure 4-1. YellowTaxis Delta table before and after the DELETE operation
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Delta Lake performs the following actions as part of the DELETE operation:

1. Delta Lake made the first scan of the data to identify any files containing rows
matching the predicate condition. In this case, the file is the e229aa1d5616 data
file; it contains the record with RideId = 100000.

2. In a second scan, Delta Lake reads the matching data files into memory. At this
point Delta Lake deletes the rows in question before writing out a new clean data
file to storage. This new data file is the 6d3e0e77c4c1 data file. Since Delta Lake
deleted one record, this new data file contains 5,530,099 records (5,530,100 — 1).

3. As Delta Lake completes the DELETE operation, the data file e229aa1d5616 is now
removed from the Delta transaction log, since it is no longer part of the Delta
table. This process is called “tombstoning” However, it is important to note that
this old data file is not deleted, because you might still need it to time travel back
to an earlier version of the table. You can use the VACUUM command to delete
files older than a certain time period. Time travel and the VACUUM command are
covered in detail in Chapter 6.

4. The data file fedaa@f6623d remains part of the Delta table, since no changes
applied to it.

We can see the one data file (0d3e@e77c4c1) that has been added to the directory in
our directory listing:

%sh
1s -al /dbfs/mnt/datalake/book/chapter®4/YellowTaxisDelta/

drwxrwxrwx _delta_log

-rTWXTWXrwx part-00000-96c2f047-99cc-4a43-b2ea-0d3e0e77c4cl-c000.snappy.parquet
-rWXrwxrwx part-00000-d39cbaal-ea7a-4913-a416-e229aa1d5616-c000.snappy.parquet
-rTWXTWXrwx part-00001-947cccf8-41ae-4212-a474-fedaadf6623d-c000.snappy.parquet

The data file e229aa1d5616 was not physically deleted.

The most important message to take away from this is that the delete transaction
occurs at the data file level. Delta Lake will create new partitions and insert new
add file and remove file actions in the transaction log, as needed. Chapter 6 on
performance tuning will cover the VACUUM command and other ways to clean up
tombstoned data files that are no longer required.

DELETE Performance Tuning Tips

The main way to improve the performance of a DELETE operation on Delta Lake is
to add more predicates to narrow the search spectrum. For example, if you have
partitioned data, and know the partition that the to-be-deleted records are part of,
you can add their partition clause to the DELETE predicate.
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Delta Lake also provides a number of other optimization conditions, such as data
skipping and z-order optimization. Z-ordering reorganizes the layout of each data
file so that similar column values are strategically colocated near one another for
maximum efficiency. Please refer to Chapter 5 for more details.

Updating Data in a Table

Now that you have seen the impact of a DELETE operation on the YellowTax{is table,
let’s take a quick look at an UPDATE operation. You can use the UPDATE operation to
selectively update any rows matching a filtering condition, also known as a predicate.

Use Case Description

Let’s assume there was an error with the DropLocationId for the record where RideId
= 9999994, First, let’s ensure this record is present in our table with the following
SELECT:

SELECT
INPUT_FILE_NAME(),
Rideld,

Vendorld,
DropLocationId

FROM
taxidb.YellowTaxis

WHERE
RideId = 9999994

The Spark SQL INPUT_FILE_NAME() function is a handy function that gives us the
filename in which the record is located:

R Fommmm B B LR +
| input_file_name() | RideId | VendorId | DropLocationId |
R Fommmm B B LR +
| .../part-00001-...parquet | 9999994 | 1 | 243

R Fommmm B B LR +

The INPUT_FILE_NAME function shows that our record is located in the fedaadf6623d
data file, which makes sense, since it is one of the last records, so logically it is located
in the last-created data file. We can see that the existing DropLocationId is currently
243. Let’s assume that we want to update this field to have a value of 250. We'll take a
look at the actual DELETE operation next.
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Updating Data in a Table

We can now write the UPDATE SQL statement as follows:

%sql
UPDATE
taxidb.YellowTaxis
SET
DropLocationId = 250
WHERE

RideId = 9999994

We see that we updated a single row:

Fmmmm e +
| num_affected_rows |
Fmmmm e +
[ 1 |
Fmmmm e +

Let’s first verify that we updated the table successfully:

%sql
SELECT
Rideld,
DropLocationId
FROM
taxidb.YellowTaxis
WHERE
RideId = 9999994

B B T +
| RideId | DropLocationId |
B B T +
| 9999994 | 250 |
B B T +

The output shows the record was updated successfully. When we use the DESCRIBE
HISTORY command on the table, we see the UPDATE operation on version 3 of the table
(output pivoted for clarity):

version: 3

timestamp: 2022-12-23 17:20:45+00:00

operation: UPDATE

operationParameters: [('predicate', '(RideId = 9999994)')]
operationMetrics: [('numRemovedFiles', '1'),

('numCopiedRows', '4469894'),
('numAddedChangeFiles', '0'),
('executionTimeMs', '25426'),
('scanTimeMs', '129'),
('numAddedFiles', '1'),
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('numUpdatedRows', '1'),

('rewriteTimeMs', '25293')]
One file was removed ('numRemovedFiles', '1'), and one was added ('numAdded
Files', '1'). We can also see our UPDATE predicate [('predicate', '(RideId =
9999994) ') ]. If we use the grep command to find out the details, things look as
follows:

Table 4-3. Actions taken as a result of the UPDATE operation

Action  Filename # of records
Add part-00000-daef656-46e-4de5-a189-50807db851f6-c000.snappy.parquet 4,469,895
Remove  part-00001-947cccf8-41ae-4212-a474-fedaa0f6623d-c000.snappy.parquet 4,469,895

Figure 4-2 illustrates the actions that Delta Lake took when we deleted the record.

-

After update
0d3e0e77c4cl
Beforeupdate +=7" =P (5,530,099 records)
Od3eCe77c4ct [ M _______ ' =
(5,530,099 records) VellowTaxis 50807db851f6
™ Delta table (4,469,895 records)
fedaa0f6623d [\ _______ \
(4,469,895 records) : fedaa0f6623d |
] === (4,469,895 records) x

Figure 4-2. Before and after an UPDATE operation

Delta Lake performs an UPDATE on a table in two steps:

1. It finds and selects the data files containing data that match the predicate and
therefore need to be updated. Delta Lake uses data skipping whenever possible to
speed up this process. In this case, that is the fedaa®f6623d data file. We could
also verify that with the INPUT_FILE_NAME() SQL function.

2. Next, Delta Lake reads each matching file into memory, updates the relevant
rows, and writes out the result in a new data file. The new data file in this case
is the 50807db851f6 file. It now contains all the records of the fedaadf6623d
partition, but with the applied updates, which in this case is the update for
RideId = 9999994. This data file is 50807db851f6. This data file continues to
hold 4,469,895 records. Once Delta Lake has executed the UPDATE successfully, it
adds an add file action for the new data file.
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Since it is no longer required, the data file fedaadf6623d is removed from the Delta
table with a remove commit action in the transaction log. However, like the DELETE
operation, the file is not physically deleted, in case we might want to look at an old
version of the table with time travel.

The data file 0d3e@e77c4c1 was unaffected by our update, so it remains part of the
Delta table and continues to hold 5,530,099 records.

UPDATE Performance Tuning Tips

Like the DELETE operation, the main way to improve the performance of an UPDATE
command on Delta Lake is to add more predicates to narrow the search scope. The
more specific the search, the fewer files Delta Lake needs to scan and/or modify.

As mentioned in the previous section, other Delta Lake features, such as Z-ordering,
can be used to speed up UPDATE operations further. See Chapter 5 for details on Delta
Lake optimization.

Upsert Data Using the MERGE Operation

The Delta Lake MERGE command allows you to perform upserts on your data. An
upsert is a mix of an UPDATE and an INSERT command. To understand upserts, lets
assume that we have an existing table (the target table) and a source table that contain
a mix of new records and updates to existing records. Here is how an upsert actually
works:

1. When a record from the source table matches a preexisting record in the target
table, Delta Lake updates the record.

2. When there is no such match, Delta Lake inserts the new record.

Use Case Description

Let’s apply a MERGE operation to our YellowTaxis table. Let’s perform a count of our
YellowTaxis table:

%sql

SELECT
COUNT(*)

FROM
taxidb.YellowTaxis
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We see that we have 9,999,994 records.

We want to reinsert the record with RideId = 100000 that we deleted in the DELETE
section of this chapter. So, in our source data, we need one record with a RideId set to
100000.

For this example, let’s assume we also want to update the records with RideId =
999991 because the VendorId was inserted wrong, and it needs to be updated to 1
(vendorId = 1) for these five records. Finally, we want to bring the record count to
an even 10,000,000 records, so we have 5 more records, with RideIds ranging from
999996 through 10000000.

The MERGE Dataset

In our companion source data files for the book, we have a file named YellowTaxis-
MergeData.csv, which has these records. Since we need to supply a schema, we first
read the schema from our existing table:

df = spark.read.format("delta").table("taxidb.YellowTaxis")
yellowTaxiSchema = df.schema
print(yellowTaxiSchema)

Once we have loaded the schema, we can load our merge data CSV file:

yellowTaxisMergeDataFrame = spark \
.read \
.option("header", "true") \
.schema(yellowTaxiSchema) \
.csv("/mnt/datalake/book/chapter04/YellowTaxisMergeData.csv")
.sort(col("RideId"))

yellowTaxisMergeDataFrame.show()
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A partial output is shown here:

| 100000
| 9999991
| 9999992
| 9999993
| 9999994
| 9999995
| 9999996
| 9999997
| 9999998
| 9999999
|

.
|
+
|
|
|
|
|
|
|
|
|
|
10000000 |
+

We can see our
9999995) with their new VendorId of 1, and the five new records, starting at 9999996.

record with RidelId

2022-03-01T00:
2022-04-04T20:
2022-04-04T20:
2022-04-04T20:
2022-04-04T20:
2022-04-04T20:
2022-03-01T00:
2022-03-01T00:
2022-03-01T00:
2022-03-01T00:
2022-03-01T00:

.000+0000 |
.000+0000 |
.000+0000 |
.000+0000 |
.000+0000 |
.000+0000 |
.000+0000 |
.000+0000 |
.000+0000 |
.000+0000 |
.000+0000 |

100000, the five records (9999991 through

We want to write our MERGE statement in SQL, so we need to have our DataFrame
available in SQL. The DataFrame class has a handy method called createOrReplace
TempView, which does exactly that:

# Create a Temporary View on top of our DataFrame, making it
# accessible to the SQL MERGE statement below
yellowTaxisMergeDataFrame.createOrReplaceTempView("YellowTaxiMergeData")

We can now just use the view name in SQL:

%sql
SELECT

*

FROM

YellowTaxiMergeData

This shows exactly the same output as shown with the display() method of the
DataFrame.

The MERGE Statement

You can now write your MERGE statement as follows:

%sql

MERGE INTO taxidb.YellowTaxis AS target
USING YellowTaxiMergeData AS source
ON target.Rideld = source.Rideld

-- You need to update the VendorId if the records

-- matched
WHEN MATCHED
THEN
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-- If you want to update all columns,

-- you can say "SET *"

UPDATE SET target.VendorId = source.VendorId

WHEN NOT MATCHED
THEN

-- If all columns match, you can also do a "INSERT *"

INSERT(RideId, VendorId, PickupTime, DropTime, PickupLocationld,
DropLocationId, CabNumber, DriverLicenseNumber, PassengerCount,
TripDistance, RateCodeId, PaymentType, TotalAmount, FareAmount,
Extra, MtaTax, TipAmount, TollsAmount, ImprovementSurCharge)

VALUES(RideId, Vendorld, PickupTime, DropTime, PickupLocationld,
DropLocationId, CabNumber, DriverlLicenseNumber, PassengerCount,
TripDistance, RateCodeId, PaymentType, TotalAmount, FareAmount,
Extra, MtaTax, TipAmount, TollsAmount, ImprovementSurCharge)

Let’s analyze this statement:

1.

We are going to MERGE INTO the YellowTaxis Delta table. Notice that we give the
table an alias of source.

. Using the USING clause we specify the source dataset, which in this case is the

view YellowTaxiMergeData, and give it an alias of source.

Define the join condition between the source and target dataset. In our case,
we simply want to join on the VendorId. If you have partitioned data, and want
to target a partition, you might want to add that condition here with an AND
statement.

Specify the action when the RideId matches between the source and target.
In this use case, we want to update the source with the VendorId of the source,
which is set to 1. Here, we are only updating one column, but if we need to, we
can supply a column list, separated by commas. If we want to update all columns,
we simply say UPDATE SET *.

. Define the action when the record exists in the source, but not in the target. We

do not have any additional condition with the WHEN NOT MATCHED, but you can
add any additional clauses if the use case calls for it. Most of the time you will
provide an INSERT statement as an action. Since our source and target column
names are identical, we could have also used a simple INSERT *.

When we execute this MERGE statement, we get the following output:

B T R T Fommme e R T TP +
| num_affected_rows | num_updated_rows | num_deleted_rows | num_inserted_rows |
B T dommmm e o mme e R T TP +
| 11 | 5 [ 0 | 6 |
B T dommmm e o mme e R T TP +
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This output is exactly what you expected:

» We update five rows (VendorIds 9999991 through 9999995)
o We insert six rows:

— One row with a RideId of 100000

— The five rows at the end (9999996 through 10000000)

We can see the updates on the first five rows:

%sql
-- Make sure that the VendorId has been updated
-- for the records with Rideld between
-- 9999991 and 9999995
SELECT
Rideld,
VendorId
FROM
taxidb.YellowTaxis
WHERE RideId BETWEEN 9999991 and 9999995

Fommmm Fommmme +
| RideId | VendorlId |
Fommmm Fommmme +
| 9999991 | 1 I
| 9999992 | 1 |
| 9999993 | 1 |
| 9999994 | 1 |
| 9999995 | 1 |
Fommmm Fommmme +

All rows now have the source VendorId of 1.
We can see the inserted record with RideId = 100000:

%sql
--Make sure that you have a record with VendorId = 100000
SELECT
*
FROM
taxidb.YellowTaxis
WHERE
RideId = 100000

Output (partial output shown):

B B e T B +
| RideId | VendorId | PickupTime | DropTime |
B B e T B +
| 100000 | 2 | 2022-03-01 00:00:00+00:00 | 2022-03-01 00:12:01+00:00 |
B B e T B +
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And finally, we can see the new rows with RideId > 9999995:

%sql
SELECT
*
FROM
taxidb.YellowTaxis
WHERE
RideId > 9999995

B B R R T P +
| RideId | VendorId | PickupTime |
B B R R T P +
| 9999996 | 3 | 2022-03-01 00:00:00+00:00 |
| 9999997 | 3 | 2022-03-01 00:00:00+00:00 |
| 9999998 | 3 | 2022-03-01 00:00:00+00:00 |
| 9999999 | 3 | 2022-03-01 00:00:00+00:00 |
| 10000000 | 3 | 2022-03-01 00:00:00+00:00 |
B B R R T P +

And a grand total of 10 million records:

%sql

SELECT
COUNT(RideId)

FROM
taxidb.YellowTaxis

Modifying unmatched rows using MERGE

An important addition to the Delta Lake MERGE operation is the recently released WHEN
NOT MATCHED BY SOURCE clause. This clause can be used to UPDATE or DELETE records
in the target table that do not have corresponding records in the source table. This
can be a useful operation for deleting records in the target table that no longer exist
in the source table, or for flagging records that indicate the data should be considered
deleted or inactive, while still keeping the records in the target table (i.e., soft delete).

WHEN NOT MATCHED BY SOURCE clauses are supported by the Scala,
Python, and Java Delta Lake APIs in Delta 2.3 and above. SQL is
supported in Delta 2.4 and above.
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To delete records that exist in the source tables and not in the target table (i.e., hard
delete), use the WHEN NOT MATCHED BY SOURCE clause, as seen in the following code
example:

The WHEN NOT MATCHED BY SOURCE code is for demonstration
purposes only and is not meant to be executed in sequence with the
earlier code examples. Please note that if you execute the WHEN NOT
MATCHED BY SOURCE code examples, then the remaining code out-
puts in this chapter will not align with the examples and expected
outputs in this chapter.

%sql
MERGE INTO taxidb.YellowTaxis AS target
USING YellowTaxiMergeData AS source
ON target.Rideld = source.Rideld
WHEN MATCHED
UPDATE SET *
WHEN NOT MATCHED
INSERT *
-- DELETE records in the target that are not matched by the source
WHEN NOT MATCHED BY SOURCE
DELETE

If you wish to flag records in the target table that no longer exist in the source table
(i.e., soft delete) that satisfy a certain condition, you can specify a MERGE condition
and an UPDATE:

%sql
MERGE INTO taxidb.YellowTaxis AS target
USING YellowTaxiMergeData AS source
ON target.Rideld = source.Rideld
WHEN MATCHED
UPDATE SET *
WHEN NOT MATCHED
INSERT *
-- Set target.status = 'inactive' when records in the target table
-- don’t exist in the source table and condition is met
WHEN NOT MATCHED BY SOURCE target.PickupTime >=
(current_date() - INTERVAL '5' DAY)
THEN
UPDATE SET target.status = 'inactive'

It is best practice to add an optional MERGE condition when you add the WHEN NOT
MATCHED BY SOURCE clause to UPDATE or DELETE target rows. This is because when
there is no specified MERGE condition, this can lead to a large number of target rows
being modified. Therefore, for best performance, apply a MERGE condition to the WHEN
NOT MATCHED BY SOURCE clause (e.g., target.PickupTime >= (current_date() -
INTERVAL '5' DAY in the previous code example) to limit the number of target rows
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being updated or deleted, because then a target row is only modified if that condition
is true for that row.

You can also add multiple WHEN NOT MATCHED BY SOURCE clauses to a MERGE oper-
ation. When there are multiple clauses, they are evaluated in the order they are
specified and all WHEN NOT MATCHED BY SOURCE clauses, except the last one, must
have conditions.

Analyzing the MERGE operation with DESCRIBE HISTORY

When we run DESCRIBE HISTORY on the VYellowTaxis table in the
operationsParameters section of the output, we can see our MERGE predicate:

operation: MERGE

[('predicate’,
'(target.Rideld = source.Rideld)'),
('matchedPredicates', '[{"actionType":"update"}]'),
('notMatchedPredicates', '[{"actionType":"insert"}]')]

We can see the join condition (target.Rideld = source.Rideld), the
matchedPredicate that specifies an update, and the notMatchedPredicate, which
specifies an insert.

The operationMetrics output sections show the details of the different actions:

[('numTargetRowsCopied', '4469890'),
('numTargetRowsDeleted', '0'),
('numTargetFilesAdded', '4'),
('executionTimeMs', '91902'),
('numTargetRowsInserted', '6'),
('scanTimeMs', '8452'),
('numTargetRowsUpdated', '5'),
("numOutputRows', '4469901'),
('numTargetChangeFilesAdded', '0'),
('numSourceRows', '11'),
('numTargetFilesRemoved', '1'),
('rewriteTimeMs', '16782')]

Here, we can again see that six rows were inserted (numTargetRowsInserted), and
five rows were updated (numTargetRowsUpdated). Four new data files were added to
our Delta table, and one data file was removed.
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Inner Workings of the MERGE Operation

Internally, Delta Lake completes a MERGE operation like this in two steps:

1. It first performs an inner join between the target table and the source table
to select all data files containing matches. This prevents the operation from
unnecessarily shuffling data that can be safely ignored.

2. Next, it performs an outer join between the selected files in the target and
source tables, and applies the appropriate INSERT, DELETE, or UPDATE clause as
specified by the user.

The main way that a MERGE differs from an UPDATE or a DELETE under the hood is
that Delta Lake uses joins to complete a MERGE. This allows you to use some unique
strategies when trying to improve performance.

Conclusion

DML operations like DELETE, UPDATE, and MERGE are essential operations for any table
format and ETL operations, all of which are enabled through the transaction log.
By leveraging these operations, you can start efficiently handling data changes and
maintaining data integrity in your data platform.

Similar to tables in a traditional RDBMS, you read in this chapter that with Delta
tables you can perform DELETE, UPDATE, and MERGE operations, but you can also apply
these operations using SQL or the DataFrame API. More importantly, you learned
what happens under the hood in Delta Lake with the underlying files in the Delta
table directory, and how the transaction log records and tracks these different types
of entries. Using the DESCRIBE HISTORY command, we can view details about the
output of a table’s transactions. Each of these operations can also leverage predicates
to reduce the number of files scanned and improve performance. Outside of using
predicates during operations, there are other performance tuning techniques that can
be applied to Delta tables that you will learn about in the following chapter.
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CHAPTER 5
Performance Tuning

Any time you are storing and retrieving data, whether with a traditional RDBMS
or with Delta tables, how you organize the data in the underlying storage format
can significantly affect the time it takes to perform table operations and queries. In
general, performance tuning refers to the process of optimizing the performance of
a system, and in the context of Delta tables this involves optimizing how the data is
stored and retrieved. Historically, retrieving data is accomplished by either increasing
RAM or CPU for faster processing, or reducing the amount of data that needs to
be read by skipping nonrelevant data. Delta Lake provides a number of different
techniques that can be combined to accelerate data retrieval by efficiently reducing
the amount of files and data that needs to be read during operations.

An additional problem that can contribute to slower reads and inefficient processing
in Apache Spark and Delta Lake is the small file problem, briefly mentioned in
Chapter 1. The small file problem is an issue that can arise when the underlying data
files are divided into numerous small files, as opposed to larger, more efficient files.
It can occur for several different reasons, primarily due to frequent writes, but can
be addressed through a variety of techniques in Delta Lake that include compacting
small files into larger files.

By leveraging good performance tuning strategies to reduce the effects of the small
file problem and better enable data skipping on Delta tables, you can significantly
improve the performance of execution times, especially when dealing with large
tables or resource-intensive data lake operations and queries.

Data Skipping

Skipping nonrelevant data is ultimately the foundation for most performance tuning
features, as it aims to reduce the amount of data that needs to be read. This feature,
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called data skipping, can be enhanced through a variety of different techniques in
Delta Lake.

Delta Lake automatically maintains the minimum and maximum value for up to 32
fields for files, and stores those values as part of the metadata. Delta Lake uses these
minimum and maximum ranges to skip the files that are out of the range of the
querying field values. This is a key aspect that enables data skipping through what is
called data skipping statistics.

You do not need to configure or specify data skipping and data statistics as this
feature is activated whenever applicable in Delta Lake, but the effectiveness greatly
depends on the layout of your data. In order to maximize the effectiveness of
data skipping, data can be consolidated, clustered, and colocated using commands
such as OPTIMIZE and ZORDER BY, which will be discussed in further detail in sub-
sequent sections, so that minimum and maximum ranges are narrow and, ideally,
nonoverlapping.

Delta Lake collects the following data skipping statistics for each data file:

o Number of records
o Minimum values for each of the first 32 columns
e Maximum values for each of the first 32 columns

o Number of null values for each of the first 32 columns

Delta Lake collects these statistics on the first 32 columns defined in your table
schema. Please note, each field within nested columns (e.g., StructType') counts as a
column. You can configure statistics collection on certain columns by reordering col-
umns in the schema, or you can increase the number of columns to collect statistics
on by using delta.dataSkippingNumIndexedCols, but adding additional columns
also adds additional overhead that can adversely affect write performance. Typically,
you want to collect data skipping statistics on columns that are commonly used in
filters, WHERE clauses, joins, and columns that you tend to perform aggregations on.
Conversely, avoid collecting data skipping statistics on long strings as they are far less
efficient for data skipping purposes.

Figure 5-1 shows that by default only statistics for the first 32 columns are collected
on a table. And for the purpose of collecting statistics, each field within a nested
column is considered an individual column.

1 Apache Spark data types
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—
First 32 column statistics
collected by default

1 { . 1
“Vendorld”:”1”
“total_amount®:”30”,

N— ~ —
First 32 column statistics, including nested
columns, collected by default

Figure 5-1. Data skipping statistics collected on the first 32 columns

The following example can be found in the “Data Skipping” notebook, which should
be run after executing the “Chapter Initialization” notebook for Chapter 5, which cre-
ates a Delta table at a specified location. The script in the “Data Skipping” notebook
uses a shell command to look at the last add file action in the transaction log of
the Delta table that was created. This will show you examples of the data skipping
statistics collected in the last transaction entry:

%sh
# define path to Delta table
delta_table_path="mnt/datalake/book/chapter05/YellowTaxisDelta/'

# find the last transaction entry and search for "add"

# the output will show you the file stats stored in the json

# transaction entry for the last file added

grep "\"add"\" "$(ls -1rt /dbfs/Sdelta_table_path/_delta_log/*.json |
tail -n1)" | sed -n 1p > /tmp/commit.json

python -m json.tool < /tmp/commit.json

This produces the following output (only relevant portions shown):

stats:"{\"numRecords\":12177114,\"minValues\":{\"VendorID\":1,
\"tpep_pickup_datetime\":\"2022-01-01\"...."maxValues\":{\"VendorID\":6,
\"tpep_pickup_datetime\":\"2022-11-01\"....”nullCount\":{\"VendoriD\":0,
\"tpep_pickup_datetime\":0
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We are displaying the add file command in the transaction log
using a shell command to show the appropriate item in a JSON file
in a readable format and in a programmatic way. Since this file is
written to a storage location where your Delta table is stored, you
can also navigate to that location to open the appropriate JSON file
in the transaction log to view the information that way as well.

From this output, we can see that the minimum values and maximum values were
captured in the last file, along with the number of nulls, or null count. Statistics were
collected on all columns in the table because it contains fewer than 32. This metadata
is collected for every file added during the operation.

If the table contains more than 32 columns, we can also change the number of
columns that statistics are collected for using the table property delta.dataSkipping
NumIndexedCols:
%sql
ALTER TABLE
table_name

SET
TBLPROPERTIES ('delta.dataSkippingNumIndexedCols' = '<value>');

Delta Lake properties such as delta.dataSkippingNumIndexed
Cols can also be set using the Spark configuration settings.

It may not be effective to collect minimum and maximum values on some col-
umns because collecting statistics on long values like strings or binary can be an
expensive operation. We can either configure the table property delta.dataSkipping
NumIndexedCols to avoid columns containing long values or move columns contain-
ing long values to a column greater than delta.dataSkippingNumIndexedCols using
ALTER TABLE ALTER COLUMN.2 Chapter 7 discusses updating a table’s schema and
changing ordering in more detail.

Partitioning

In an effort to further reduce the amount of data that needs to be read during
operations (i.e., data skipping) and to increase performance on large tables, Delta
Lake partitioning allows you to organize a Delta table by dividing the data into
smaller chunks called partitions.

2 ALTER TABLE Delta Lake documentation
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The partitioning described in this section does not describe the
partitioning that Spark applies when processing a DataFrame.
Rather, the partitioning in this chapter is referring to on-disk, or
Hive-style, partitioning where data is organized with paths that
contain key value pairs such as Year=2023.

You can create partitions based on the values in one or more columns of the table
(the most common being date) which can speed up queries against the table, as well

as with data manipulation commands such as INSERT, UPDATE, MERGE, and DELETE.

At the time of writing, partitions are the recommended approach
to enable data skipping in regard to data layout. A new feature
in Delta Lake called liquid clustering, which you will learn about
in the last section of this chapter, is currently in preview and is
not compatible with partitions. This will replace partitions as the
recommended approach to optimize query performance in regard
to data layout. We felt it was important to understand how parti-
tions work and how you can apply them manually before learning
about features that automate and replace these commands. The
new feature, liquid clustering, will be generally available in the
near future. You can learn more and stay up-to-date on the status
of liquid clustering by reviewing the Delta Lake documentation
website and this feature request.

When you partition a table, the underlying dataset is organized into different directo-
ries and subdirectories for each partition (Figure 5-2).

r

Nonpartitioned
Delta table

s

Partitioned Delta table

\. J

\.

usinga single column

OC

J

Partitioned Delta table using multiple columns

DRBD

Figure 5-2. The underlying data files of a Delta table organized into different directories

and subdirectories
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The numbered steps in Figure 5-2 show:

1. A Delta table with no partitions is organized into a single directory.

2. A Delta table partitioned on a single column has a directory created for each of
the partition values.

3. A Delta table partitioned on multiple columns has a directory created for each
partition value, and then subdirectories are created for each of the additional
columns defined for the partition.

In Delta Lake, partitions run the risk of decreasing performance
in many cases, as opposed to not partitioning a Delta table. This
is because partitions can create the small file problem, discussed

\ earlier in this book and later on in this chapter, especially when
partitioning on multiple columns. Partitioning is seldom advisable;
please refer to “Partitioning Warnings and Considerations” on page
108 before applying partitions to Delta tables.

When you can selectively query a partition, rather than scanning all of the files in
the dataset, Delta Lake quickly scans the appropriate directory (or directories), or
partitions, to perform your operation, which results in faster operations. Delta Lake
automatically tracks the sets of partitions present in a table and updates the list as
data is added or removed, so there is no need to run ALTER TABLE to account for new
partitions.

To create a partitioned table, we can use the PARTITIONED BY clause in the table
definition using SQL:

%sql
--create partitioned table using SQL
CREATE TABLE tripData(PickupMonth INTEGER,
VendorID  INTEGER,
TotalAmount DOUBLE)
PARTITIONED BY(PickupMonth)

—-use the PARTITION specification to INSERT into a table
INSERT INTO tripData
PARTITION(PickupMonth= '12') (VendorId, TotalAmount)
SELECT VendorId, TotalAmount FROM decemberTripData;

-- drop partitions
ALTER TABLE student DROP PARTITION(PickupMonth = '12');
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The following script,’ which can be found in the notebook “02 - Partitioning,” dem-
onstrates how to write a partitioned Delta table from a Parquet file, while also adding
a column to partition on:

# import modules
from pyspark.sql.functions import (month, to_date)

## UPDATE destination_path WITH YOUR PATH ##
# define Delta table destination path
destination_path = '/mnt/datalake/book/chapter05/YellowTaxisPartionedDelta/"'

# read the Delta table, add columns to partition on,

# and write it using a partition

# make sure to overwrite the existing schema if the table already exists
# since we are adding partitions
spark.table('taxidb.tripData')
.withColumn('PickupMonth', month('PickupDate'))
.withColumn('PickupDate', to_date('PickupDate'))
.write

.partitionBy('PickupMonth')

.format("delta")

.option("overwriteSchema", "true")
.mode("overwrite")

.save(destination_path)

e e e e e —

# register table in Hive
spark.sql(f"""CREATE TABLE IF NOT EXISTS taxidb.tripDataPartitioned
USING DELTA LOCATION '{destination_path}' """ )

If you are following along using the GitHub repository, please note
that your file locations may differ from the file locations in the
notebooks in the repository. Please update them accordingly.

To view the partitions of a Delta table, we can use the SHOW PARTITIONS command:

%sql
--1list all partitions for the table
SHOW PARTITIONS taxidb.tripDataPartitioned

3 GitHub repo location: /chapter05/01 - Compaction
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This produces the following output:

R +
| PickUpMonth |
R +
|1 I
| 2 I
[ I
| 12 I
B R +

In this output we can see that the Delta table is partitioned by PickUpMonth, and there
is a partition for each month.

To overwrite the schema or change partitioning on an existing
Delta table, set .option("overwriteSchema", "true").

To view how the partitions are organized in the underlying filesystem, we can also
view the directories created where the Delta table is located. Keep in mind that since
we are looking at the actual file system, this could also show you old or nonexistent
partitions. Since this table was created using the scripts in the chapter, it should only
have the relevant partitions:

# import OS module
import os

# create an environment variable so we can use this variable in the
# following bash script
os.environ['destination_path'] = '/dbfs' + destination_path

# list files and directories in directory
print(os.listdir(os.getenv('destination_path')))

This produces the following output:

['PickupMonth=1",'PickupMonth=10", 'PickupMonth=11",'PickupMonth=12",
'PickupMonth=2"', 'PickupMonth=3",'PickupMonth=4"','PickupMonth=5",
'PickupMonth=6", 'PickupMonth=7"', 'PickupMonth=8",'PickupMonth=9"',
'_delta_log']
In this output, the Delta table not only contains the transaction log directory,
_delta_log, but also a directory for each of the values in the partition, in this case
months 1 to 12.

The values of the directories for each partition are also contained in the transaction
log as metadata entries that are part of each add file action. This metadata entry can
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be seen in your current table when looking at the add file action in the transaction log
and looking at partitionValues:

%sh

# find the last transaction entry and search for "add" to find an added file

# the output will show you partitionValues

grep "\"add"\" "$(ls -1rt S$destination_path/_delta_log/*.json | tail -n1)" |
sed -n 1p > /tmp/commit.json | sed -n 1p > /tmp/commit.json

python -m json.tool < /tmp/commit.json

This produces the following output (only showing relevant portions):

{
"add": {
"path": "PickupMonth=12/part-00000-....c000.snappy.parquet",
"partitionValues": {
"PickupMonth": "12"
}

Due to this metadata, partitioning is essentially the same thing as data skipping. But
rather than basing data skipping on data statistics, a topic you will learn more about
later on in this chapter, the data skipping is based on exact matches of a string, the
partition value, which helps filter files.

Delta Lake also makes it easy to update only specified partitions using replacelhere,
which you learned about in Chapter 3. Let’s assume that we have a business require-
ment that says when the payment type is 4 in the month of December, it needs to
be updated to 5. We can use the following PySpark expression with replaceWhere to
achieve that result:

# import month from SQL functions
from pyspark.sql.functions import lit
from pyspark.sql.types import LongType

# use replacelWhere to update a specified partition
spark.read
.format("delta")
.load(destination_path)
.where("PickupMonth == '12' and PaymentType == '3' ")
.withColumn("PaymentType", 1it(4).cast(LongType()))
.write
.format("delta")
.option("replaceWhere", "PickupMonth = '12'")
.mode("overwrite")
.save(destination_path)

P i i i

The Delta table schema cannot be overwritten when using replace
Where.
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In the preceding command, notice that we loaded just a single partition using a WHERE
clause. Reading partitions directly is not necessary, but using a WHERE clause (Spark
SQL) or a .where() function (DataFrame API) enables data skipping, such as:

# read a partition from the Delta table into a DataFrame
df = spark.read.table("<delta_table_path>").where("PickupMonth = '12'"

While using .where() for reading data can be very effective, you can also
use .where() in combination with performance tuning commands, such as compac-
tion, OPTIMIZE, and ZORDER BY, to perform those operations only on a specified
partition(s). This can be especially helpful when you are writing new data to specific
partitions (e.g., inserting data for the current month). If the WHERE clause or .where()
function is not used, then the entire table is scanned by default.

For example, we can perform compaction on a single partition:

# read a partition from the Delta table and repartition it
spark.read.format("delta")
.load(destination_path)
.where("PickupMonth = '12' ")
.repartition(5)

.write

.option("dataChange", "false")
.format("delta")
.mode("overwrite")
.save(destination_path)

—

We can also perform OPTIMIZE and ZORDER BY on specified partitions easily using
SQL:

%sql
OPTIMIZE taxidb.tripData WHERE PickupMonth = 12 ZORDER BY tpep_pickup_datetime

Partitioning Warnings and Considerations

Partitions can be very beneficial, especially for very large tables, but there are a few
things to consider when partitioning tables:

« Select your partition column(s) carefully. If the cardinality of a column is very
high, do not use that column for partitioning. For example, partitioning by
a column timestamp that may have one million distinct timestamps is a bad
partitioning strategy. High cardinality columns are great for Z-ordering, but not
partitioning, because it can lead to the same small file problem discussed at
the beginning of the chapter. This is why we added date columns in the earlier
examples—they help serve as appropriate partitioning columns.

The most commonly used partition column is typically a date.
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 You can partition by a column if you expect data in that partition to be at least
1 GB. Tables with fewer, larger partitions tend to outperform tables with many
smaller partitions, otherwise you run into the small file problem.

o Columns used for partitioning are always moved to the end of the table unless
the partition columns are explicitly defined in the column specification (the
name and data type for each column) when creating the table.

» Once you create a table with partitions, you cannot change those partitions even
as query patterns or partition requirements change. Partitions are considered a
fixed data layout and do not support partition evolution.

o There is no magic recipe for partitioning strategies—simply guidelines to con-
sider. It depends on the data, granularity, ingestion and update pattern, etc.

Compact Files

When performing DML operations on a Delta table, often new data is written in
many small files across partitions. Due to the additional volume of file metadata
and the total number of data files that need to be read, queries and operation speed
can be reduced. As an important reminder, this is the small file problem mentioned
previously.

To avoid this issue, you should rewrite a large number of small files into a small
number of larger files greater than 16 MB. Delta Lake supports the ability to optimize
this layout of data in storage with various ways to coalesce small files into larger ones.

Compaction

The consolidation of files is called compaction, or bin-packing. To perform compac-
tion using your own specifications, for example, specifying the number of files to
compact the Delta table into, you can use a DataFrame writer with dataChange =
false. This indicates that the operation does not change the data; it simply rearranges
the data layout.

When data is compacted, Delta Lake sets dataChange = true by

default. This can break concurrent operations on the table, such

as downstream streaming consumers, when the table is used as a
\ streaming source.

Conversely, when using dataChange = false, an operation that
changes data can corrupt the underlying data in the table. It is
best to only use dataChange = false when there are no data
changes, as this option lets any downstream consumers know that
the operation only rearranges the data and thus those consumers
can ignore the event in the transaction log.
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The following example can be found in step 1 in the “03 - Compaction, Optimize
and ZOrder” notebook. The script in the notebook demonstrates how we can use
the DataFrame writer with repartition, a method used to increase or decrease the
number of partitions in a Spark DataFrame, and the option dataChange = False to
compact the data into five files using our own algorithm:

# define the path and number of files to repartition
path = "/mnt/datalake/book/chapter05/YellowTaxisDelta"
numberOfFiles = 5

# read the Delta table and repartition it
spark.read
.format("delta")
.load(path)
.repartition(numberOfFiles)
.write
.option("dataChange", "false")
.format("delta")
.mode("overwrite")
.save(path)

OPTIMIZE

Compaction allows you to specify how to consolidate small files into larger ones.
In Delta Lake, a more optimal way to trigger this compaction and let Delta Lake
determine the optimal number of large files you want is with the OPTIMIZE command.

—

The OPTIMIZE command aims to remove unnecessary files from the transaction log
while also producing evenly balanced data files in terms of file size. The smaller files
are compacted into new, larger files up to 1 GB.

Figure 5-3 shows how OPTIMIZE consolidates smaller files into larger files. Keep in
mind, OPTIMIZE does not take into account how the data is organized within the files;
it only rearranges and consolidates files. You will learn more about how to organize
data within the files in the next section.

As you can see in Figure 5-3:

1. The Delta table is comprised of small files containing data with no particular
order. In this case there are four files with two rows each.

2. You run OPTIMIZE to reduce the number of files that need to be read during
operations.

3. The small files in your Delta table are compacted into new, larger files up to 1 GB.
In this case, we have two files with four rows each.
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PickupDate total amount
2022-06-30 10.00 PickupDate total amount

2022-035 50.00 2022-06-30 10.00
2022-03-15 50.00

PickupDate total amount

IL

2022-01-01 40.00

2022-03-31 40.00
2022-12-01 30.00 @

2022-01-01 40.00

PickupDate total amount PickupDate total_.amount

IL

2022231 | 2000 2022-0331 | 4000
20220930 | 5000 20220930 | 50.00
202231 | 2000

20221201 | 30,00 | 20220715 | 6000 @
| 202:0715 | 6000 | ( )

Figure 5-3. Data files before and after OPTIMIZE

Unlike compaction achieved through the repartition method,
there is no need to specify the dataChange option. OPTIMIZE
uses snapshot isolation when performing the command so con-
current operations and downstream streaming consumers remain
uninterrupted.

Let’s walk through an example of OPTIMIZE. Using the notebook “03 - Compaction,
Optimize and ZOrder,” we will execute step 2 (step 1 was executed in the compaction
section) to repartition the existing table into 1,000 files to simulate a scenario where
we consistently insert data into a table.* In step 3 in the notebook, run the OPTIMIZE
command. The output will provide metrics of the operation.

%sql
OPTIMIZE taxidb.YellowTaxis

4 GitHub repo location: /chapter05/03 - Compaction, Optimize and ZOrder
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Output (only relevant portions shown):

| {"numFilesAdded": 9, "numFilesRemoved": 1000

| "filesAdded":{...”totalFiles”: 9,

| “totalSize”: 2096274374...

| "filesRemoved":{...”totalFiles”: 1000, “totalSize”: 2317072851

After running the OPTIMIZE command on the table, we can see that 1,000 files were
removed and 9 files were added.

When comparing the total size of files removed to files added, you
will notice that the size of the file stayed relatively the same, even
increasing slightly. The NYC Taxi dataset we are using is mainly
integers, so you see little compression from organizing the data. If
your data contains many string values, you will see much better
compression after running OPTIMIZE.

It is important to note that the 1,000 files that were removed were not physically
removed from the underlying storage; rather, they were only logically removed from
the transaction log. These files will be physically removed from the underlying stor-
age next time you run VACUUM, which is covered in detail in Chapter 6.

Optimization using OPTIMIZE is also idempotent, meaning that if it is run twice on
the same table or subset of data, the second run has no effect. If you run the same
command again on the taxidb.YellowTaxis table, the data skipping statistics, which
you will learn more about later in this chapter, indicate that 0 files were added and 0
files were removed:

%sql
OPTIMIZE taxidb.YellowTaxis

Output (only relevant portions shown):

| {"numFilesAdded": 0, "numFilesRemoved": 0 "filesAdded": |
| {...”totalFiles”: 0, “totalSize”: 0O... |

We can also optimize on specific subsets of data rather than optimizing the entire
table. This can be useful when we are only performing DML operations on a specific
partition (you will learn more about partitions later in this chapter) and need to
optimize just that partition(s). We can specify an optional partition predicate using a
WHERE clause. Suppose we are only adding and updating data on a regular basis in the
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partition for the current month; in this case, that is month 12. After adding 12 to the
partition predicate, you will notice that after running the following command, only
17 files were removed and 4 files were added in the specified partition:

%sql
OPTIMIZE taxidb.YellowTaxis WHERE PickupMonth = 12

Output (only relevant portions shown):

| {"numFilesAdded": 4, "numFilesRemoved": 17 "filesAdded": |
| {...”totalFiles”: 4, “totalSize”:1020557526 |

OPTIMIZE considerations

While OPTIMIZE can help improve the speed of queries, there are a few things to
consider before running this command on all tables to help ensure its effectiveness:

o The OPTIMIZE command is effective for tables, or table partitions, that you write
data continuously to and thus contain large amounts of small files.

o The OPTIMIZE command is not effective for tables with static data or tables where
data is rarely updated because there are few small files to coalesce into larger files.

o The OPTIMIZE command can be a resource-intensive operation that takes time
to execute. You can incur costs from your cloud provider while running your
compute engine to perform the operation. Balancing these resource-intensive
operations with the ideal query performance for your tables is important.

ZORDER BY

While OPTIMIZE aims to consolidate files, Z-ordering allows us to read the data in
those files more efficiently by optimizing the data layout. ZORDER BY is a parameter of
the command and refers to the way that data is arranged in files based on their values.
Specifically, this technique clusters and colocates related information in the same set
of files to allow for faster data retrieval. This colocality is automatically used by Delta
Lake in data-skipping algorithms, which you will learn more about in the next section
of this chapter.

Z-order indexes can improve the performance of queries that filter on the specified
Z-order columns. Performance is improved because it allows queries to more effi-
ciently locate the relevant rows, and it also allows joins to more efficiently locate rows
with matching values. This efficiency can ultimately be attributed to the reduction in
the amount of data that needs to be read during queries.
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Similar to partitions, Z-order indexes will soon be replaced by the
new Delta Lake feature, liquid clustering, as the preferred techni-
que to simplify data layout and optimize query performance. Delta
Lake liquid clustering is not compatible with user-specified table
partitions or Z-ordering. This feature is currently in preview and
will be generally available in the near future. You can learn more
and stay up-to-date on the status of liquid clustering by reviewing
the Delta Lake documentation website and this feature request.

To demonstrate OPTIMIZE combined with Z-ordering, we will reset and clear the
optimization we did on taxidb.YellowTaxis earlier in the chapter by repartitioning
the existing table into 1,000 smaller files once again by running step 6:

# define the path and number of files to repartition

path = "/mnt/datalake/book/chapter05/YellowTaxisDelta"
numberOfFiles = 1000

# read the Delta table and repartition it

spark.read.format("delta").load(path).repartition(number0fFiles) \
.write \
.option("dataChange", "false") \
.format("delta") \
.mode("overwrite") \

.save(path)
To get a baseline for the initial query, execute the baseline query in the script:

%sql
-- baseline query
-- take note how long it takes to return results
SELECT
COUNT(*) as count,
SUM(total_amount) as totalAmount,
PickupDate
FROM
taxidb.tripData
WHERE
PickupDate BETWEEN '2022-01-01' AND '2022-03-31'
GROUP BY
PickupDate
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This query will give us a general baseline for how long the execution will take when
the underlying Delta table has many small files and the data is not organized in any
particular order. We can apply ZORDER BY with the OPTIMIZE command to consolidate
files and effectively order the data in those files. This will, in turn, significantly
decrease the time it takes to fetch the query results since the data is easier to locate.
This is generally most effective when used on a high-cardinality column and a
column used frequently in query predicates, which means that the column that we
apply Z-ordering to impacts how well the data is retrieved:

%sql

OPTIMIZE taxidb.tripData ZORDER BY PickupDate
Now that we added Z-ordering, we can see the detailed zOrderStats highlighted in
the output, which includes the strategy name, input cube files, and other statistics
about the ZORDER BY operation.

When we run the same baseline query that was executed before the OPTIMIZE and
ZORDER BY command, we should notice a significant increase in the time it takes to
retrieve the query results. The time it takes to retrieve the results will vary depending
on the cluster configuration, but we consistently noticed around a 70% decrease in
time it took to return the query results due to the optimizations.

In this case, adding Z-ordering increased the query engine’s efficiency in reading the
data, and OPTIMIZE coalesced the small files into larger ones. This can be difficult to
show using large datasets, but Figure 5-4 illustrates how consolidation and ordering
occur using the taxidb.YellowTaxtis table.
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Query

SELECT
COUNT(*) as count
FROM
taxidb.tripData
Where
PickupDate =2023-06-31'

PickupDate total amount HLEEEIC RN PickupDate | total amount
numRecords: 3
-06- minValues: 2022-01-01 01.

2022-06-30 10.00 moxValues: 2022-03-31 2022-01-01 5
2022-03-15 50.00 2022-03-15 50.00 Data skipped
PickupDate total amount ° 20220331
2022-03-31 40.00

Z.ORDERBY PickupDate total amount
2022-01-01 | 40.00 PickupDate
~ < 2022-06-30 6
PickupDate  total.amount Filestatitics )] 2022-0930 | 5000 Dataread
2022-12-31 20.00 minValues: 2022-06-30 )

maxValues: 2022-12-31 2022-12-31 20.00
2022-09-30 50.00 l

\ J J

Figure 5-4. taxidb. tripData Delta table files before and after OPTIMIZE and ZORDER
BY, along with how data is retrieved using data skipping

The numbered steps in Figure 5-4 show:

1. Query the Delta table called taxiDb.YellowTaxis and count the number of
records WHERE PickupDate = '2022-06-30'.

2. The Delta table is comprised of small files containing data with no particular
order.

3. We run OPTIMIZE with ZORDER BY for better performance during query
executions.

4. Small files are coalesced into larger ones, and the data is sorted by the Z-order
column, which is PickupDate.
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5. Data skipping is leveraged since we are looking for the query predicate Pickup
Date = '2022-06-30"'. The first file is skipped because Delta Lake knows that the
query predicate is not contained in this file since it falls outside the range of the
min and max values in the data skipping statistics.

6. Data is quickly read from the second file because Delta Lake knows to scan this
file since the search predicate falls inside the range of the min and max values.

You can see that before we ran any optimization on the table, the data was organized
into smaller files with no order to the data. When running the baseline query, the
query engine had to scan all the Delta Lake files to find our query predicate WHERE
PickupDate BETWEEN '2022-01-01' AND '2022-03-31'. Once we applied OPTIMIZE
with ZORDER BY, the data was coalesced into larger files, and the data was sorted by
the column PickupDate in ascending order. This allowed the query engine to read the
first file based on the query predicate, and ignore, or skip, the second file to gather the
results.

ZORDER BY Considerations

You can specify multiple columns for ZORDER BY as a comma-separated list in the
command. However, the effectiveness of the locality drops with each additional
column:

%sql
OPTIMIZE taxidb.tripData ZORDER BY PickupDate, VendorId

Similar to OPTIMIZE, you can apply Z-ordering to specific subsets of data, such as
partitions, rather than applying it to the entire table:

%sql
OPTIMIZE taxidb.tripData ZORDER BY PickupDate, VendorId
WHERE PickupMonth = 2022

You cannot use ZORDER BY on fields used for partitioning. You have
learned that ZORDER BY works in tandem with the OPTIMIZE com-
mand. However, you cannot combine files across partition bound-
aries, so Z-order clustering can only occur within a partition. For
unpartitioned tables, files can be combined across the entire table.

If you expect a column to be commonly used in query predicates, and if that column
has high cardinality (that is, a large number of distinct values), then use ZORDER BY.
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Unlike OPTIMIZE, Z-ordering is not idempotent but aims to be an incremental opera-
tion. The time it takes for Z-ordering is not guaranteed to reduce over multiple runs.
However, if no new data was added to a partition that was just Z-ordered, another
Z-ordering of that partition will not have any effect.’

Liquid Clustering

Liquid clustering is a new feature in Delta Lake that is currently in preview at the time
of writing. This feature will be generally available in the near future. You can learn
more and stay up-to-date on the status of liquid clustering by reviewing the Delta
Lake documentation website and this feature request.

While some of the performance tuning techniques mentioned throughout this chap-
ter aim to optimize data layouts and thus improve read and write performance, there
are some shortcomings:

Partitioning
Partitions run the risk of introducing the small file problem, where data is stored
across many different small files, which inevitably results in poor performance.
And once a table is partitioned, this partition cannot be changed and can cause
challenges for new use cases or new query patterns. While Delta Lake supports
partitioning, there are challenges with partition evolution, as partitioning is
considered a fixed data layout.

ZORDER BY
Anytime data is inserted, updated, or deleted on a table, OPTIMIZE ZORDER BY
must be run again for optimization. And when ZORDER BY is applied again, the
user must remember the columns used in the expression. This is because the
columns used in ZORDER BY are not persisted and can cause errors or challenges
when attempting to apply it again. Since OPTIMIZE ZORDER BY is not idempotent,
this will result in reclustering data when it is run.

Many of the shortcomings with partitioning and Z-ordering can be addressed
through Delta Lake’s liquid clustering feature. The following scenarios for Delta tables
benefit greatly from liquid clustering

o Tables often filtered by high cardinality columns
« Tables with substantial skew in data distribution

o Tables that require large amounts of tuning and maintenance

5 See “Optimizations” in the Delta Lake documentation.
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o Tables with concurrent write requirements

o Tables with partition patterns that change over time

Delta Lake’s liquid clustering feature aims to address limitations found with partition-
ing and Z-ordering, and revamp both read and write performance through a more
dynamic data layout. Ultimately, liquid clustering helps reduce performance tuning
overhead while also supporting efficient query access.

Enabling Liquid Clustering

To enable liquid clustering on a table, you can specify the CLUSTER BY command
when creating a table. You must specify liquid clustering using the CLUSTER BY
command when you create the table; you cannot add clustering to an existing table
(e.g., using ALTER TABLE) that does not have liquid clustering enabled.

If you are using Databricks to follow along in this book and run
the notebooks from the GitHub repo, Databricks Runtime 13.2 and
above is required to run the code related to liquid clustering.

To demonstrate how to create a table with liquid clustering enabled, we can use the
notebook “04 - Liquid Clustering” and the following command:

%sql

CREATE EXTERNAL TABLE taxidb.tripDataClustered CLUSTER BY (VendorId)
LOCATION '/mnt/datalake/book/chapter05/YellowTaxisLiquidClusteringDelta'
AS SELECT * FROM taxiDb.tripData LIMIT 1000;

The preceding command creates an external table with liquid clustering enabled,
clustered by VendorId, and populated with data from the taxiDb.tripData table that
was created earlier.

To trigger clustering, run the OPTIMIZE command on the newly created table:

%sql
OPTIMIZE taxidb.tripDataClustered;

Output (only relevant portions shown):

| {"sizeOfTableInBytesBeforeLazyClustering": 43427, "isNewMetadataCreated":
| true.."numFilesClassifiedToLeafNodes": 1,

| "sizeOfFilesClassifiedToLeafNodesInBytes": 43427,

| "logicalSizeOfFilesClassifiedToLeafNodesInBytes": 43427,

| "numClusteringTasksPlanned": 0, "numCompactionTasksPlanned": 0,

| "numOptimizeBatchesPlanned": 0, "numLeafNodesExpanded": 0,
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numLeafNodesClustered": 0, "numLeafNodesCompacted": 0,
numIntermediateNodesCompacted": 0, "totalSizeOfDataToCompactInBytes": 0,
"totalLogicalSizeOfDataToCompactInBytes": 0,
"numIntermediateNodesClustered": 0, "numFilesSkippedAfterExpansion": 0,
"totalSizeOfFilesSkippedAfterExpansionInBytes": 0,
"totallLogicalSizeOfFilesSkippedAfterExpansionInBytes": 0,
"totalSizeOfDataToRewriteInBytes": 0,
"totallLogicalSizeOfDataToRewriteInBytes": O..

Earlier in the chapter you saw the metrics displayed after running the OPTIMIZE
command on a table. In the output of the OPTIMIZE command for a table with liquid
clustering enabled, you will see clusterMetrics are now included in the metrics of
the output. These clusterMetrics display detailed information about the underlying
data files (e.g., size and number), compaction details, and cluster node information so
that you can view the results of clustering.

It is important to note that only a few operations automatically cluster data on write
when writing data to a table with liquid clustering. The following operations support
automatically clustering data on write, provided the size of the data being inserted
does not exceed 512 GB:

e INSERT INTO

o CREATE TABLE AS SELECT (CTAS) statements

o COPY INTO

o Write appends such as spark.write.format("delta").mode("append")

Since only these specific operations support clustering data on write, you should
trigger clustering on a regular basis by running OPTIMIZE. Running this command
frequently will ensure that data is properly clustered.

It is also worth noting that liquid clustering is incremental when triggered by
OPTIMIZE, meaning that only the necessary data is rewritten to accommodate data
that needs to be clustered. Since not all write operations automatically cluster data,
and since OPTIMIZE is an incremental operation, it is recommended to regularly
schedule OPTIMIZE jobs to cluster data, especially since this incremental process helps
these jobs run quickly.

Operations on Clustered Columns

By enabling liquid clustering, you learned how to specify what columns a table
is clustered on by using the CLUSTER BY command. Once a table is clustered by
particular columns, you can read data more efficiently by leveraging the clustered
columns, while also being able to view, change, and remove those columns.
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Changing clustered columns

While you must specify how a table is clustered when it is initially created, you can
still change the columns used for clustering on the table using ALTER TABLE and
CLUSTER BY. To change the cluster columns of the table that we created earlier to be
clustered on both VendorId and RateCodeld, run the following command:

%sql
ALTER TABLE taxidb.tripDataClustered CLUSTER BY (VendorId, RateCodeld);

You can specify up to four columns as clustering keys.

When changing clustered columns, liquid clustering does not require the entire table
to be rewritten. This clustering evolution is due to the dynamic data layout feature of
liquid clustering and offers a significant advantage over partition features mentioned
earlier in the chapter. Traditional partitioning is a fixed data layout and does not
support changing how a table is partitioned without having to rewrite the entire
table. This clustering evolution can be essential as query patterns for a table can often
change over time, and this allows you to dynamically adapt to new query patterns
without any significant overhead or challenges.

Viewing clustered columns

Now that we have changed how the table is clustered, we can view the table metadata
using DESCRIBE TABLE to confirm these changes and see the clustered columns:

%sql
DESCRIBE TABLE taxidb.tripDataClustered;

Output (only relevant portions shown):

R B B +
| col_name | data_type | comment |
R B Fommmmmme +
| # Clustering Information | |

R B Fommmmmme +
| # col_name | data_type | comment |
R R B Fommmmmme +
| VendorId | bigint | null |
R R B Fommmmmme +
| RateCodeld | double | null |
R R B Fommmmmme +
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The DESCRIBE TABLE command returns basic metadata information about the table,
which shows the cluster information and that the table is now clustered on both
VendorId and RateCodeld.

Reading data from a clustered table

Now that we have confirmed the clustered columns, we can specify the clustered
columns in query filters (e.g., WHERE clause) to achieve the best (i.e., fastest) query
results. For example, add VendorId and RateCodeId to a WHERE clause on the
taxidb.tripDataClustered table to achieve the best query results:

%sql
SELECT * FROM taxidb.tripDataClustered WHERE VendorId = 1 and RateCodeId = 1

Removing clustered columns

If we choose to remove the columns that a table is clustered by, we can simply specify
CLUSTER BY NONE:

%sql
ALTER TABLE taxidb.tripDataClustered CLUSTER BY NONE;

Liquid Clustering Warnings and Considerations

Given that liquid clustering is currently in preview at the time of writing, there are
several factors to take into account prior to enabling and utilizing liquid clustering:

o Check your environment runtime to ensure it supports OPTIMIZE on Delta tables
with liquid clustering enabled.

If you are using Databricks to follow along in this book and run the notebooks
from the GitHub repo, Databricks Runtime 13.2 and above is required.

o Tables created with liquid clustering enabled have numerous Delta table features
enabled at creation and use Delta version 7 and reader version 3. Table protocol
versions cannot be downgraded, and tables with clustering enabled are not read-
able by Delta Lake clients that do not support all enabled Delta reader protocol
table features.

o You must enable Delta Lake liquid clustering when first creating a table. You
cannot alter an existing table to add clustering without clustering being enabled
when the table is first created.

o You can only specify columns with statistics collected for clustered columns.
Remember, only the first 32 columns in a Delta table have statistics collected by
default.

122 | Chapter5: Performance Tuning



o Structured Streaming workloads do not support clustering-on-write.

o Run OPTIMIZE frequently to ensure new data is clustered.

Liquid clustering is not compatible with partitioning or ZORDER BY.

Conclusion

In this chapter, you learned about different techniques to store and organize data,
both physically and dynamically, and the significant effects that it can have on how
data is read and retrieved during operations. As the types of data points captured
continue to grow, along with the sheer volume of data, tables will continue to get
larger and larger. Performance tuning on large datasets has been, and always will be,
considered a good strategy and best practice. Understanding the Delta Lake features
that enable this will help significantly reduce overhead.

We discussed the small data files problem, the impact that it can have on perfor-
mance, and how it can be solved using compaction strategies, including optimal file
consolidation using OPTIMIZE. After you OPTIMIZE a table’ files, you can arrange the
values within those files using ZORDER BY, which allows you to leverage data skipping
more effectively through data skipping statistics. You can take data skipping one
step further by partitioning Delta tables and breaking the data into distinct parts to
further reduce the amount of data that needs to be read.

Then we looked at new Delta Lake features that address some of the challenges
that partitioning and Z-ordering can still have. Liquid clustering offers clustering
evolution through dynamic data layouts that don’t require you to rewrite an entire
table as query patterns evolve over time. This largely automated feature is not com-
patible with partitioning and Z-ordering, but requires less tuning effort compared
to other performance optimization features, and greatly enhances the read and write
performance of tables.

Using the Delta Lake features mentioned in this chapter can reduce the amount of
nonrelevant data that needs to be read, and improve performance, especially as the
number of data files in your Delta table grows. In the next chapter, you will learn how
Delta Lake leverages old data files to allow you to version your data and travel back to
a certain point in time.
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CHAPTER 6
Using Time Travel

Having worked with databases and tables before, odds are you have had that imme-
diate sense of panic when you forgot a WHERE clause and accidentally ran a DELETE
or UPDATE statement against an entire table. We have all been there. Or you may
have wondered what your data or schema looked like at a specific point in time for
auditing, tracking, or analysis purposes.

Given how data is constantly changing, the following scenarios are common occur-
rences that, historically, have been difficult to solve or answer:

Regulatory
Auditing and regulatory compliance can require that data be stored and retrieved
for many years or can require that you track certain changes to your data (e.g.,
GDPR).

Reproduce experiments and reports
There are often requirements for data scientists or analysts to re-create reports or
machine learning experiments and model outputs given a specific set of data at a
specific point in time.

Rollbacks
Accidental or bad DML operations on your data, such as INSERT, UPDATE, DELETE,
and MERGE, can require fixes and rollbacks to a previous state.

Time-series analysis
Reporting needs can require you to look back or analyze data over time, for
example, how many new customers were added over the course of a month.

Debugging
Troubleshooting ETL pipelines, data quality issues, or broken processes where
the specific cause may only be observable in a historical state.
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The ability to easily traverse through different versions of data at specific points
in time is a key feature in Delta Lake called Delta Lake time travel. You learned
in Chapter 2 that the transaction log automatically versions data in a Delta table,
and this versioning helps you access any historical version of that data. Through
versioning and data retention, you will learn how to use these powerful Delta Lake
features while also leveraging data management and storage optimization.

Delta Lake Time Travel

Delta Lake time travel allows you to access and revert to previous versions of data
stored in Delta Lake, easily providing a powerful mechanism for version control,
auditing, and data management. You can then track changes over time and roll back
to previous versions if needed.

Let’s walk through an example. First, execute the “Chapter Initialization” notebook
for Chapter 6' to create the taxidb.tripData Delta table. Next, open the “01 - Time
Travel” notebook for Chapter 6. Let’s assume that we need to update VendorId from 1
to 10. Then, we need to delete all occurrences WHERE VendorId = 2. Using the scripts
in the notebook for “01 - Time Travel,” execute the following command to apply those
changes:

%sql

--update records in table
UPDATE taxidb.tripData
SET VendorId = 10

WHERE Vendorld = 1;

--delete records in table
DELETE FROM taxidb.tripData
WHERE Vendorld = 2;

--describe the table history
DESCRIBE HISTORY taxidb.tripData;

You will see this output (only relevant portions shown):

Fommmmmm - R R e R T P +
| version | operation | operationParameters |
Fommmmmm - R R e R T P +
| 2 | DELETE | {"predicate": |
| | | "[\"(spark_catalog.taxidb.tripData.VendorId = 2L)\"]"} |
B R B T +
| 1 | UPDATE | {"predicate": "(VendorId#56081L = 1)"}

B R B T +
| 0 | WRITE | {"mode": "Overwrite", "partitionBy": "[]"} |
B R B T +

1 GitHub repo location: /chapter06/00 - Chapter Initialization
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Output continued and modified to show operationMetrics (only relevant portions
shown):

B LT TP B R T T L C PP +
| version | operation | operationMetrics |
B LT TP B R T T L C PP +
| 2 | DELETE | {"numRemovedFiles": "10", "numCopiedRows": "9643805",

| | | "numAddedChangeFiles": "0",

| | | ."numDeletedRows": "23360027"...,

| | | "numAddedFiles": "10"...} |
B e R e R R +
| 1 | UPDATE | {"numRemovedFiles": "10", "numCopiedRows": "23414817", |
| | |  "numAddedChangeFiles": "0","..."numAddedFiles": "10".} |
B LT TP B R T T L C PP +
| © | WRITE | {"numFiles": "10", "numOutputRows": "33003832"...} |
B LT TP B R T T L C PP +

Looking at the output, we can see that there are a total of three versions of the table,
one for each commit, with version 2 being the most recent change:

o Version 0: wrote the initial Delta table using overwrite and no partitions

o Version 1: updated the Delta table using the predicate VendorId = 1

o Version 2: deleted data from the Delta table using the predicate VendorId = 2
Notice that the DESCRIBE HISTORY command shows details about the version,
transaction timestamp, operation, operation parameters, and operation metrics. The

operationMetrics in the output also shows the number of rows and files changed
from the operation.

Figure 6-1 illustrates the different versions of the table and examples of the underly-
ing data.

Delta table taxidb.tripData versions

Vendorld Vendorld Vendorld
1 2 5
2 5 6
5 6 10
6 10

\ J

Figure 6-1. taxidb. tripData version history
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Restoring a Table

Now, let’s say that we want to roll back the previous UPDATE and DELETE operations we

performed on taxidb.tripData and restore it back to its original state (i.e., version

0). We can use the RESTORE command to roll back the table to the desired version:
%sql

--restore table to previous version
RESTORE TABLE taxidb.tripData TO VERSION AS OF 0;

--describe the table history
DESCRIBE HISTORY taxidb.tripData;

Output (only relevant portions shown):

B R L E T PP P +
| version | operation | operationParameters |
B R R PP P +
| 3 | RESTORE | {"version": "0", "timestamp": null}

B R R PP P +
| 2 | DELETE | {"predicate": |
| | | "[\"(spark_catalog.taxidb.tripData.VendorId IN 5,6L) |
| | [ \"1"} |
B R R PP P +
| 1 | UPDATE | {"predicate": "(VendorId#5081L = 1)"} |
B R R PP P +
| 0 | WRITE | {"mode": "Overwrite", "partitionBy": "[]"}

B R R PP P +

After restoring the table to version 0 and running the DESCRIBE HISTORY command,
you will see that there is now an additional version of the table, version 3, which
captures the RESTORE operation. Figure 6-2 illustrates the different versions of the
table and examples of the underlying data.

r \

Delta table taxidb.tripData versions

Restore to version O

VendorlD VendorlD VendorlD VendorlD
1 1 1 1
2 3 3 2 Data reflects data
5 5 5 from version O
6 6 6

Figure 6-2. taxidb.tripData versions after restoring back to version 0
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You can now see in the data and Figure 6-2 that the latest version of the table now
reflects the data from version 0.

You can restore a table that has already been restored. You can also
restore a table to a version that was previously restored.

When data files are deleted either manually or through VACUUM
(you will learn more about VACUUM later in this chapter), restoring
a table to a version that references those data files will fail. Use
the Spark configuration spark.sql.files.ignoreMissingFiles =
True to partially restore the table. As the name indicates, this Spark
configuration will simply ignore missing files when reading data.

Restoring via Timestamp

In the previous examples we restored the table to a specific version, but we can also
restore a table to a specific timestamp. The timestamp format for restoring to an
earlier state is yyyy-MM-dd HH:mm:ss. Providing only a date (yyyy-MM-dd) string is
also supported.

%sql

--restore table to a specific timestamp
RESTORE TABLE taxidb.tripData TO TIMESTAMP AS OF '2023-01-01 00:00:00';

--restore table to the state it was in an hour ago

RESTORE TABLE taxidb.tripData

TO TIMESTAMP AS OF current_timestamp() - INTERVAL '1' HOUR;
We can also import the delta module to use PySpark and the DataFrame
API for restoring a table. We can use the method restoreToVersion(version:
int) to restore to a specific version like we did earlier, or we can use the
restoreToTimestamp(timestamp: str) method to restore to a specified timestamp:

--import delta module
from delta.tables import *

--restore table to a specific timestamp using PySpark
deltaTable = DeltaTable.forName(spark, "taxidb.tripData")
deltaTable.restoreToTimestamp("2023-01-01")

Time Travel Under the Hood

Version history can be kept on a Delta table because the transaction log keeps
track of which files should or should not be read when performing operations on
a table. When the DESCRIBE HISTORY command is executed, it will also return the
operationMetrics, which tells you the number of files added and removed during an
operation. When performing an UPDATE, DELETE, or MERGE on a table, that data is not
physically removed from the underlying storage. Rather, these operations update the
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transaction log to indicate which files should or should not be read. Similarly, when
you restore a table to a previous version, it does not physically add or remove data; it
only updates the metadata in the transaction log to tell it which files to read.

In Chapter 2 you learned about JSON files within the _delta log directory and
checkpoint files. Checkpoint files save the state of the entire table at a point in time,
and are automatically generated to maintain read performance by combining JSON
commits into Parquet files. The checkpoint file and subsequent commits can then be
read to get the current state, and previous states in the case of time travel, of the table,
avoiding the need to list and reprocess all of the commits.

The transaction log commits checkpoint files, and the fact that data files are only
logically removed as opposed to being physically removed is the foundation for
how Delta Lake easily enables time travel on your Delta table. Figure 6-3 shows
the transaction log entries for each of the operations on the taxidb.tripData table
throughout the different transactions and versions.

e 2

Restore taxidb.tripData to version 0

Restore to version O

Version 1 Version 2

[ Addfile A ] (RemoveﬁIeA]

( Addfile B ] [Removeﬁle BJ

[ Add file C J [Removeﬁlec]

J

Figure 6-3. taxidb. tripData transaction log files

The numbered steps in Figure 6-3 show:

1. Version 0: the initial table is created and files are added in the transaction log.

2. Version 1 and 2: add file and remove file act as metadata entries that Delta Lake
uses to determine which files should be read for each version. Remove file does
not physically delete data; it just logically removes files from the table.

3. Version 3: this version was restored back to version 0, so the transaction log
restores file A, the original file added in version 0, and logically removes file C.

If you look at the table history of the taxidb.tripData table that we previously
restored to version 0, you will notice the number of restored, added, and removed
files captured in the operationMetrics:
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%sql
--describe table history
DESCRIBE HISTORY taxidb.tripData

Output (only relevant portions shown):

R R R +
| version | operation | operationMetrics |
R e e +
| 3 | RESTORE | {"numRestoredFiles": "10".."numRemovedFiles": |
| | | "10”.."numOfFilesAfterRestore": "10"
e +
| 2 | DELETE | {"numRemovedFiles": "10".."numAddedChangeFiles": |
| | | "0”.."numAddedFiles": "10"

R e e +
| 1 | UPDATE | {"numRemovedFiles": "10".."numAddedChangeFiles": |
| | | "0”."numAddedFiles": "10"
e +
| © | WRITE | {"numFiles": "10", "numOutputRows": "33003832",

| | | "numOutputBytes": "715810450"}

R e e +

You will learn more about how to retain and remove previous versions of data in later
sections of this chapter.

RESTORE Considerations and Warnings

It is important to note that RESTORE is a data-changing operation, meaning data
Change = true. This means it can potentially affect downstream jobs, such as Struc-
tured Streaming jobs, which you will learn more about in Chapter 8.

Consider a situation where the streaming query only processes updates to a Delta
table. If we RESTORE the table to a previous version, then previous updates to the table
could be processed again by your streaming job since the transaction log restores
previous versions of the data using the add file action with dataChange = true. The
streaming job recognizes the records as new data.

Table 6-1. Operations resulting from RESTORE

Table Operation  Delta log updates Records in data change log updates

version

0 INSERT AddFile(/path/to/file-1, (VendorId = 1,passenger_count = 2,
dataChange = true) (VendorId = 2,passenger_count = 3)

1 INSERT AddFile(/path/to/file-2, (VvendorId = 2, passenger_count = 4)
dataChange = true)

2 OPTIMIZE AddFile(/path/to/file-3, (No records change during OPTIMIZE)

dataChange = false), Remove
File(/path/to/file-1), Remove
File(/path/to/file-2)
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Table Operation  Delta log updates Records in data change log updates

version

3 RESTORE RemoveFile(/path/to/file-3), (VendorId = 1, passenger_count = 2,
AddFile(/path/to/file-1, (VendorId = 2,passenger_count = 3),
dataChange = true), Add (VendorId = 2,passenger_count = 4)

File(/path/to/file-2, data
Change = true)

In Table 6-1, notice that the OPTIMIZE operation removed files related to versions
1 and 2, and added a file for version 3. After running the RESTORE command,
the operation added back file 1 and file 2 for their respective versions, which was
considered a dataChange operation.

Querying an Older Version of a Table

By default, whenever you query a Delta table you always query the table’s latest
version. But Delta Lake time travel allows you to also perform read operations on a
table’s previous versions without needing to restore them. Remember, the data itself
is not physically deleted from the underlying storage, it is just logically removed.
Logical removal rather than physical deletion means that time travel not only allows
you to restore a table to a specific point in time, but you can easily query previous
versions of a table directly, without restoring.

You can access previous versions of the data in two different ways:

1. Using a timestamp

2. Using a version number

Similar to how we restored the table to a previous version using the version number,

we can also use the version number to query the table at a specific point in time.

In the earlier example, we restored the table back to its previous state, but we had

deleted records in version 2 using the predicate WHERE VendorId = 2. We can search

for the count of those VendorId records in version 2 of the table using time travel:
%sql

--count records where VendorId = 1 using version number
SELECT COUNT(*) AS count FROM taxidb.tripData VERSION AS OF 2 WHERE VendorId = 1;

--count records where VendorId = 1 using operation timestamp
SELECT COUNT(*) AS count FROM taxidb.tripData
VERSION AS OF ’2023-01-01 00:00:00° WHERE VendorId = 1;

--count records where VendorId = 1 using operation timestamp and using @ syntax
--timestamp must be in yyyyMMddHHmmssSSS format

SELECT COUNT(*) AS count FROM taxidb.YellowTax1@20230101000000000

WHERE Vendorld = 1;
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--count records where VendorId = 1 using version number and using @ syntax
SELECT COUNT(*) AS count FROM taxidb.tripData@v2 WHERE Vendorld = 1;

Output:

ommmmn +
| count |
ommmmn +
| o I
ommmmn +

As seen in the preceding examples, we can access the different versions of the data
using different types of syntax; we can either use a timestamp or the version number
with the syntax specifying VERSION AS OF or appending “@” after the table name.

Time travel is not only accessible via SQL, but we can also time travel via the
DataFrame API using the .option() method:

# count records where VendorId = 1 using version number

spark.read.option("versionAsOf", "0").table("taxidb.tripData").filter(
"VendorId = 1"

).count()

# count records where VendorId = 1 using timestamp

spark.read.option("timestampAsOf", "0").table("taxidb.tripData").filter(
"VendorId = 1"

).count()

Querying by timestamp makes it easy to perform time-series analysis because we
can compare the data of the same table to itself at two different points in time. And
while there are other ETL patterns we can follow to capture historical data and enable
time-series analysis (e.g., slowly changing dimensions and change data feeds), time
travel provides a quick and easy way to perform ad hoc analysis for tables that may
not have these ETL patterns in place. For example, if we wanted to quickly see how
many passengers were picked up this week compared to last week using the version
history of taxidb.tripData, we could run the following query:

%sql
--count number of new passengers from 7 days ago
SELECT sum(passenger_count) - (
SELECT sum(passenger_count)
FROM taxidb.tripData TIMESTAMP AS OF date_sub(current_date(), 7)
)
FROM taxidb.tripData
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While time travel enables time-series analysis as demonstrated,
there are more efficient ways to perform similar operations. These
time-series examples are illustrated for the purposes of demonstrat-

, ing the capabilities of time travel. Later on in this chapter you
will learn about Delta Lake’s Change Data Feed, which supports a
recommended approach for performing time-series analysis due to
its efficiency.

Data Retention

The data files backing a Delta table are never deleted automatically, but log files are
automatically cleaned up after checkpoints are written. Ultimately, what enables time
travel to a specific version of a table is the retention of both the data and log files for
that version of a table. By default, Delta tables retain the commit history, or log files,
for 30 days. So you can access time travel on Delta tables for up to 30 days unless you
have modified the data or log files.

In this and following sections, you will see the term retention thresholds. The reten-
tion threshold refers to the interval (e.g., days) a file must be kept before it is
a candidate to be physically removed from storage. For example, if the retention
threshold for a table is seven days, then a file must be at least seven days older
than the current table version before becoming eligible to be removed. The following
sections will cover the two types of retention that this book will discuss, data and log
file retention.

Data File Retention

Data file retention refers to how long data files are retained in a Delta table. The
default retention is seven days for files that are candidates to be removed by VACUUM,
a command used for physically deleting data files. In brief, VACUUM removes data
files no longer referenced by the Delta table and older than the retention period.
Unless removed manually, data files will only be removed when you run VACUUM. This
command does not delete Delta log files, only data files. You will learn more about
the VACUUM command and how it works later on in this chapter.

Data files commonly need to be retained for longer than the default retention
period. The table property delta.deletedFileRetentionDuration = "interval
<interval>" controls how long ago a file must have been deleted before being a
candidate for VACUUM.

To retain data files for a certain period of time even if you run VACUUM, use the table
property delta.deletedFileRetentionDuration = "interval <interval>". This
will control how long ago a file must have been deleted before being a candidate for
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VACUUM. For example, if you need to retain and access historical data for one year, set
delta.deletedFileRetentionDuration = "interval 365 days".

Once you remove a data file(s), you will be unable to time travel to
versions of the table that used that data file(s).

However, retaining excess data files can cause cloud storage costs to grow over time,
along with potential impacts on performance for processing metadata.

To demonstrate how data files can grow over time, using DESCRIBE HISTORY on
the taxiDb.tripData table, we can use the metrics numFiles and numAddedFiles in
operationMetrics to show how many files were added during each operation:

%sql

--describe table history
DESCRIBE HISTORY taxidb.tripData

Output (only relevant portions shown):

R e e +
| version | operation | operationMetrics |
R e e +
| 3 | RESTORE | {"numRestoredFiles": "10".."numRemovedFiles": |
| | | "10”.."numOfFilesAfterRestore": "10"

B R R R R P +
| 2 | DELETE | {"numRemovedFiles": "10".."numAddedChangeFiles": |
| | | "0”.."numAddedFiles": "10" |
R e e +
| 1 | UPDATE | {"numRemovedFiles": "10".."numAddedChangeFiles": |
| | | "0”.."numAddedFiles": "10"

B R R R R P +
| 0 | WRITE | {"numFiles": "10", "numOutputRows": "33003832", |
| | | "numOutputBytes": "715810450"}

R e e +

Based on the numFiles and numAddedFiles metrics, you can see that 30 files have
been added to this table. If you have an ETL process that runs each day and performs
INSERTs, UPDATEs, or DELETEs on a single table, then after one year you could have
10,950 (30 x 365) files! And this is just the number of files for a single table. Imagine
the number of files you can have across your entire data platform. The number of
files added during each operation obviously depends on the operations performed,
number of rows contained during each operation, and other variables, but this helps
demonstrate how your data files can grow over time.

Fortunately, cloud data lakes are very cost-effective when it comes to storing data,
but these costs can grow as your data files do. This is why it is still important to be
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economical when retaining data files for extended periods of time, and take costs and
business requirements into consideration when setting retention periods.

Log File Retention

Log file retention refers to how long the log files are retained in the Delta table. The
default retention is 30 days. You can change how long files are retained using the table
property delta.logRetentionDuration. For example, if you need to retain commit
history on a table for one year, set delta.logRetentionDuration = "interval 365
days".

In Chapter 2 you learned that every 10 commits, a checkpoint is written (at the time
of writing; this is subject to change in future versions of Delta Lake). Delta Lake
automatically cleans up log files based on the retention interval each time a new
checkpoint is generated.

In order to time travel to a specific version of the table, all of the
consecutive log entries up until a new checkpoint is written are
required. Checkpoints are written every 10 commits, which means
that if you want to time travel to version 0-9 of a table, then there
must be log entries for all versions 0, 1, 2, ..., 9. You will be unable
to time travel to version 0-9 of the table if the log for version 0 is
removed due to Delta automatically cleaning up log entries older
than the retention interval.

There is minimal downside to retaining log files, as log files do not affect perfor-
mance on read/writes on the table; they only affect performance on operations that
leverage table history. You should always consider storage costs when retaining files,
but log files are generally small in nature.

Delta Lake properties such as delta.deletedFileRetentionDura
tion and delta.logRetentionDuration can also be set using the
Spark configuration properties.

Setting File Retention Duration Example

Using the taxidb.tripData table, let’s say, for example, there is a requirement to
maintain the entire history of a table for one year for either time-series analysis or
regulatory purposes. To ensure that we can time travel to this table at any point in the
last year, we can set the following table properties:

%sql
--set log retention to 365 days
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ALTER TABLE taxidb.tripData
SET TBLPROPERTIES(delta.logRetentionDuration = "interval 365 days");

--set data file retention to 365 days
ALTER TABLE taxidb.tripData
SET TBLPROPERTIES(delta.deletedFileRetentionDuration = "interval 365 days");

--show the table properties to confirm data and log file retention
SHOW TBLPROPERTIES taxidb.tripData;

Output (only relevant portions shown):

R R R TP +
| key | value |
R R R TP +
| delta.deletedFileRetentionDuration | interval 365 days |
R R R TP +
| delta.logRetentionDuration | interval 365 days |
R R R TP +

Since delta.deletedFileRetentionDuration and delta.logRetentionDuration
are table properties, we can set these properties when we initially create the table,
or we can alter the table’s properties after it has been created.

You can see in the preceding example that after altering the table’s properties and then
executing the command SHOW TBLPROPERTIES, it returns the intervals for retention
on deleted files and log files for taxidb.tripData. By setting both intervals to 365
days, we can now ensure that we can time travel to this table at any point in time dur-
ing the last year to satisfy both business requirements and regulatory requirements.

Data Archiving

In the case of regulatory or archival purposes where you may need to retain data
for a certain number of years, storing this data using time travel and file retention
can become expensive due to storage costs. To help minimize costs, an alternative
solution can be to archive your data in a daily, weekly, or monthly manner by creating
a new table using a CREATE TABLE AS SELECT pattern:

%sql

--archive table by creating or replace

CREATE OR REPLACE TABLE archive.tripData USING DELTA AS
SELECT

*

FROM
taxidb.tripData

Tables created in this way will have independent history compared to the source
table; therefore time travel queries on the source table and the new table may return
different results based on your archiving frequency.
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VACUUM

In the previous section you learned that you can set retention thresholds and remove
data files that have been logically deleted and are no longer referenced by a Delta
table. This is a reminder: these data files are never automatically physically deleted
from storage unless the VACUUM command is run. VACUUM is designed to allow users to
physically delete old versions of data files and directories that are no longer needed,
while also taking into account the retention threshold of the table.

Physically deleting old versions of data files using VACUUM is important for primarily
two reasons:

Cost
Storing old and unused data files can cause cloud storage costs to grow exponen-
tially, especially for data that changes often. Minimize these costs by removing
unused data files.

Regulatory
Auditing and regulatory compliance (e.g., GDPR) can require that some records
are permanently removed and no longer available. Physically deleting files con-
taining these records can help satisfy those regulatory requirements.

Figure 6-4 illustrates a condensed version of both the log and data files in a Delta
table between different versions to show the effects of VACUUM.

Delta table version history Delta table version history
[ XX ] LN ]
Data Data Data Data
|| files || files || files || files
Default retention
N EB Tor doleted dats EB EB
DeIe’ged Log files is 7 days Log Log
(|| data files (| files (| files (| files

3

Log
files

C

>7 days older than
current version

Figure 6-4. Results of running the VACUUM command on a Delta table
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The numbered steps in the figure show:

1. Version 0 of the table is past the retention threshold (greater than seven days
old). This version of the table contains log files, data files that are used in the
table’s current version, and deleted data files that are no longer used by the
current version of the table.

2. The VACUUM command is run on the table.
o The default retention for deleted data files is seven days.

3. After running the VACUUM command, logically deleted data files from version 0
are physically removed from storage because they were greater than the default
deleted file retention period of seven days.

o Log files were not removed, only deleted data files.

o Data files still used in the current version of the table were not removed.

VACUUM Syntax and Examples

When vacuuming a table, you can specify VACUUM without any parameters to vacuum
files that are not required by version older than the default retention period. You can
also use the RETAIN num HOURS parameter to vacuum files that are not required by
versions greater than the number of hours specified in the parameter.

To vacuum a table, specify the table name or filepath and then add any additional
parameters:

%sql
--vacuum files not required by versions older than the default retention period
VACUUM taxidb.tripData;

VACUUM './chapter06/YellowTaxisDelta/'; --vacuum files in path-based table
VACUUM delta. " ./chapter06/YellowTaxisDelta/";

--vacuum files not required by versions more than 100 hours old
VACUUM delta. " ./chapter06/YellowTaxisDelta/ " RETAIN 100 HOURS;

Before attempting to vacuum the table, we can also run VACUUM using the parameter
DRY RUN to view the list of files that are to be deleted before deleting them:

%sql
VACUUM taxidb.tripData DRY RUN --dry run to get the list of files to be deleted
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Output (only relevant portions shown):

| dbfs:/xxx/chapter06/YellowTaxisDelta/part-xxxx.c000.snappy.parquet |
| dbfs:/xxx/chapter06/YellowTaxisDelta/part-xxxx.c000.snappy.parquet |
| dbfs:/xxx/chapter06/YellowTaxisDelta/part-xxxx.c000.snappy.parquet |

You can see the list of files from the output that will be deleted from the Delta table
taxidb.tripData if you were to run VACUUM.

VACUUM also commiits to the Delta transaction log, which means that you can also view
previous VACUUM commits and operationMetrics using DESCRIBE HISTORY:

%sql
DESCRIBE HISTORY taxidb.tripData --view the previous vacuum commit(s)

Output (only showing relevant portions):

R R TR R R R PP +
|version| operation | operationParameters | operationMetrics |
R R TR R R R PP +
| x |VACUUM END |[{"status": "COMPLETED"} | {"numDeletedFiles": "100" |
| | | | "numVacuumedDirectories": |
| | | | "1"} |
Fo-mmm-- B R R R PP +
| x | VACUUM START|{"retentionCheckEnabled": | |
| | |"true"...} | {"numFilesToDelete": |
| | | | "100"} |
R R TR R R R PP +

In the output, notice that the operationParameters show if retentionCheckEnabled
is true or false. You will also notice that the operationMetrics show the number of
files that were deleted and the number of directories that were vacuumed.

How Often Should You Run VACUUM and Other Maintenance Tasks?

It is recommended to regularly run VACUUM on all tables, outside of your main
ETL workflow, to reduce excess cloud data storage costs. There is no exact science
that indicates exactly how often you should run VACUUM. Rather, your decision on
frequency should primarily be based on your budgeted storage costs, and business
and regulatory needs. Scheduling a regularly occurring maintenance job to VACUUM
your tables is strongly recommended to appropriately satisfy these factors.

This maintenance job, which can also include other file cleanup operations such as
OPTIMIZE, should be run as a separate workflow outside of your main ETL workflow
for several reasons:
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Resource utilization

File cleanup operations can be resource intensive and can compete for resources
with your main workflow, leading to a decline in overall performance. Therefore,
you should specify maintenance windows outside of off-peak hours. These types
of operations also require different cluster sizing recommendations, such as
autoscaling, as opposed to regular workflows that typically use a fixed cluster
size. You will read more about cluster-sizing recommendations at the end of this
chapter.

Isolation
It is best to isolate processes that perform file cleanup and consolidation so that
they have exclusive access to the Delta table to avoid any potential conflicts.

Monitoring
By isolating these processes, it is much easier to monitor performance so that
you can track progress and resource consumption for tuning. Having an isolated
process also reduces any debugging complexities when processes run in parallel,
and also makes it easier to identify any bottlenecks.

By scheduling separate workflows for maintenance tasks such as VACUUM, you can
have greater resource management, isolation, monitoring, and overall control of your
jobs and workflows.

Related to the frequency of your maintenance jobs, an important setting to remember
is the default retention period. The default retention threshold for VACUUM is seven
days. You can always increase the retention threshold for a Delta table(s) based on
needs. Decreasing the retention threshold is not recommended. Even if you regularly
run VACUUM on all tables, it will only remove data files that are eligible to be removed
based on your table’s retention settings. Setting a higher threshold gives you access
to a greater history for your table, but increases the number of data files stored,
incurring greater storage costs from your cloud provider. Therefore, it is always
important to balance retention thresholds with your needs and your budget.

VACUUM Warnings and Considerations

Although VACUUM is designed to be a low-impact operation that can be performed
without interrupting normal data operations since it physically removes old and
unused data from storage, there are a few things to consider to avoid conflicts or even
corrupt tables:

o It is not recommended that you set a retention interval shorter than seven days.
It is possible that if you run VACUUM on a table with a short retention interval,
files that are still active, such as uncommitted files that are needed by readers or
writers, could be deleted. If VACUUM deletes files that haven't been committed, it
can cause read operations to fail or even corrupt your table.
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o Delta Lake has a safety check to prevent you from running a dangerous VACUUM

command. If you are certain that there are no operations being performed on
this table that take longer than the retention interval you plan to specify, you can
turn off this safety check by setting the Spark configuration property spark.data
bricks.delta.retentionDurationCheck.enabled = false.

— If you do set spark.databricks.delta.retentionDurationCheck.enabled
to false, you must choose an interval that is longer than the longest running
concurrent transaction and the longest period that any stream can lag behind
the most recent update to the table.

— Do not disable spark.databricks.delta.retentionDurationCheck.enabled
and run VACUUM configured to RETAIN @ HOURS.

—If you run VACUUM RETAIN num HOURS, then you must set RETAIN num
HOURS to an interval greater than or equal to the retention period.
Otherwise you will receive an error if spark.databricks.delta.reten
tionDurationCheck.enabled = true. If you are certain that there are
no operations being performed on this table, such as INSERT/UPDATE/
DELETE/OPTIMIZE, then you may turn off this check by setting spark.data
bricks.delta.retentionDurationCheck.enabled = false to avoid the
exception error.

When you run VACUUM on a Delta table, it removes the following files from the
underlying filesystem:

— Any data files that are not maintained by Delta Lake, ignoring directories
beginning with an underscore, like _delta_log. If you are storing additional
metadata like Structured Streaming checkpoints within a Delta table directory,
which you will learn more about in Chapter 8, use a directory name such as
_checkpoints.

— Stale data files (files that are no longer referenced by a Delta table) that are
older than the retention period.

Since vacuuming removes files, it is important to note that the process can take
some time, depending on the size of the table and the number of files to be
removed.

Run OPTIMIZE regularly to eliminate small files and reduce the number of files
that need to be removed. When you combine OPTIMIZE with regular VACUUM runs,
you ensure that the number of stale data files is minimized.

The ability to time travel back to a version older than the retention period is lost
after running VACUUM.

— Set a deleted file retention duration equal to your log retention duration to
maintain full compatibility of the entire history that you can time travel to.
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— This means that if you run VACUUM with the default settings, you will only be
able to time travel seven days into the past from the time you run VACUUM.

o Depending on how many unused files need to be identified and removed, the
VACUUM command can take a while to execute. To optimize the cost and perfor-
mance of your Spark cluster, it is recommended to use a cluster that auto-scales
and configures based on the following steps that VACUUM follows to perform the
operation:

— Step 1 of the VACUUM operation identifies unused files using the worker nodes
on the Spark cluster while the driver node sits idle. Therefore you should use
1 to 4 worker nodes with at least 8 cores each.

— Step 2 of the VACUUM operation deletes the identified files using the driver node
on the Spark cluster. Therefore you should use a driver node that has between
8 and 32 cores to avoid out-of-memory errors.

Changing Data Feed

So far in this chapter you have learned that through data and file retention, time
travel enables you to traverse through different versions of data at specific points
in time. But time travel does not track row-level changes, or rather, how row-level
data is inserted, updated, or deleted across different versions. And Delta Lake offers
more efficient ways to view these changes across different versions rather than just
comparing entire versions of tables. This efficient tracking of row-level changes
across versions is called the Change Data Feed (CDF).

When enabled on a Delta table, the Delta Lake records “change events” for all the data
written into the table. This includes the row data and metadata indicating whether
the specified row was inserted, deleted, or updated. Downstream consumers can
also read the change events in batch queries using SQL and DataFrame APIs, and
in streaming queries with .readStream. You will read more about how streaming
queries can consume the CDF in Chapter 9.

With the CDE, you can capture changes to the data without having to process every
single record in your Delta table file or query an entire version of a table. So, if just
one record changed, you no longer have to read all records in the file or a table.
The CDF is stored in a separate directory called _change_data that sits alongside
_delta_log and maintains the changes to the Delta table file. The CDF supports
several use cases that supplement Delta Lake time travel and versioning:

ETL operations
Identifying and processing only records that require row-level changes following
operations can greatly accelerate and simplify ETL operations. Incrementally
loading records during ETL operations is essential for any efficient ETL process.
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For example, if you have a large, denormalized table that contains all sales order
information used for reporting and is created by joining from several upstream
tables, you want to avoid processing all records each time the table processes.
With the CDE you can track the row-level changes from the upstream tables to
determine what information, or sales order records, are new, updated, or deleted,
and subsequently use that to incrementally process your table containing sales
order information.

Transmit changes for downstream consumers
Other downstream systems and consumers, such as Spark Structured Streaming
or Kafka, can consume the CDF to process data. For example, streaming queries,
which you will learn more about in Chapter 8, can read the change feed to stream
data for near-real-time analytics and reporting.

If you have an event-driven application, an event-streaming platform such as
Kafka could read the change feed and trigger actions for a downstream applica-
tion or platform. For instance, if you have an ecommerce platform, Kafka could
read the change feed and trigger near-real-time actions in the platform based on
product inventory changes that were captured in the Delta table.

Audit trail table
The CDF provides enhanced efficiency, especially compared to time travel, with
querying changes to row-level data over time so that you can easily see data that
was updated or deleted and when. This provides a full audit trail of your data.

Many regulatory requirements may require certain industries to track these row-
level changes and keep an entire audit trial. In healthcare, for example, HIPAA
and audit controls require systems to track activity, or changes, around electronic
protected health information (ePHI).> The CDF in Delta Lake helps support
regulatory requirements for tracking changes.

Enabling the CDF

We can enable the CDF for all new tables by setting this Spark configuration property
as follows:

%sql

set spark.databricks.delta.properties.defaults.enableChangeDataFeed = true
If you don’t wish to enable the CDF for all tables in your environment, you can
specify it using table properties when you create a table or alter existing ones. At
the start of this chapter when we executed the “Chapter Initialization” notebook, an
external Delta table containing aggregate information about passenger counts and

2 “45 CFR § 164.312 - Technical Safeguards.” Cornell Law School. January 25, 2013. https://oreil.ly/qWFDe.
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fare amounts for vendors, or taxis, was created. In the following example that can be
found in the notebook for “02 - Change Data Feed,”® we create a new table and enable
the CDF:

%sql

--create new table with change data feed

CREATE TABLE IF NOT EXISTS taxidb.tripAggregates
(VendorId INT, PassengerCount INT, FareAmount INT)
TBLPROPERTIES (delta.enableChangeDataFeed = true);

--alter existing table to enable change data feed
ALTER TABLE myDeltaTable SET TBLPROPERTIES (delta.enableChangeDataFeed = true);

Only changes made after you enable the CDF will be recorded, so
any changes made to a table prior to enabling the CDF will not be
captured.

Modifying Records in the CDF

To demonstrate the CDF, first let's INSERT, UPDATE, and DELETE some data in the
taxidb.tripAggregates table we just created so that we can view the CDF later on:
%sql
--insert record in the table

INSERT INTO taxidb.tripAggregates VALUES
(4, 500, 1000);

--update records in the table
UPDATE taxidb.tripAggregates SET TotalAmount = 2500 WHERE Vendorld = 1;

-- delete record in the table
DELETE FROM taxidb.tripAggregates WHERE VendorId = 3;

Now that there have been changes to the table, the CDF has captured the row-level
changes. If we look at the location where the Delta table is stored, we will notice the
new _change_data directory:

%sh
1s -al /dbfs/mnt/datalake/book/chapter06/TripAggregatesDelta/

Output (only relevant portions shown):

drwxrwxrwx 2 root _change_data
drwxrwxrwx 2 root _delta_log
-rwxrwxrwx 1 root part-00000-...-c000.snappy.parquet

3 GitHub repo location: /chapter06/02 - Change Data Feed
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-rwxrwxrwx 1 root part-00000-....snappy.parquet
-rwxrwxrwx 1 root part-00000-...-c000.snappy.parquet
-rwxrwxrwx 1 root part-00001-....snappy.parquet

Now that we can see the new _change_data directory, we can look in the directory to
see the data files that contain the data changes:

%sh

1s -al /dbfs/mnt/datalake/book/chapter06/TripAggregatesDelta/_change_data
Output:

-rwxrwxrwx 1 root cdc-00000-....snappy.parquet

-rwxrwxrwx 1 root cdc-00001-....snappy.parquet

The _change_data directory is another metadata directory containing the change
capture data contained in the data files. Every time you make a change to the data
going forward, you will not only update the current version’s data files, but also the
files in the _change_data directory. It is important to note that the CDF directory will
only store updates and deletes in the _change_data directory, whereas for inserts it
is more efficient to compute the CDF directly from the transaction log. This does
not mean that inserts are not captured in the CDF; they are simply not stored in the
_change_data directory.

The data files in the _change_data directory adhere to the same

retention policy of the table. This means that CDF data that is

outside of the table’s retention policy will be deleted when you run
\ VACUUM.

Viewing the CDF

To help identify the row-level changes that occurred, the CDF contains additional
metadata to label the type of event and commit information. The following table
shows the schema of the additional metadata columns.

Table 6-2. CDF metadata

Column name Type Values
_change_type String insert, update_preimage, update_postimage, delete
_commit_version Long The table version containing the change

_commit_timestamp Timestamp Timestamp of when the commit occurred

Using the additional metadata columns from the CDF, we can easily view the row-
level changes of a table. To view these changes and the CDF metadata columns,
we can use the TABLE_CHANGES(table_str, start [, end]) SQL command. The
following table details the arguments for this command.
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Table 6-3. TABLE_CHANGES Arguments

Argument  Type Definition

table_str String Represents the optionally qualified name of the table.

start BIGINT or Timestamp  The first version or timestamp of change to return.

end BIGINT or Timestamp ~ An optional argument for the last version or timestamp of change to return. If not

specified, all changes from the start up to the current change are returned.

Now circling back to the taxidb.tripAggregates table, there have been several DML
operations to INSERT, UPDATE, and DELETE data on the existing table. You can indicate
a version or timestamp, similar to time travel, to view the table changes using the
TABLE_CHANGES() SQL command:

%sql

SELECT *

FROM table_changes('taxidb.tripAggregates', 1, 4)
ORDER BY _commit_timestamp

Output:
o Fommm e e Hommmmm e +
| PassengerCount | FareAmount | _change_type | _commit_version |
o Fommm e R LT E T Hommmmm e +
| 1000 | 2000 | update_preimage | 2 |
o Fommm e R LT Hommmmm e +
| 1000 | 2500 | update_postimage | 2 |
o Fommm e R LT Hommmmm e +
[ 7000 [ 10000 | delete [ 3 |
o Fommm e R LT Hommmmm e +
| 500 | 1000 | insert | 4 |
o Fommm e R LT Hommmmm e +
dommmm e LT TR +
| VendorId | _commit_timestamp |
dommmm e LT TR +
[ 1 | 2023-07-09T19:17:54 |
dommmm e LT TR +
[ 1 | 2023-07-09T19:17:54 |
dommmm e LT TR +
[ 3 | 2023-07-09T19:17:54 |
dommmm e LT TR +
| 4 | 2023-07-09T19:17:54 |
dommmm e LT TR +

When looking at the row-level changes in this example, you can see the versions that
correspond to when a particular record was inserted, updated, or deleted by looking
at the _commit_version. The _change_type indicates the type of operation on the
record, and for updated records notice that it indicates the row-level data before the
update, as indicated by update_preimage, and the row-level data after the update, as
indicated by update_postimage.

Changing Data Feed | 147



The same table changes can be viewed using the DataFrame API as well by using
the .option() method and setting "readChangeFeed" to "true":

%python

# view CDF table changes using versions

spark.read.format("delta") \
.option("readChangeFeed", "true") \
.option("startingversion", 1) \
.option("endingVersion", 4) \
.table("taxidb.tripAggregates")

# view CDF table changes using timestamps
spark.read.format("delta")\
.option("readChangeFeed", "true")\
.option("startingTimestamp", "2023-01-01 00:00:00")\
.option("endingTimestamp", "2023-01-31 00:00:00")\
.table("taxidb.tripAggregates")

Now, if we want to see the audit trail of a record and see how it has changed
over time, we can simply use the CDF and TABLE_CHANGES() to capture this effi-
ciently. For example, if we wanted to see how the values of a specific vendor in
taxidb.tripAggregates have changed over time, let'’s say WHERE VendorId = 1, we
could use the following query:

%sql

SELECT *

FROM table_changes('taxidb.tripAggregates', 1, 4)

WHERE VendorId = 1 AND _change_type = 'update_postimage'
ORDER BY _commit_timestamp

Output:
B R R LT TR EE R +
| FareAmount | TotalAmount | _change_type | _commit_version |
B R R LT TR EE R +
| 10000 [ 25000 | update_postimage | 2
B R R LT TR EE R +
R B R R E R +
| VendorId | _commit_timestamp
R B R R E R +
| 1 | 2023-07-09T19:17:54.000+000 |
R B R R E R +

This provides an audit trail of how data for a particular vendor has been updated over
time. While this is a simple example, you can see that this can be extremely powerful
and much more efficient than time travel for large tables with many values that are
consistently updated.

Or, let’s say we want to perform a time-series analysis and see how many new vendors
have been added (assuming the granularity of this table is VendorId) and what their
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FareAmount generated has been since a particular point in time. We can use a WHERE
clause to specify this information and efficiently read the CDF:

%sql

SELECT *

FROM table_changes('taxidb.tripAggregates', '2023-01-01')
WHERE VendorId = 1 AND _change_type = 'insert'

ORDER BY _commit_timestamp

Output:

Fommmm e Hommmmm e LT T R Fommmm e +
| FareAmount | TotalAmount | _change_type | _commit_version |
Fommmm e Hommmmm e LT T R Fommmm e +
| 500 | 1000 | insert | 4 |
Fommmm e Hommmmm e LT T R Fommmm e +
ommmmaa B LT +

| VendorId | _commit_timestamp

ommmmaa B LT +

| 4 | 2023-07-09T19:17:54.000+000 |

ommmmaa B LT +

This demonstrates that you can see the table changes, specifically WHERE VendorId =
1 AND _change_type = 'insert', since a commit timestamp, which in this case is
2023-01-01

The CDF is an efficient, powerful feature that can capture changes to data over
time. This can be used with other ETL operations to easily build type 2 slowly
changing dimensions, or you can process only row-level changes following MERGE,
UPDATE, or DELETE operations to accelerate ETL operations and incrementally load
data downstream. As mentioned previously, there are other use cases for the CDF,
one of which is streaming, which you will learn more about in Chapter 9.

(DF Warnings and Considerations

While the CDF is a powerful feature, there are some things to consider:

+ Change records follow the same retention policy as the data files of the table. This
means that if a CDF file is outside the table’s retention policy, it is a candidate for
VACUUM and will be deleted if VACUUM is run.

o+ The CDF does not add any significant overhead to table processing, as everything
is generated inline as the DML operations. And typically the data files written in
the _change_data directory are much smaller in size compared to the total size of
rewritten files of a table operation since they only contain operations for records
that were updated or deleted. As mentioned previously, records inserted into a
table are not captured in the _change_data directory.

Changing Data Feed | 149



Since the change data happens inline with other operations, the change data is
available as the new data is committed and available in the table.

+ The CDF does not record changes to records that occurred prior to the CDF
being enabled.

o+ Once you enable the CDF for a table, you can no longer write to the table using
Delta Lake 1.2.1 or below, but you can still read the table.

Conclusion

In this chapter, you read about how Delta Lake uses version control and how that
enables you to traverse through different versions of data at specific points in time,
while also using the CDF to track row-level changes to data over time. Time travel
and the CDF in Delta Lake are powerful features that allow users to track changes
over time and can be leveraged for enabling downstream consumers, ETL operations,
time-series analysis, version control, auditing, and data management.

After reading about how you can easily restore or query previous versions of a table,
you learned that you can use either version numbers or timestamps to roll back,
audit, and satisfy a variety of use cases. By using commands like DESCRIBE HISTORY,
you can easily view a table’s commit history. This is all made possible through the
transaction log and file retention. You can further define these retention settings, if
you wish to change the default settings, for both log and data files using Spark config-
uration or table properties. Then, since data files are not automatically removed, you
can remove old data files using the VACUUM command.

To supplement time travel, Delta Lake also offers the Change Data Feed (CDF) for
tables. This feature allows you to capture row-level changes in an efficient manner for
numerous different use cases, rather than needing to compare entire versions of each
table’s history to identify changes.

Using built-in Delta Lake features for time travel, retention, maintenance, and the
CDE you can save valuable time and resources, and satisfy regulatory and audit
requirements. These features are made possible through the _change_data directory
and more importantly the transaction log, and in the next chapter you will learn more
about how the transaction log also stores a table’s schema and uses that to update and
modify table schemas.
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CHAPTER7
Schema Handling

Traditionally, data lakes have always operated under the principle of schema on
read, but have always had challenges enforcing schema on write. This means there
is no predefined schema when data is written to storage, and a schema is only
adapted when the data is processed. It is imperative for the case of analytics and data
platforms that your table formats enforce the schema on write to prevent introducing
change-breaking processes, and to maintain proper data quality and integrity.

And while it is essential to adhere to schema on write, we must also acknowledge that
in today’s fast-paced business climate and evolving landscape of data management,
data sources, analytics, and simply just data and its overall structure are constantly
changing. These changes need to be accounted for with schemas that are flexible
enough to evolve over time in order to capture new, changing information.

The schematic challenges often seen from traditional data lakes can be further classi-
fied into two key schema handling features that any data platform and table format,
regardless of the storage layer, must support:

Schema enforcement

This is the process of ensuring that all data being added to a table conforms
to that specific schema, where the schema defines a table structure by a list of
column names, their data types, and any optional constraints. Enforcing data
to fit to the structure of a defined schema helps to maintain the quality and
consistency of the data, as any write to the table that does not comply with the
schema is rejected. In turn, this helps prevent data quality issues that can arise
from having data in different formats where it can be difficult to ensure that the
data in the table is accurate and consistent.
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Schema evolution
This allows the data stored in the data lake to be flexible and adaptable to
address the changing business requirements and data landscape. Schema evolu-
tion should be performed in a very conscious, controlled, and organized manner,
and is mostly limited to the addition of columns to the schema.

Fortunately, Delta Lake has excellent schema handling features that allow for both
flexible schema evolution and rigid enforcement. This chapter will demonstrate how
Delta Lake performs validation and enforcement, along with schema evolution sce-
narios and how Delta Lake can handle them.

Schema Validation

Every DataFrame that you create in Apache Spark will have a schema. The best way
to look at a schema is as a blueprint or structure that defines the shape of your data.
This includes the name of each column, its data type, whether or not the column can
be NULL, and any metadata associated with each column.

Delta Lake will store the schema of a Delta Table as a schemaString in the metaData
action of the transaction log entries. In this section we will take a look at these entries.
Next, we look at the validation rules that Delta Lake applies during a schema on
write operation. We will close out this section with a use case for each of the schema
validation rules.

To follow along with the code, first execute the “00 - Chapter Initialization” notebook
for Chapter 7 to create the TaxiRateCode Delta table.

Viewing the Schema in the Transaction Log Entries

Delta Lake will store the schema in JSON format inside the transaction log. For
example, the initialization notebook writes a Delta table like this:

# Write in Delta Lake format

df.write.format("delta") \
.mode("overwrite") \
.save("/mnt/datalake/book/chapter07/TaxiRateCode")

To take a look at how the schema is saved, open the “01 - Schema Enforcement”
notebook. In this notebook, we see that the table’s schema is saved in JSON format
inside the transaction log when we view the transaction log file:

%sh

# The schemaString is part of the metaData action of the Transaction Log entry
# The schemaString contains the full schema of the Delta table file

# at the time that the log entry was written

grep "metadata" /dbfs/mnt/datalake/.../TaxiRateCode.delta/_delta_log/...000.json
> /tmp/commit.json

python -m json.tool < /tmp/commit.json
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We see the following output:

{
"metaData": {
"{d": "8f348474-0288-440a-a76e-2358ccf45a96",
"format": {
"provider": "parquet",
"options": {}

1,

"schemaString": "{\"type\":\"struct\",\"fields\":[{\"name\":\
"RateCodeId\",\"type\":\"integer\",\"nullable\
":true,\"metadata\":{}},{\"name\":\"RateCodeDesc\
", \"type\":\"string\",\"nullable\":true,\
"metadata\":{}}1}",

"partitionColumns": [],

"configuration": {3},

"createdTime": 1681161987269

}
}

The schema is a structure (struct), with a list of fields representing the columns,
where each field has a name, a type, and a nullable indicator that tells us whether the
field is mandatory or not.

Each column also contains a metadata field. The metadata field is a JSON string
that can contain various types of information, depending on the transaction being
performed, for example:

o The username of the person who executed the transaction
 The timestamp of the transaction

« The version of Delta Lake used

o The schema partition columns

o Any additional application-specific metadata that may be relevant to the
transaction

Schema on Write

Schema validation rejects writes to a table that does not match a table’s schema. Delta
Lake performs schema validation on write, so it will check the schema of the data that
is being written to the table. If the schema is compatible, the validation will pass and
the write will succeed; if the schema of the data is not compatible, Delta Lake will
cancel the transaction and no data is written.

Note that this operation will always be atomic, so you will never have a condition
where only a part of the data is written to the table. All source data is written when
the transaction succeeds, and no source data is written when the validation fails.
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When schema validation fails, Delta Lake will raise an exception to let the user know
about the mismatch.

To determine whether a write to a table is compatible, Delta Lake uses the following
rules:

The source DataFrame to be written:

Cannot contain any columns that are not present is the target tables schema
Note that it is allowed that the new data does not contain every column in the
table, as long as the missing columns are marked as nullable in the target table’s
schema. If a missing column was not marked as nullable in the target schema, the
transaction will fail.

Cannot have column data types that differ from the column data types in the target table
For example, if the target table’s column contains StringType data, but the
corresponding source column contains IntegerType data, schema enforcement
will raise an exception and prevent the write operation from taking place.

Cannot contain column names that differ only by case
For example, if the source data contains a column named Foo and the source data
has a column named foo, the transaction will fail. There is a bit of history behind
this particular rule:

o Spark can be used in case-sensitive or case-insensitive (default) mode.

 Parquet, on the other hand, is case-sensitive when storing and returning
column information.

o Delta Lake is case preserving but insensitive when storing the schema.

The preceding rules combined get rather complex. Therefore, to avoid potential
mistakes, data corruption, or loss issues, Delta Lake will not allow column names
that only differ in case.

Schema Enforcement Example

Let’s take a look at the details of schema enforcement. We will start out by appending
a DataFrame with a matching schema, which will succeed without any issues. Next,
we will add an additional column to the DataFrame and attempt to append it to the
Delta table. We will validate that this results in an exception, and no data has been
written.

Matching schema

To illustrate schema enforcement, we will first append a DataFrame with the correct
schema to the TaxiRateCode table, as shown in step 2 in the “01 - Schema Enforce-
ment” notebook:
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# Define the schema for the DataFrame
# Notice that the columns match the table schema
schema = StructType([
StructField("RateCodeId", IntegerType(), True),
StructField("RateCodeDesc", StringType(), True)
D

# Create a list of rows for the DataFrame
data = [(10, "Rate Code 10"), (11, "Rate Code 11"), (12, "Rate Code 12")]

# Create a DataFrame, passing in the data rows
# and the schema
df = spark.createDataFrame(data, schema)

# Perform the write. This write will succeed without any
# problems
df.write \
.format("delta") \
.mode("append") \
.save("/mnt/datalake/book/chapter07/TaxiRateCode")

Since the source and target schema align, the DataFrame is successfully appended to
the table.

Schema with an additional column

In step 3 of the notebook, we will attempt to add one more column to the source
schema:

# Define the schema for the DataFrame

# Notice that we added an additional column

schema = StructType([
StructField("RateCodeId", IntegerType(), True),
StructField("RateCodeDesc", StringType(), True),
StructField("RateCodeName", StringType(), True)

D

# Create a list of rows for the DataFrame
data = [

(15, "Rate Code 15", "C15"),

(16, "Rate Code 16", "C16"),

(17, "Rate Code 17", "C17")]

# Create a DataFrame from the list of rows and the schema
df = spark.createDataFrame(data, schema)

# Attempt to append the DataFrame to the table
df.write \
.format("delta") \
.mode("append") \
.save("/mnt/datalake/book/chapter07/TaxiRateCode")
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This code will fail with the following exception:

AnalysisException: A schema mismatch detected when writing to the Delta table
(Table ID: 8f348474-0288-440a-a76e-2358ccf45a96).

When we scroll down, we see that Delta Lake provided a detailed explanation of what
happened:

To enable schema migration using DataFrameWriter or DataStreamWriter, please set:
'.option("mergeSchema", "true")'.

For other operations, set the session configuration
spark.databricks.delta.schema.autoMerge.enabled to "true". See the documentation
specific to the operation for details.

Table schema:

root

-- RateCodeld: integer (nullable = true)
-- RateCodeDesc: string (nullable = true)

Data schema:

root

-- RateCodeld: integer (nullable = true)
-- RateCodeDesc: string (nullable = true)
-- RateCodeName: string (nullable = true)

Delta Lake informs us that we can evolve the schema with the mergeSchema option set
to true, which is something we will examine in the next section. It then shows us the
table and source data schema, which is very helpful for debugging.

When we look at the transaction log entries, we see the following:

# Create a listing of all transaction log entries.

# We notice that there are only two entries.

# The first entry represents the creation of the table

# The second entry is the append of the valid dataframe

# There is no entry for the above code since the exception

# occurred, resulting in a rollback of the transaction

1s -al /dbfs/mnt/datalake/book/chapter07/TaxiRateCode/_delta_log/*.json

-rwxrwxrwx 1 Apr 10 21:26 /dbfs/.../TaxiRateCode.delta/_delta_log/...000.json
-rwxrwxrwx 1 Apr 10 21:27 /dbfs/.../TaxiRateCode.delta/_delta_log/...001.json
The first entry (0000..0.json) represents the creation of the table, and the second
entry (0000..1.json) is the append with the valid DataFrame. There is no entry for
the preceding code, since the schema mismatch exception was thrown, and no data

was written at all, illustrating the atomic behavior of Delta Lake transactions.

A run of the DESCRIBE HISTORY command for the table confirms this:
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%sql
-- Look at the history for the Delta table
DESCRIBE HISTORY delta. /mnt/datalake/book/chapter07/TaxiRateCode"

Output (only relevant data shown):

Fommmmm - B D e T +
|version|operation | operationParameters

Fommmmm - B D e T +
|1 | WRITE | {"mode":"Append","partitionBy":"[]"} |
|0 | WRITE | {"mode":"Overwrite","partitionBy":"[]"} |
F e g +

In this section, we have seen schema enforcement at work. It provides peace of mind
that your table’s schema will not change unless you choose to change it. Schema
enforcement ensures data quality and consistency for your Delta Lake tables, and
keeps the developer honest and the tables clean.

However, if you consciously decide that you really need the additional column in
your table to facilitate your business, then you can leverage schema evolution, which
we will cover in the next section.

Schema Evolution

Schema evolution in Delta Lake refers to the ability to evolve the schema of a Delta
table over time, while preserving the existing data in the table. In other words,
schema evolution allows us to add, remove, or modify columns in an existing Delta
table without losing any data or breaking any downstream jobs that depend on the
table. This is important as your data and business needs change over time and you
may need to add new columns to your table or modify the existing columns to
support new use cases.

Schema evolution is enabled on the table level by using .option("mergeSchema",
"true") during a write operation. You can also enable schema evolution
for the entire Spark cluster by setting spark.databricks.delta.schema.auto
Merge.enabled to true. By default, this setting will be set to false.

When schema evolution is enabled, the following rules are applied:

o If a column exists in the source DataFrame being written but not in the Delta
table, a new column is added to the Delta table with the same name and data
type. All existing rows will have a null value for the new column.

o If a column exists in the Delta table but not in the source DataFrame being
written, the column is not changed and retains its existing values. The new
records will have a null value for the missing columns in the source DataFrame.
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o Ifa column with the same name but a different data type exists in the Delta table,
Delta Lake attempts to convert the data to the new data type. If the conversion
fails, an error is thrown.

o If a NullType column is added to the Delta table, all existing rows are set to null
for that column.

Let’s look at a number of schema evolution scenarios, starting with the most com-
mon: adding a column to the table.

Adding a Column

Returning to our schema enforcement example, we can use schema evolution to add
the RateCodeName column to the schema that was previously rejected due to schema
mismatch. Recall that the rule states:

If a column exists in the DataFrame being written but not in the Delta table, a new
column is added to the Delta table with the same name and data type. All existing rows
will have a null value for the new column.

You can follow along with the code in the “02 - Schema Evolution” notebook. In step
2 of the notebook, schema evolution is activated by adding .option("mergeSchema",
"true") to the .write Spark command:

# Define the schema for the DataFrame
# Notice the additional RateCodeName column, which
# 1s not part of the target table schema
schema = StructType([
StructField("RateCodeId", IntegerType(), True),
StructField("RateCodeDesc", StringType(), True),
StructField("RateCodeName", StringType(), True)
D

# Create a list of rows for the DataFrame
data = [

(20, "Rate Code 20", "C20"),

(21, "Rate Code 21", "C21"),

(22, "Rate Code 22", "(C22")
1

# Create a DataFrame from the list of rows and the schema
df = spark.createDataFrame(data, schema)

# Append the DataFrame to the Delta Table

df.write \
.format("delta") \
.option("mergeSchema", "true") \
.mode("append") \

.save("/mnt/datalake/book/chapter07/TaxiRateCode")

158 | Chapter7: Schema Handling



# Print the schema
df.printSchema()

We see the new schema:

root
| -- RateCodeId: integer (nullable = true)
| -- RateCodeDesc: string (nullable = true)
| -- RateCodeName: string (nullable = true)

Now, the write operation will complete successfully, and the data will be added to the
Delta table:

%sql
SELECT
*
FROM
delta. ' /mnt/datalake/book/chapter07/TaxiRateCode"”
ORDER BY
RateCodelId

We get the following output:

T o o +
|RateCodeId | RateCodeDes |RateCodeName |
e o o +
|11 |Standard Rate | null |
|2 | JFK | null |
|3 |Newark | null |
|4 |[Nassau or Westchester| null

|5 |Negotiated fare | null

|6 |Group ride | null |
|20 |Rate Code 20 | C20

|21 |Rate Code 21 | C21 |
|22 |Rate Code 22 | C22 |
e o o +

The new data has been added, and the RateCodeName for the existing rows has been
set to null, which is expected. When we look at the corresponding transaction log
entry, we can see that a new metadata entry has been written with the updated
schema:

{
"metaData": {
"id": "ac676ac9-8805-4aca-9db7-4856a3c3a55b",
"format": {
"provider": "parquet",
"options": {}
1

"schemaString": "{\"type\":\"struct\",\"flelds\":[
{\"name\":\"RateCodeId\",\"type\":\"integer\",\"nullable\
":true,\"metadata\":{}},
{\"name\":\"RateCodeDesc\",\"type\":\"string\",\"nullable\
":true,\"metadata\":{}},
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{\"name\":\"RateCodeName\",\"type\":\"string\",\"nullable\
":true,\"metadata\":{}}1}",

"partitionColumns": [],

"configuration": {},

"createdTime": 1680650616156

}

This validates the schema evolution rules for adding columns.

Missing Data Column in Source DataFrame
Next, let’s take a look at the impact of removing a column. Recall that the rule states:

If a column exists in the Delta table but not in the DataFrame being written, the
column is not changed and retains its existing values. The new records will have a null
value for the missing columns in the source DataFrame.

In the “02 - Schema Evolution” notebook in step 3, there is a code example where we
left the RateCodeDesc column out of the DataFrame:

# Define the schema for the DataFrame
schema = StructType([
StructField("RateCodeId", IntegerType(), True),
StructField("RateCodeName", StringType(), True)
D

# Create a list of rows for the DataFrame
data = [(30, "C30"), (31, "C31"), (32, "C32")]

# Create a DataFrame from the list of rows and the schema
df = spark.createDataFrame(data, schema)

# Append the DataFrame to the table

df.write \
.format("delta") \
.option("mergeSchema", "true") \
.mode("append") \

.save("/mnt/datalake/book/chapter07/TaxiRateCode")

When we now look at the data in the Delta table, we see the following:

ommm e o Hommmmm e +
|RateCodeId | RateCodeDes |RateCodeName |
ommm e o Hommmmm e +
|1 |Standard Rate | null |
|2 | IFK | null |
|3 |Newark | null |
|4 |Nassau or Westchester| null |
|5 |Negotiated fare | null |
|6 |Group ride | null |
|20 |Rate Code 20 | C20 |
|21 |Rate Code 21 | c21 |

160 | Chapter7: Schema Handling



|22 |Rate Code 22 | C22

|
|30 [null | C30 |
|31 |null | C31 |
|32 [null | €32 |
B B T T R L +

Observe the following behavior:

o The schema of the Delta table remains unchanged.
o The RateCodeDesc column values for the existing rows are not changed.
+ The values for the RateCodeDesc column of the new DataFrame are set to NULL,

since they do not exist in the DataFrame.

When we look at the corresponding transaction log entry, you can see the
commitInfo and three add sections (one for each new source record), but no new
schemaString, implying that the schema was not changed:

{
"commitInfo": {
}
}
{
"add": {

"stats": "{\"numRecords\":1,\"minValues\":{\"RateCodeId\":30,
\"RateCodeName\":\"C30\"},\"maxValues\":
{\"RateCodeId\":30,\"RateCodeName\":\"C30\"},\"nullCount\"
:{\"RateCodeld\":0,\"RateCodeDesc\":1,
\"RateCodeName\":0}}",

}

}
}
{
"add": {

"stats": "{\"numRecords\":1,\"minValues\":{\"RateCodeId\":31,
\"RateCodeName\":\"C31\"},\"maxValues\":
{\"RateCodeId\":31,\"RateCodeName\":\"C31\"},\"nullCount\"
:{\"RateCodeld\":0,\"RateCodeDesc\":1,
\"RateCodeName\":0}}",

"tags": {

}

}
}
{
"add": {
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"stats": "{\"numRecords\":1,\"minValues\":{\"RateCodeId\":32,
\"RateCodeName\":\"C32\"},\"maxValues\":
{\"RateCodeId\":32,\"RateCodeName\":\"C32\"},\"nullCount\"
:{\"RateCodeId\":0,\"RateCodeDesc\":1,
\"RateCodeName\":0}}",
"tags": {

}
}

This validates our rule for removing columns, as stated in the introduction.

Changing a Column Data Type

Next, let’s take a look at the impact of changing a column’s data type. Recall that the
rule states:

If a column with the same name but a different data type exists in the Delta table, Delta
Lake attempts to convert the data to the new data type. If the conversion fails, an error
is thrown.

In step 4 of the “02 -Schema Evolution” notebook, we will first reset the table by
removing the directory:

dbutils.fs.rm("dbfs:/mnt/datalake/book/chapter®7/TaxiRateCode", recurse=True)
And then we can drop the table:

%sql
drop table taxidb.taxiratecode;

Next, we re-create the table, but this time we use a short data type for the RateCodeId:

# Read our CSV data, and change the data type of

# the RateCodeld to short

df = spark.read.format("csv") \
.option("header", "true") \
.load("/mnt/datalake/book/chapter07/TaxiRateCode.csv")

df = df.withColumn("RateCodeld", df["RateCodeld"].cast(ShortType()))

# Write in Delta Lake format

df.write.format("delta") \
.mode("overwrite") \
.save("/mnt/datalake/book/chapter07/TaxiRateCode")

# Print the schema
df.printSchema()

We can see the new schema, and verify that RateCodeId is now indeed a short data

type:
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root
| -- RateCodeId: short (nullable = true)
| -- RateCodeDesc: string (nullable = true)

Next, we will attempt to change the data type of the RateCodeId column from a
ShortType to an IntegerType, which is one of the supported conversions for schema
evolution:

# Define the schema for the DataFrame
# Note that we now define the RateCodeld to be an
# Integer type
schema = StructType([
StructField("RateCodeId", IntegerType(), True),
StructField("RateCodeDesc", StringType(), True)
D

# Create a list of rows for the DataFrame
data = [(20, "Rate Code 20"), (21, "Rate Code 21"), (22, "Rate Code 22")]

# Create a DataFrame from the list of rows and the schema
df = spark.createDataFrame(data, schema)

# Write the DataFrame with Schema Evolution

df.write \
.format("delta") \
.option("mergeSchema", "true") \
.mode("append") \

.save("/mnt/datalake/book/chapter07/TaxiRateCode")

# Print the schema
df.printSchema()

This code will successfully execute and print the following schema:

root
| -- RateCodeld: integer (nullable = true)
| -- RateCodeName: string (nullable = true)
A new schemaString is written in the corresponding transaction log entry with the
IntegerType:

{
"metaData": {
"{d": "7af3c5b8-0742-431f-b2d5-5634aa316e94",
"format": {
"provider": "parquet",
"options": {}
1,

"schemaString": "{\"type\":\"struct\",\"fields\":[
{\"name\":\"RateCodeId\",\"type\":\"integer\",\"nullable\":
true,\"metadata\":{}},
{\"name\":\"RateCodeDesc\",\"type\":\"string\",\"nullable\":
true,\"metadata\":{}}1}",

Schema Evolution | 163



"partitionColumns": [],
"configuration": {},
"createdTime": 1680658999999

}

Currently, Delta Lake only supports a limited number of conversions:

 You can convert from a NullType to any other type.
 You can upcast from a ByteType to a ShortType.

* You can upcast from a ShortType to an IntegerType (which is our use case from
earlier).

Adding a NullType Column

In Delta Lake, the NullType() type is a valid data type that is used to represent
a column that can contain a null value, as shown in step 5 of the “02 - Schema
Evolution” notebook:

# Define the schema for the DataFrame

schema = StructType([
StructField("RateCodeId", IntegerType(), True),
StructField("RateCodeDesc", StringType(), True),
StructField("RateCodeExp", NullType(), True)

D

# Create a list of rows for the DataFrame
data = [

(50, "Rate Code 50", None),

(51, "Rate Code 51", None),

(52, "Rate Code 52", None)]

# Create a DataFrame from the list of rows and the schema
df = spark.createDataFrame(data, schema)

df.write \
.format("delta") \
.option("mergeSchema", "true") \
.mode("append") \

.save("/mnt/datalake/book/chapter®7/TaxiRateCode")

# Print the schema
df.printSchema()

The schema for this DataFrame is:

root
| -- RateCodeId: integer (nullable = true)
| -- RateCodeDesc: string (nullable = true)
| -- RateCodeExp: void (nullable = true)
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When we look at the metadata entry for the corresponding transaction log entry, we
see the nullable type reflected:

"schemaString": "{\"type\":\"struct\",\"fields\":[
{\"name\":\"RateCodeId\",\"type\":\"integer\",\"nullable\"
:true,\"metadata\":{}},
{\"name\":\"RateCodeDesc\",\"type\":\"string\",\"nullable\"
:true,\"metadata\":{}},
{\"name\":\"RateCodeExp\",\"type\":\"void\",\"nullable\"
:true,\"metadata\":{}}]1}",

We can see the data type reflected as void. Note that if we try to query this table with
a SELECT *, we will get an error:

%sql

SELECT

*

FROM
delta. ' /mnt/datalake/book/chapter®7/TaxiRateCode"

We get the following exception:

java.lang.IllegalStateException: Couldn't find RateCodeExp#26346
in [RateCodeId#26344,RateCodeDesc#26345]

The reason for this error is that NullType columns in Delta Lake do not have a
defined schema, so Spark cannot infer the data type of the column. Therefore, when
we try to run a SELECT * query, Spark is unable to map the NullType column to a
specific data type, and the query fails.

If you want to query the table, we can list the columns you need without the
NullType column:
%sql
SELECT
RateCodeld,
RateCodeDesc

FROM
delta. ' /mnt/datalake/book/chapter®7/TaxiRateCode"

This will succeed without any issues.

Explicit Schema Updates

So far we have leveraged schema evolution to allow the schema to evolve according
to a number of rules. Let’s look at how we can explicitly manipulate a Delta table’s
schema. First, we will add a column to a Delta table using both the SQL ALTER TABLE
and ADD COLUMN commands. Next, we will use the SQL ALTER COLUMN statement to
add comments to a table column. Next, we will use a variation of the ALTER TABLE
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command to change the column ordering for the table. We will review Delta Lake
column mapping, since it is required for the following.

Adding a Column to a Table

In step 3 of the “03 - Explicit Schema Updates” notebook, we have an example of how
to use the SQL ALTER TABLE..ADD COLUMN command to add a column to a Delta table:

%sql

ALTER TABLE delta. ' /mnt/datalake/book/chapter®7/TaxiRateCode"”

ADD COLUMN RateCodeTaxPercent INT AFTER RateCodeld
Note that we used the AFTER keyword, so the column will be added after the
RateCodeld field, and not at the end of the column list, as is the standard practice
without the AFTER keyword. Similarly, we can use the FIRST keyword to add the new
column at the first position in the column list.

Looking at the schema with the DESCRIBE command, we see that the new column is
indeed inserted after the RateCodeId column:

B LT T TP e Hmmmmmnn +
|col_name | data_type|comment |
B LT T TP e Hmmmmmnn +
|RateCodeld |int | null |
|RateCodeTaxPercent|int | null |
|RateCodeDesc |string | null |
B LT T TP e Hmmmmmnn +

By default, nullability is set to true, so all of the values for the newly added column
will be set to null:

B D R R R +
|RateCodeId|RateCodeTaxPercent|RateCodeDesc |
B B R R R P +
11 | null |Standard Rate |
|12 | null | IFK |
|13 | null | Newark |
|4 | null |Nassau or Westchester|
|5 | null |Negotiated fare |
|16 | null |Group ride |
dommmm e Fommmm e oo +

When we look at the transaction log entry for the ADD COLUMN operation, you see:

o A commitInfo action with the ADD COLUMN operator.

o A metaData action with the new schemaString. In the schemaString, we see the
new RateTaxCodePercent column:
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"commitInfo": {

"operation": "ADD COLUMNS",
"operationParameters": {
"columns": "[{\"column\":{\"name\":\"RateCodeTaxPercent\",\"type\":
\"integer\",\"nullable\":true,
\"metadata\":{}},\"position\":\"AFTER RateCodeId\"}]"

"metaData": {

"schemaString": "{\"type\":\"struct\",\"flelds\":[
{\"name\":\"RateCodeId\", \"type\":\"integer\",\"nullable\":
true,\"metadata\":{}},
{\"name\":\"RateCodeTaxPercent\",\"type\":\"integer\",\"nullable\":
true,\"metadata\":{}},
{\"name\":\"RateCodeDesc\",\"type\":\"string\",\"nullable\":
true,\"metadata\":{}}1}",

"partitionColumns": [],

"configuration": {},

"createdTime": 1681168745910

}

Note that there are no add or remove actions, so no data had to be rewritten for ADD
COLUMN to succeed; the only operation Delta Lake had to perform is to update the
schemaString in the metaData transaction log action.

Adding Comments to a Column

In step 3 of the “Explicit Schema Updates” notebook, we see how to add comments to
a Delta table using SQL with the ALTER COLUMN statement. For example, if we have the
standard taxidb.TaxiRateCode table, we can add a comment to a column:

%sql

-- Add a comment to the RateCodeld column

ALTER TABLE taxidb.TaxiRateCode
ALTER COLUMN RateCodeId COMMENT 'This is the id of the Ride'

We see a commitInfo entry in the corresponding transaction log entry with a CHANGE
COLUMN operation, and the addition of the comment:
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"commitInfo": {

"userName": "bennie.haelen@insight.com",
"operation": "CHANGE COLUMN",
"operationParameters": {
"column": "{\"name\":\"RateCodeId\",\"type\":\"integer\",
\"nullable\":
true,\"metadata\":
{\"comment\":\"This is the id of the Ride\"}}"

}

In the metadata entry, we see the updated metadata for the column:

"schemaString": "{\"type\":\"struct\",\"flelds\":[
{\"name\":\"RateCodeId\",\"type\":\"integer\",\"nullable\":
true,\"metadata\":

{\"comment\":\"This is the id of the Ride\"}},
{\"name\":\"RateCodeDesc\",\"type\":\"string\",\"nullable\":
true,\"metadata\":{}}1}",

We can also see the column change with the DESCRIBE HISTORY command:

DESCRIBE HISTORY taxidb.TaxiRateCode

Changing Column Ordering

By default, Delta Lake collects statistics on only the first 32 columns. Therefore, if
there is a specific column that we would like to have included in the statistics, we
might want to move that column in the column order. In step 4 of the “03 - Explicit
Schema Updates” notebook, we can see how to use ALTER TABLE and ALTER COLUMN
to change the order of the table. Right now, the table looks as follows:

%sql
DESCRIBE taxidb.TaxiRateCode

o dommmeeaaan e eeeeeeeeieeeiaeaaas +
|col_name | data_type|comment
o dommmeeaaan e eeeeeeeeieeeiaeaaas +
|RateCodeld |int |This is the id of the Ride|
|RateCodeTaxPercent|int | null
|RateCodeDesc |string |  null
o dommmeeaaan e eeeeeeeeieeeiaeaaas +

Let’s assume that we want to move the RateCodeDesc column up so it appears after
the RateCodeId. We can use the ALTER COLUMN syntax:

%sql
ALTER TABLE taxidb.TaxiRateCode ALTER COLUMN RateCodeDesc AFTER RateCodeld
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After executing this statement, the schema will look as follows:

S ELETEEE Fommmma LT R +
|col_name | data_type|comment |
S ELETEEE Fommmma LT R +
|RateCodelId |int |This is the id of the Ride|
|RateCodeDesc |string | null |
|RateCodeTaxPercent|int | null |
S ELETEEE Fommmma LT R +

You can combine column ordering and adding a comment within a single ALTER
COLUMN statement. This operation will preserve all data in the table.

Delta Lake Column Mapping

Column mapping allows Delta Lake tables and the underlying Parquet file columns
to use different names. This enables Delta Lake schema evolution such as RENAME
COLUMN and DROP COLUMN on a Delta Lake table without the need to rewrite the
underlying Parquet files.

At the time of writing, Delta Lake column mapping is in experi-
mental support mode, but this is an important, powerful feature to
discuss that supports many common scenarios. You can find more
information about column mapping at the Delta Lake documenta-
tion website.

Delta Lake supports column mapping for Delta Lake tables, which enables metadata-
only changes to mark columns as deleted or renamed without rewriting data files. It
also allows users to name Delta table columns using characters that are not allowed
by Parquet, such as spaces, so that users can directly ingest CSV or JSON data
into Delta Lake without the need to rename columns due to previous character
constraints.

Column mapping requires the following Delta Lake protocols:

o Reader version 2 or above

o Writer version 5 or above

Once a Delta table has the required protocol versions, you can enable column map-
ping by setting delta.columnmapping.mode to name.

In step 4 of the “03 - Explicit Schema Updates” notebook, we can see that to check the
reader and writer protocol versions of our table, we can use the DESCRIBE EXTENDED
command:
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%sql

DESCRIBE EXTENDED taxidb.TaxiRateCode

B R R e T P +
|col_name |data_type |

We see that the table is not at the protocol version required by column mapping.

We can update both the versions and delta.columnmapping.mode with the following
SQL statement:

%sql
ALTER TABLE taxidb.TaxiRateCode SET TBLPROPERTIES (
'delta.minReaderVersion' = '2',
'delta.minWriterVersion' = '5',
'delta.columnMapping.mode' = 'name'
)

When we look at the corresponding log entry for the SET TBLPROPERTIES statement,
we see quite a few changes.

First, we see a commitInfo action with the SET TBLPROPERTIES entry:
{

"commitInfo": {

"operation": "SET TBLPROPERTIES",
"operationParameters": {
"properties": "{\"delta.minReaderVersion\":\"2\",
\"delta.minWriterVersion\":\"5\",
\"delta.columnMapping.mode\":\"name\"}"

}

Next, we see a protocol action, informing us that the minReader and minWriter
versions have been updated:

{

"protocol": {
"minReaderVersion": 2,
"minWriterVersion": 5

}

}
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And finally, we see a metaData entry with a schemaString. But now, column mapping
has been added to the schemaString:

{
"metaData": {
"schemaString": "{\"type\":\"struct\",\"flelds\":[
{\"name\":\"RateCodeId\",\"type\":\"integer\",\"nullable\":true,
\"metadata\":{\"comment\":\"This is the id of the Ride\",
\"delta.columnMapping.id\":1,\"delta.columnMapping.physicalName\
":\"RateCodeId\"}},
{\"name\":\"RateCodeDesc\",\"type\":\"string\",\"nullable\":true,
\"metadata\":{\"delta.columnMapping.id\":2,
\"delta.columnMapping.physicalName\":\"RateCodeDesc\"}},
{\"name\":\"RateCodeTaxPercent\",\"type\":\"integer\",\"nullable\":
true,
\"metadata\":{\"delta.columnMapping.id\":3,
\"delta.columnMapping.physicalName\":\"RateCodeTaxPercent\"}}1}",
"configuration": {
"delta.columnMapping.mode": "name",
"delta.columnMapping.maxColumnId": "3"
1,
}
}

For each column, you have:

o The name, which is the official Delta Lake column name (e.g., RateCodeId).

o delta.columnMapping.id, which is the ID of the column. This ID will remain
stable.

o delta.columnMapping.physicalName, which is the physical name in the Parquet
file.

Renaming a Column

You can use ALTER TABLE...RENAME COLUMN to rename a column without rewriting
any of the column’ existing data. Note that column mapping needs to be in place for
this to be enabled. Assume we want to rename the RateCodeDesc column to a more
descriptive RateCodeDescription:

%sql

-- Perform our column rename
ALTER TABLE taxidb.taxiratecode RENAME COLUMN RateCodeDesc to RateCodeDescription
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When we look at the corresponding log entry, we see the rename reflected in the
schemaString:

"schemaString": "{\"type\":\"struct\",\"flelds\":[

{\"name\":\"RateCodeDescription\",\"type\":\"string\",\"nullable\"
1true,
\"metadata\":{\"delta.columnMapping.id\":
2,\"delta.columnMapping.physicalName\":\"RateCodeDesc\"}},

We see that the Delta Lake column name has been changed to RateCodeDescription,
but the physicalName is still RateCodeDesc in the Parquet file. This is how Delta Lake
can perform a complex DDL operation, such as RENAME COLUMN, without needing to
rewrite any files, as a simple metadata operation.

Replacing the Table Columns

In Delta Lake, the ALTER TABLE REPLACE COLUMNS command can be used to replace
all the columns of an existing Delta table with a new set of columns. Note that in
order to do this, you need to enable Delta Lake column mapping, as described in the
previous section.

Once column mapping is enabled, we can use the REPLACE COLUMNS command:

%sql

ALTER TABLE taxidb.TaxiRateCode

REPLACE COLUMNS (
Rate_Code_Identifier INT COMMENT 'Identifies the code',
Rate_Code_Description STRING COMMENT 'Describes the code',
Rate_Code_Percentage INT COMMENT 'Tax percentage applied'

)

When we look at the schema, we see the following:

%sql
DESCRIBE EXTENDED taxidb.TaxiRateCode

o eeeaa R L LT T +
|col_name |data_type |
o eeeaa R L LT T +
|Rate_Code_Identifier | int |
|Rate_Code_Description| string |
|Rate_Code_Percentage | int |
| e | .. |
|Table Properties | [delta.columnMapping.maxColumnId=6, |
| | delta.columnMapping.mode=name,

| |delta.minReaderVersion=2,delta.minWriterVersion=5] |
o eeeaa R L LT T +
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In the DESCRIBE output, we can see the new schema, and we can also see the mini-
mum reader and writer versions.

When we look at the corresponding transaction log entry, we see the commitInfo
with the REPLACE COLUMNS operation:

"commitInfo": {

"operation": "REPLACE COLUMNS",
"operationParameters": {

"columns": "[
{\"name\":\"Rate_Code_Identifier\",\"type\":\"integer\",\
"nullable\":true,

\"metadata\":{\"comment\":\"Identifies the code\"}},
{\"name\":\"Rate_Code_Description\",\"type\":\"string\",\
"nullable\":true,

\"metadata\":{\"comment\":\"Describes the code\"}},
{\"name\":\"Rate_Code_Percentage\",\"type\":\"integer\",\
"nullable\":true,

\"metadata\":{\"comment\":\"Tax percentage applied\"}}]"

}

In the metaData section, we see the new schemaString with some interesting infor-
mation. The new Delta Lake columns are now mapped to guide-based column names
with new IDs (starting with 4):

{

"metaData": {

"schemaString": "{\"type\":\"struct\",\"fields\":[
{\"name\":\"Rate_Code_Identifier\",\"type\":\"integer\",
\"nullable\":true,

\"metadata\":{\"comment\":\"Identifies the code\",
\"delta.columnMapping.id\":4,
\"delta.columnMapping.physicalName\":
\"col-72397feb-3cb0-4613-baad-aa78fff64a40\"}},
{\"name\":\"Rate_Code_Description\",\"type\":
\"string\",\"nullable\":true,

\"metadata\":{\"comment\":\"Describes the code\",

\"delta.columnMapping.id\":5,

\"delta.columnMapping.physicalName\":

\"col-67d47d0c-5d25-45d8-8d0e-c9b13f5f2c6e\"}},

{\"name\":\"Rate_Code_Percentage\",\"type\":\"integer\",\"nullable\":true,

\"metadata\":{\"comment\":\"Tax percentage applied\",

\"delta.columnMapping.id\":\"delta.columnMapping.physicalName\":

\"col-3b8f9847-71df-4e64-a921-64c918de328d\"}}1}", ...

"configuration": {

"delta.columnMapping.mode": "name",

"delta.columnMapping.maxColumnId": "6"
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}

When we look at the data, we see all six rows, but all columns are set to null:

B R R R R R +
|Rate_Code_Identifier |Rate_Code _Description|Rate_Code_Percentage|
B R R R R R +
| null | null | null
| null | null | null
| null | null | null
| null | null | null
| null | null | null
| null | null | null
oo mm o e +

The REPLACE COLUMNS operation sets all the column values to null because the new
schema might have different data types or a different order of columns than the
old schema. As a result, the existing data in the table may not fit the new schema.
Therefore, Delta Lake sets the value of all columns to null to ensure that the new
schema is applied consistently to all records in the table.

It's important to note that the REPLACE COLUMNS operation can be a
destructive operation, as it replaces the entire schema of the Delta
table and rewrites the data in the new schema. Therefore, you
should use it with caution and make sure to back up your data
before applying this operation.

Dropping a Column

Delta Lake now supports dropping a column as a metadata-only operation without
rewriting any data files. Note that column mapping must be enabled for this
operation.

It is important to note that dropping a column from metadata does not delete the
underlying data for the column in the files. To purge the dropped column data, you
can use REORG TABLE to rewrite the files. You can then use the VACUUM command to
physically delete the files that contain the dropped column data.

Let’s start with the standard schema in the taxidb.TaxiRateCode table:

root
|-- RateCodeld: integer (nullable = true)
| -- RateCodeDesc: string (nullable = true)
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Let’s assume that we want to drop the RateCodeDesc column. We can use the ALTER
TABLE with the DROP COLUMN SQL command to do this:

%sql

-- Use the ALTER TABLE... DROP COLUMN command

-- to drop the RateCodeDesc column

ALTER TABLE taxidb.TaxiRateCode DROP COLUMN RateCodeDesc

When we use the DESCRIBE command to view the schema, we see that we only have
the RateCodeId column left:

R Fommme Fommme +
|col_name |data_type| comment|
R Fommme Fommme +
|RateCodeld|int | null |
R Fommme Fommme +

When we check the table, we see that our data is still there, minus the dropped
columns:

%sql
-- Select the remaining columns
SELECT * FROM taxidb.TaxiRateCode

dommmmea +
|RateCodeld|
dommmmea +
| 1 I
| 2 |
| 3 I
| 4 |
| 5 I
| 6 |
tommm e +

We see the following sections in the corresponding transaction log entry:

o A commitInfo action that specifies the DROP COLUMNS operation:
{

"commitInfo": {

"operation": "DROP COLUMNS",
"operationParameters": {
"columns": "[\"RateCodeDesc\"]"

1
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o+ A metaData action that specifies the new schema, including the column mapping
in the metadata section:

{

"metaData": {

"schemaString": "{\"type\":\"struct\",\"fields\":

[{\"name\":\"RateCodeId\",\"type\":\"integer\",
\"nullable\":true,
\"metadata\":{\"delta.columnMapping.id\":1,
\"delta.columnMapping.physicalName\":
\"RateCodeId\"}}]1}",

"configuration": {
"delta.columnMapping.mode": "name",
"delta.columnMapping.maxColumnId": "2"

1

}

Note that the RateCodeDesc column has only been “soft deleted” When we looked at
the transaction log entry earlier, what was most remarkable was not what was there,
but what was not there. There were no remove and add actions for a data file, so no
part files were rewritten, and the old part file is still there with both the RateCodeId
and the RateCodeDesc columns.

When we look at the part files, we see our one part file:

%sh

# Display the data file(s)

# You can see you only have our one part file, which was not
# touched at all

1s -al /dbfs/mnt/datalake/book/chapter®7/TaxiRateCode.delta

drwxrwxrwx 2 root root 4096 Apr 6 00:00 _delta_log
-rwxrwxrwx 1 root root 980 Apr 6 00:00 part-00000-...-c000.snappy.parquet

When you download and view the file with a Parquet viewer,' you can see that both
columns are still there (see Table 7-1).

1 For example, Parquet Viewer
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Table 7-1. Viewing the Parquet file after DROP COLUMN

RateCodeld RateCodeDesc

Standard rate
JFK
Newark

Nassau or Westchester
Negotiated fare

AN B~ W N =

Group ride

DROP COLUMN only updates the metadata—it does not add or remove any part files.
When working with large files, having this “soft-deleted” data around can result in
the small file problem. Therefore, in the next section, we will use the REORG TABLE
command to reclaim the space for the deleted column.

The REORG TABLE Command

The REORG TABLE command reorganizes a Delta Lake table by rewriting files to purge
soft-deleted data, which we created in the previous section, where we dropped a
column with the ALTER TABLE DROP COLUMN command.

To reclaim the space occupied by the RateCodeDesc column that we dropped, we can
issue the following command:

%sql

-- Reorganize the table by removing the part file which included

-- the RateCodeDesc column and adding a new part file with just the
-- RateCodeId column

REORG TABLE taxidb.TaxiRateCode APPLY (PURGE)

After running this command, Delta Lake will display the path it used to exe-
cute the command, which in this case is dbfs:/mnt/datalake/book/chapter07/TaxiRate-

Code.delta. 1t will also display the metrics, which contain the number of files added
and removed:
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"numFilesAdded": 1,
"numFilesRemoved": 1,
"filesAdded": {

"min": 665,
"max": 665,
"avg": 665,

"totalFiles": 1,
"totalSize": 665

1,

"filesRemoved": {
"min": 980,
"max": 980,
"avg": 980,
"totalFiles": 1,
"totalSize": 980

1,

"partitionsOptimized": 0,

}

One file was removed (the part file with both columns) and another was added (the
part file with just the RateCodeId column).

When we look at the corresponding transaction log entry, we see the following add
and remove actions:

{
"remove": {
"path": "part-00000-...-c000.snappy.parquet"”,
}
}
{
"add": {
"path": "9g/part-00000-...-c000.snappy.parquet",
"partitionvalues": {3},
"stats": "{\"numRecords\":6,\"minValues\":{\"RateCodeId\":1},
\"maxValues\":{\"RateCodeId\":6},\"nullCount\":{\"RateCodeId\":0}}",
}
}
}

In the remove action, we remove the original Parquet file containing both columns
and add a file in a subdirectory. When we look at that location, we see the Parquet
file
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%sh
# This 1s the new part file, which contains just the RateCodeId column
1s -al /dbfs/mnt/datalake/book/chapter®7/TaxiRateCode.delta/9g

-rwxrwxrwx 1 root root 665 Apr 6 01:45 part-00000-....snappy.parquet

When you download this file and view it, you can see that only the RateCodeId
column is present, as shown in Table 7-2.

Table 7-2. The newly added part file after the REORG TABLE command

RateCodeld

[= NS B e O S

Changing Column Data Type or Name

We can change a column’s data type or name or drop a column by manually rewriting
the table. To do this, we can use the overwriteSchema option. Lets start with the
standard schema:

root
| -- RateCodeld: integer (nullable = true)
| -- RateCodeDesc: string (nullable = true)

Next, change the data type of the RateCodeId column from integer to short. We can
rewrite the table. First, we read the table, use the .withColumn PySpark function to
change the data type of the RateCodelId column, and then write the table back with
the overwriteSchema option set to True:

#
# Rewrite the table with the overwriteSchema setting
# Use .withColumn to change the data type of the RateCodeId column
#
spark.read.table('taxidb.TaxiRateCode")
.withColumn("RateCodeId", col("RateCodeId").cast("short"))
.write
.mode("overwrite")
.option("overwriteSchema", "true")
.saveAsTable('taxidb.TaxiRateCode')

— - -

If we check the schema of the table with DESCRIBE, we see the data type change for the
RateCodeId table:

Explicit Schema Updates | 179



%sql
DESCRIBE taxidb.TaxiRateCode

Fommmmeaea Hommmmmna Hommmmmna +
|col_name |data_type| comment |
Fommmmeaea Hommmmmna Hommmmmna +
|RateCodeId |smallint |null |
|RateCodeDesc|string [null |
B L Fommmmma L +

When we check the transaction log entry for this operation, we see four entries:

1. The commitInfo with the CREATE OR REPLACE TABLE AS SELECT operation:
{

"commitInfo": {...
"operation": "CREATE OR REPLACE TABLE AS SELECT",

}
}
2. The metaData action with the schemaString:
{
"metaData": {

"schemaString": "{\"type\":\"struct\",\"fields\":[
{\"name\":\"RateCodeId\",\"type\":\"short\",\"nullable\":
true,\"metadata\":{}},

{\"name\":\"RateCodeDesc\",\"type\":\"string\",\"nullable\":
true,\"metadata\":{}}1}",
}
}
3. A remove action that removes the old part file from the table:
{
"remove": {
"path": "part-00000-....snappy.parquet",
}
}
4. The add action that adds a part file with our six records:
{
"add": {

"path": "part-00000-....snappy.parquet",
"partitionValues": {3},

"stats": "{\"numRecords\":6,\"minValues\":{\"RateCodeld
\":1,\"RateCodeDesc\":\"Group ride\"},
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\"maxValues\":{\"RateCodeId\":6,\"RateCodeDesc
\":\"Standard Rate\"},
\"nullCount\":{\"RateCodeId\":0,\"RateCodeDesc

\":03}",

}
}

Here we have demonstrated that we can use PySpark to change the data type of a
column, albeit at the cost of completely rewriting the Delta table. The same approach
can be used to drop columns or change column names.

Conclusion

Modern data platforms leveraging ETL for analytics will always be consumers of
data as they ingest data from various data sources. And as organizations continue to
collect, process, and analyze data from a growing number of data sources, the ability
to swiftly handle schema evolution and data validation is a critical aspect of any data
platform. In this chapter you have seen how Delta Lake gives you flexibility to evolve
a table’s schema through dynamic and explicit schema updates, while also enforcing
schema validation.

Using transaction log entries, Delta Lake stores a Delta table’s schema in the metaData
action. This schema, which contains column names and data types, is used to support
schema validation and report schema mismatches on attempted operations. This
schema validation is atomic in nature for operations on Delta tables, which can be
illustrated in transaction log entries, or rather the omission of transaction log entries
for schema violations.

And while you learned that Delta Lake supports schema validation, you also learned
that it supports dynamic schema evolution to add, remove, or modify columns
in existing Delta tables. You can evolve a table’s schema using the mergeSchema
option, or you can explicitly update a schema to add, remove, or rename columns
or data types, while also adding comments or changing the column order (which is
important for data skipping) using SQL or DataFrame syntax. All of these types of
schema operations, including supported conversions for data types, are demonstrated
throughout the chapter along with their corresponding commands (e.g., REPLACE
COLUMNS) and transaction log entries to play these actions out and illustrate these
behaviors.

While schema evolution focuses primarily on changes in batch data operations, the
following chapter will explore the requirements and operations needed for streaming
data using Spark Structured Streaming.
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CHAPTER 8
Operations on Streaming Data

Spark Structured Streaming was first introduced in Apache Spark 2.0. The main goal
of Structured Streaming was to build near-real-time streaming applications on Spark.
Structured Streaming replaced an older, lower-level API called DStreams (Discretized
Streams), which was based upon the old Spark RDD model. Since then, Structured
Streaming has added many optimizations and connectors, including integration with
Delta Lake.

Delta Lake is integrated with Spark Structured Streaming through its two major
operators: readStream and writeStream. Delta tables can be used as both streaming
sources and streaming sinks. Delta Lake overcomes many limitations typically associ-
ated with streaming systems, including:

o Coalescing small files produced by low-latency ingestion

» Maintaining “exactly-once” processing with more than one stream (or concurrent

batch jobs)

o Leveraging the Delta transaction log for efficient discovery of which files are new
when using files for a source stream

We will start this chapter with a quick review of Spark Structured Streaming, followed
by an initial overview of Delta Lake streaming and its unique capabilities. Next, we
will walk through a small “Hello Streaming World!” Delta Lake streaming example.
While limited in scope, this example will provide an opportunity to understand the
details of the Delta Lake streaming programming model in a very simple context.

Incremental processing of data has become a popular ETL model. The AvailableNow
stream triggering mode enables developers to build incremental pipelines without
needing to maintain their own state variables, resulting in simpler and more robust
pipelines.
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You can enable a Change Data Feed (CDF) on a Delta table. Clients can consume this
CDF feed with SQL queries, or they can stream these changes into their application,
enabling use cases such as creating audit trials, streaming analytics, compliance
analysis, etc.

Streaming Overview

Although this chapter is specific to the Delta Lake streaming model, let’s briefly
review the basics of Spark Structured Streaming before delving into the unique
capabilities of Delta Lake Structured Streaming.

Spark Structured Streaming

Spark Structured Streaming is a near-real-time stream processing engine built on
top of Apache Spark. It enables scalable, fault-tolerant, and low-latency processing of
continuous data streams. Spark Streaming provides a high-level API, allowing you
to build end-to-end streaming applications that can read and write data from and to
a variety of sources, such as Kafka, Azure Event Hubs, Amazon S3, Google Cloud
Platform’s Pub/Sub, the Hadoop Distributed File System, and many more.

The core idea behind Structured Streaming is that it allows you to treat a data stream
as a boundless table-like structure that you can query and manipulate by using
SQL-like operations, making it easy to analyze and manipulate the data. One of the
many benefits of Spark Structured Streaming is its ease of use and simplicity. The API
is built on top of the familiar Spark SQL syntax, so you can leverage your existing
knowledge of SQL and DataFrame operations to build streaming applications without
learning a new set of complex APIs.

Additionally, Structured Streaming provides fault-tolerance and reliability by leverag-
ing SparK’s processing engine, which can recover from failures and ensure that each
data point is processed exactly once. This type of fault tolerance makes it ideal for
building mission-critical applications that require low-latency and high-throughput
data processing.

Delta Lake and Structured Streaming

When you leverage Delta Lake with Structured Streaming, you get both the transac-
tional guarantees of Delta Lake and the powerful programming model of Apache
Spark Structured Streaming. With Delta Lake, you can now use Delta tables as both
streaming sources and sinks, enabling a continuous processing model that processes
your data through the Raw, Bronze, Silver, and Gold data lake layers in a streaming
fashion, eliminating the need for batch jobs, resulting in a simplified solution archi-
tecture. In a later part of this chapter, we'll present an example of such a continuous
processing architecture.
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In Chapter 7 we discussed schema enforcement and schema evolution. Streaming
into Delta Lake offers schema enforcement, which ensures that incoming data
streams are validated against the predefined schema, preventing data anomalies from
entering the data lake. However, when changing business requirements introduce
the need to capture additional information, you can leverage Delta Lake’s schema
evolution capabilities to allow the schema to change over time.

Streaming Examples

We will start this section by reviewing a very simple “Hello Streaming World!”
example illustrating the basics of streaming from and to a Delta table.

Hello Streaming World

In this section we will create a simple Delta table streaming scenario and set up a
streaming query that:

» Reads all changes from a source Delta table into a streaming DataFrame. In
the case of Delta Lake tables, “reading the changes” equates to “reading the
transaction log entries,” since they contain the details of all changes to the table.

« Performs some simple processing on the streaming DataFrame.

o Writes the streaming DataFrame to a target Delta table.

The combination of reading a stream from a source and writing the stream to a target
is often referred to as a streaming query, as illustrated in Figure 8-1.

Once we have the streaming query up and running, we will perform a number
of small batch updates on the source table, allowing the data to flow through the
streaming query to the target. During the execution of the query, we will query the
query process log, and study the contents of the checkpoint files, which maintain the
state of our streaming query.

This simple example will allow you to fully understand the basics of the Delta Lake
streaming model before moving on to more complex examples. First, execute the
“Chapter Initialization” notebook for Chapter 8' to create the required Delta tables.
Next, open the “01 - Simple Streaming” notebook.

1 GitHub repo location: /chapter08/00 - Chapter Initialization
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( Transaction log )
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Figure 8-1. Basic streaming example

Here we have a Delta table that contains 10 records of yellow taxi data, all contained
in a single Parquet file:

%sh
1s -al /dbfs/mnt/datalake/book/chapter08/LimitedRecords.delta

drwxrwxrwx 2 root root 4096 Apr 11 19:40 _delta_log
-rwxrwxrwx 1 root root 6198 Apr 12 00:04 part-00000-....snappy.parquet

%sql
SELECT * from delta.'/mnt/datalake/book/chapter08/LimitedRecords.delta’
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Output (only showing relevant portions):

ommmm- ommmmnn LT L B L E TR +
|RideId|VendorlId| PickupTime | DropTime |
ommmm- ommmmnn LT L B L E TR +
|1 [ 1 [2022-03-01T00:00:00.000+0000|2022-03-01T00:15:34.000+0000 |
|2 | 1 |2022-03-01T00:00:00.000+0000|2022-03-01T00:10:56.000+0000 |
E | 1 [2022-03-01T00:00:00.000+0000|2022-03-01T00:11:20.000+0000 |
|4 | 2 |2022-03-01T00:00:00.000+0000|2022-03-01T00:20:01.000+0000 |
|5 | 2 |2022-03-01T00:00:00.000+0000|2022-03-01T00:00:00.000+0000 |
|6 | 2 |2022-03-01T00:00:00.000+0000|2022-03-01T00:00:00.000+0000 |
|7 | 2 |2022-03-01T00:00:00.000+0000|2022-03-01T00:00:00.000+0000 |
|8 | 2 |2022-03-01T00:00:00.000+0000|2022-03-01T00:00:00.000+0000 |
19 | 2 |2022-03-01T00:00:00.000+0000|2022-03-01T00:00:00.000+0000 |
110 | 2 |2022-03-01T00:00:01.000+0000|2022-03-01T00:11:15.000+0000 |
E R tommme- R R B T +

Creating the streaming query

First, we are going to create our first simple streaming query. We start by reading a
stream from the source table, as follows:

# Start streaming from our source "LimitedRecords" table
# Notice that instead of a "read", we now use a "readStream",
# for the rest our statement is just like any other spark Delta read

stream_df = \
spark \
.readStream \

.format("delta") \

.load("/mnt/datalake/book/chapter08/LimitedRecords.delta")

The readStreanm is just like any other standard Delta table read except for the Stream
suffix. We get back a streaming DataFrame in stream_df.

A streaming DataFrame is very similar to a standard Spark Data-
Frame, so you can use the Spark API with all the methods you
already know. However, there are a few differences that you need to
be aware of. First, a streaming DataFrame is a continuous, unboun-

ded sequence of data where each piece of data is treated as a new
row in the DataFrame. Since a streaming DataFrame is unbounded,
you cannot perform a count() or a sort() operation on it.

Next, we perform some manipulations on our DataFrame. We add a timestamp, so
we know when we read each record from our source table. We also don’t need all
columns in the source DataFrame, so we select the columns that we need:

# Add a "RecordStreamTime" column with the timestamp at which we read the

# record from stream

stream_df = stream_df.withColumn("RecordStreamTime", current_timestamp())
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# This 1s the list of columns that we want from our streaming

# DataFrame

select_columns = [
'RideId', 'VendorId', 'PickupTime', 'DropTime’,
'PickupLocationId', 'DropLocationId', 'PassengerCount',
'TripDistance', 'TotalAmount', 'RecordStreamTime'

1

# Select the columns we need. Note that we can manipulate our stream
# just like any other DataStream, although some operations like

# count() are NOT supported, since this is an unbounded DataFrame
stream_df = stream_df.select(select_columns)

Finally, we write the DataFrame to an output table:

# Define the output location and the checkpoint location
target_location = "/mnt/datalake/book/chapter08/StreamingTarget"
target_checkpoint_location = f"{target_location}/_checkpoint"

# Write the stream to the output location, maintain
# state in the checkpoint location
streamQuery = \
stream_df \
.writeStream \
.format("delta") \
.option("checkpointLocation", target_checkpoint_location) \
.start(target_location)

First, we define a target, or output location, where we want to write the stream. In
the option, we define a checkpoint file location. This checkpoint file will maintain the
metadata and state of the streaming query. The checkpoint file is necessary to ensure
fault tolerance and enable the query’s recovery in case of failure. Among many other
pieces of information, it will maintain which transaction log entries of the streaming
source were already processed, so it can identify the new entries that have not yet
been processed.

Finally, we invoke the start method with the target location. Notice that we are using
the same base directory for both the output and the checkpoint file. We just append
the underscore (_checkpoint) for the checkpoint subdirectory.

Since we have not specified a trigger, the streaming query will continue to run, so it
will execute, check for new records, process them, and then immediately check for
the next set of records. In the following sections, you will see that you can change this
behavior with a trigger.

The query process log

When we start the streaming query we see the stream initializing, and a query
progress log (QPL) is displayed. The QPL is a JSON log generated by every single
micro-batch, and provides execution details on the micro-batch. It is used to display
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a small streaming dashboard in the notebook cell. The dashboard provides various
metrics, statistics, and insights about the stream application’s performance, through-
put, and latency. When you expand the stream display, you see a dashboard with two

tabs (Figure 8-2).

Dashboard Raw Data

Input vs. Processing Rate
records per second

0 rec/s 0 rec/s
Input rate Processing rate

T T
U851 U831 (013561

T T
U831 U832

Aug 15
Command complete
Dashboard = Raw Data
s |

{

"name" : null,

"batchId" : 1,

"numInputRows" : 0,

"inputRowsPerSecond" : 0.0,

"processedRowsPerSecond" : 0.0,

"durationMs" : {
"latestOffset" : 14,

"triggerExecution" : 14

Command complete

"id" : "450bc809-6cac-4eaf-8f69-752faf03c32e",
"runId" : "15637c02-e947-4ad2-b43d-98d28aabec71l",

"timestamp" : "2023-08-15T15:32:17.500Z",

Figure 8-2. The query progress log display
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The first tab contains the dashboard, where some of the key metrics from the QPL are
displayed graphically. The raw metrics are displayed in the Raw Data tab.

A portion of the raw data of the query process log is shown here:

{

"{d" : "c5eaca75-cf4d-410f-b34c-9a2128ee1944",
"runId" : "508283a5-9758-4cf9-8ab5-3ee71a465b67",
"name" : null,
"timestamp" : "2023-05-30T16:31:48.500Z",
"batchId" : 1,
"numInputRows" : 0,
"inputRowsPerSecond" : 0.0,
"processedRowsPerSecond" : 0.0,
"durationMs" : {

"latestOffset" : 14,

"triggerExecution" : 15

1

A key metric in the QPL is the stream unique id, the first entry in the log. This
ID uniquely identifies the stream and maps back to the checkpoint directory, as you

will see later. The stream unique id is also displayed above the streaming dashboard
header.

The query log also contains the batchId, which is the micro-batch ID. For every
stream, this ID will start with zero and increment by one for every processed micro-
batch. The numInputRows field represents the number of rows that were ingested in
the current micro-batch.

The next set of important metrics in the QPL are the Delta source and sink metrics:
o The sources startOffset and endOffset indicate where each batch started and
ended. These include the following subfields:

— The reservoirVersion is the version of the Delta table on which the current
micro-batch is operating.

— The index is used to keep track of which part file to start processing from.

— The isStartingVersion boolean field is set to true if the reservoirVersion
is set to the version of the Delta table at which the current stream was started.

o The sink field contains the location of the streaming sink.

When we look at the source and sink metrics for micro-batch 1, we see the following:

"sources" : [ {
"description" : "DeltaSource[dbfs:/mnt/.../LimitedRecords.delta]",
"startOffset" : {
"sourceVersion" : 1,
"reservoirId" : "6c25c8cd-88c1-4b74-9c96-a61c1727c3a2",
"reservoirVersion" : 0,
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"index" : 0,
"{sStartingVersion" : true
}s
"endOffset" : {
"sourceVersion" : 1,
"reservoirId" : "6c25c8cd-88c1-4b74-9c96-a61c1727c3a2",
"reservoirVersion" : 0,
"index" : 0,
"{sStartingVersion" : true
1,
"latestOffset" : null,
"numInputRows" : 0,
"inputRowsPerSecond" : 0.0,
"processedRowsPerSecond" : 0.0,
"metrics" : {
"numBytesOutstanding" : "0",
"numFilesOutstanding" : "0"
}
11
"sink" : {
"description" : "DeltaSink[/mnt/datalake/book/chapter08/StreamingTarget]",
"numOutputRows" : -1

}

Notice numInputRows is 0. This might look a bit surprising, since we know that our
source table had 10 rows in it. However, when we started the .writeStream, the
streaming query started running and immediately processed the first 10 rows as part
of batch 0. We can also see that our batchId is currently 1, and since batchIds start
with 0, the first batch was already processed.

We can also see that the reservoirVersion is still 0 since this batch has not yet run,
as no new records were processed. So, we are still at version 0 of our source table. We
also see that the index is at 0, which means that we are processing the first data file,
and we are indeed at the start version. We can verify this by displaying the version of
the source table:

%sql
DESCRIBE HISTORY delta. ' /mnt/datalake/book/chapter08/LimitedRecords.delta’

Output (only showing relevant portions):

Fo-m-m-- B R R +
|version| timestamp|
Fo-m-m-- B R R +
|10 12023-05-30T16:25:23.000+0000 |
Fo-m-m-- B R R +

Here you can see that we are indeed at version 0 at this time. We can also verify this
by querying our output streaming table:

%sql
SELECT count(*) FROM delta.'/mnt/datalake/book/chapter08/StreamingTarget"
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We can see that we indeed have 10 rows:

ommmmna +
|count(1)]
ommmmna +
| 10 |
ommmmna +

Because we started the writeStream with .start, and without any indication of
how often the query should run, it is running constantly. When the writeStream
completes, it performs the next readStream, and so on. However, since no new rows
are being produced in the source table, nothing really happens, and our output
record count remains at 10. The batchId will not change until it picks up rows from
the stream, so it remains at 1.

Next, we execute the following SQL statement that inserts 10 new records in the
source table:

%sql
-- Use this query to insert 10 random records from the
-- allYellowTaxis table into the limitedYellowTaxis table
INSERT INTO
taxidb.limitedYellowTaxis
SELECT
*
FROM
taxidb.allYellowTaxis
ORDER BY rand()
LIMIT 10

If we uncomment and run this query, the batchId is now set at 1, and we see the 10
new rows:

{
"{d" : "c5eaca75-cf4d-410f-b34c-9a2128ee1944",
"runId" : "508283a5-9758-4cf9-8ab5-3ee71a465b67",
"name" : null,
"timestamp" : "2023-05-30T16:46:08.500Z",
"batchId" : 1,
"numInputRows" : 10,
"{inputRowsPerSecond" : 20.04008016032064,

Once this batchId is processed, the record count for batchId 2 will be back to 0,
since no new rows are arriving from the stream.

Remember, the streaming query will keep running forever, looking for new transac-
tion entries in the source table and writing the corresponding rows to the streaming
target. Typically, Spark Structured Streaming is running as a micro-batch-based
streaming service. It will read a batch of records from the source, process the records
and write them to the target, and immediately afterward it will start the next batch
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looking for new records (or, in the case of Delta Lake, looking for new transaction
entries).

This model, where we are doing batch updates to the source table, would not be
economical in a real-world application. The source table is only periodically updated,
but since our streaming query runs constantly, we have to keep its cluster running
all the time, which runs up costs. Later in this chapter we will modify the streaming
query to better fit our use case, but first, let’s take a brief look at the checkpoint file.

The checkpoint file

Earlier, we saw that the checkpoint file will maintain the metadata and state of our
streaming query. The checkpoint file is in the _checkpoint subdirectory:

%sh
1s -al /dbfs/mnt/datalake/book/chapter08/StreamingTarget/_checkpoint/

drwxrwxrwx 2 root root 4096 May 1 23:37 __tmp_path_dir
drwxrwxrwx 2 root root 4096 May 1 23:37 commits
-rwxrwxrwx 1 root root 45 May 2 15:48 metadata
drwxrwxrwx 2 root root 4096 May 1 23:37 offsets

We have one file (metadata), and two directories (offsets and commits). Let’s take a
look at each one. The metadata file simply contains the stream identifier in JSON
format:

%sh
head /dbfs/mnt/datalake/book/chapter08/StreamingTarget/_checkpoint/metadata
"1d":"c5eaca75-cf4d-410f-b34c-9a2128ee1944"}

When we look at the offsets directory, you see two files, one for each batchId:

%sh
1s -al /dbfs/mnt/datalake/book/chapter08/StreamingTarget/_checkpoint/offsets

-rwxrwxrwx 1 root root 769 May 30 16:28 0
-rwxrwxrwx 1 root root 771 May 30 16:46 1

When we look at the contents of file 0, we see the following:

vl
{

"batchWatermarkMs": 0,

"batchTimestampMs": 1685464087937,

"conf": {
"spark.sql.streaming.stateStore.providerClass":
"org.apache.spark.sql.execution.streaming
.state.HDFSBackedStateStoreProvider",
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"sourceVersion": 1,

"reservoirId": "6c25c8cd-88c1-4b74-9c96-a61c1727c3a2",
"reservoirVersion": 0,

"index": 0,

"{sStartingVersion": true

}
The first section contains the Spark streaming configuration variables. The second
section contains the same reservoirVersion, index, and isStartingVersion we saw
in the QPL earlier. What is logged here is the state before the batch was executed,
so we are at version zero, the file index is zero, and the isStartingVersion variable
indicates that we are at the starting version.

When we look at file 1, we see the following:

vl
{

"batchWatermarkMs": 0,

"batchTimestampMs": 1685465168696,

"conf": {
"spark.sql.streaming.stateStore.providerClass":
"org.apache.spark.sql.execution.streaming.state.
HDFSBackedStateStoreProvider",

}

}
{

"sourceVersion": 1,

"reservoirId": "6c25c8cd-88c1-4b74-9c96-a61c1727c3a2",

"reservoirVersion": 2,

"index": -1,

"{sStartingVersion": false

}

In this batch, the 10 additional records were processed, and the next possible version
that will be processed is 2, which is reflected in the reservoirVersion. Also, notice
that the index is set to -1, which indicates that there are no additional files to be
processed for the current version.

The commits folder contains one file per micro-batch. In our case, we will have two
commits, one for each batch:

drwxrwxrw

-rwxrwxrwx 1 root root 29 Jun 9 15:55 0

-rwxrwxrwx 1 root root 29 Jun 9 16:15 1
Each file represents the successful completion of the micro-batch. It simply contains a
watermark:

%sh
head /dbfs/mnt/datalake/book/chapter08/StreamingTarget/_checkpoint/commits/0
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This produces:
vl {"nextBatchWatermarkMs":0}

In this section, we had our first look at Delta streaming. We looked at a simple
example, with a Delta table as both the source and the sink of the streaming query.
In the following sections, we will look at how we can leverage Delta streaming in an
incremental processing model.

AvailableNow Streaming

Spark Structured Streaming provides a number of possible trigger modes. The
AvailableNow trigger option consumes all available records as an incremental batch
with the ability to configure batch sizes with options such as maxBytesPerTrigger.

First, we need to cancel our currently running streaming query in the “02 - Simple
Streaming” notebook by navigating to the streaming dashboard and clicking the
cancel link. We can then confirm the cancellation and stop the streaming query.

Since the source table is only periodically updated, we dont want the streaming
query to run continuously. Instead, we want to start the query, pick up the new
transaction entries, process the corresponding records, write to the sink, and then
stop. This is what the following trigger will allow us to do. If we add the code .trig
ger(availableNow=True) to the streaming query, the query will run once and then
stop, as shown in notebook “02 - AvailableNow Streaming”:

# Write the stream to the output location, maintain
# state in the checkpoint location
streamQuery =
stream_df
.writeStream
.format("delta")
.option("checkpointLocation", target_checkpoint_location)
.trigger(availableNow=True)
.start(target_location)

P

When we run this notebook, the streaming query will run until no new records are
found, but since no new records have been added to the source table, no records are
found, and no records are written to the target table. We can verify this by looking at
the raw data of the writeStream:

{
"1d" : "c5eaca75-cf4d-410f-b34c-9a2128ee1944",

"numInputRows" : 0,

If we now run the SQL query below the writeStream in the notebook, we will add 10
records to the source table. If we then rerun the streaming query, we will again see the
10 new rows:
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"id" : "cS5eaca75-cf4d-410f-b34c-9a2128ee1944",
"runId" : "36a31550-c2c1-48b0-9a6f-ce112572f59d",
"name" : null,
"timestamp" : "2023-05-30T17:48:12.079Z",
"batchId" : 2,
"numInputRows" : 10,
"sources" : [ {
"description" : "DeltaSource[dbfs:/mnt/.../LimitedRecords.delta]",
"startOffset" : {
"sourceVersion" : 1,
"reservoirId" : "6c25c8cd-88c1-4b74-9c96-a61c1727c3a2",
"reservoirVersion" : 3,
"index" : -1,
"{sStartingVersion" : false

In the output, we also see the sources section, with the reservoirVersion variable,
which is currently set to 3. Remember that the reservoirVersion represents the next
possible version ID in this case. If we do a DESCRIBE HISTORY of our table, we can see
that we are at version 2, so the next version would be 3:

%sql
describe history delta.'/mnt/datalake/book/chapter@8/LimitedRecords.delta’

Output (only version column shown):

to-mmmm - +
|version|
to-mmmm - +
| 2 |
| 1 I
| o |
to-mmmm - +

In the next query, we add 20 more records to the source table. If we then rerun our
streaming query and look at the raw data, we see the 20 new records, and also see that
the reservoirVersion of the startOffset is now set at 3:

{
"{d" : "d89a5c02-052b-436c-a372-2445fb8d88d6",
"numInputRows" : 20,
"sources" : [ {
"description" : "DeltaSource[dbfs:/mnt/.../LimitedRecords.delta]",
"startOffset" : {
"sourceVersion" : 1,
"reservoirId" : "31611029-07d1-4bcc-8ee3-cad0d4fa8bc4",
"reservoirVersion" : 3,
1,
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This AvailableNow model means that we could now run the streaming query as
shown in the “02 - AvailableNow Streaming” notebook just once a day, or once an
hour, or in whatever time interval the use case demands. Delta Lake will always pick
up all changes that happened to the source table since the last run, thanks to the state
saved in the checkpoint file.

With legacy solutions, this type of incremental processing was very
complex. As an ETL developer, you had to maintain the date of
the last run and then query from a dedicated date of the source
data to discover the new rows, etc. AvailableNow streaming greatly
simplifies this programming model, since it abstracts out all of this
complex logic.

In addition to the AvailableNow trigger, there is also a RunOnce trigger, which
behaves very similarly. Both triggers will process all available data. However, the
RunOnce trigger will consume all records in a single batch, while the AvailableNow
trigger will process the data in multiple batches when appropriate, typically resulting
in better scalability.

When you want to consume all available data with a streaming
query, use the AvailableNow trigger, since it provides better scala-
bility by executing multiple batches when needed.

Updating the Source Records

Next, let’s take a look at what happens when we run an update like the following
statement:

%sql
-- Update query to demonstrate streaming update
-- behavior
UPDATE
taxidb.limitedyellowtaxis

SET

PickupLocationId = 100
WHERE

VendorId = 2

When we look at the commitInfo action for the corresponding transaction log entry,
we see the following:

"commitInfo": {

"operation": "UPDATE",
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1,
"notebook": {
"notebookId": "3478336043398159"

1,
"operationMetrics": {
"numCopiedRows": "23",

"numUpdatedRows": "27",

}

We can see that 23 rows were copied to new data files and 27 rows were updated, for a
total of 50 rows.

So, if we run our query again, we should see exactly 50 rows in our batch. When we
run the “02 - AvailableNow Streaming” notebook again, we will see 50 rows:

{

"batchId" : 4,
"numInputRows" : 50,

If we go back and run the streaming query again, we will notice the following error:

Stream stopped...
com.databricks.sql.transaction.tahoe.DeltaUnsupportedOperationException:
Detected a data update (for example part-00000-....snappy.parquet) in the source
table at version 3. This is currently not supported. If you'd like to ignore
updates, set the option 'ignoreChanges' to 'true'. If you would like the data
update to be reflected, please restart this query with a fresh checkpoint
directory. The source table can be found at path
dbfs:/mnt/.../LimitedRecords.delta.

Here, Delta Lake is informing us that data updates in the stream are not currently
supported. If we know that we really only want new records, and not changes, we can
add the .option("ignoreChanges", "True") option to the readStream:

# Start streaming from our source "LimitedRecords" table
# Notice that instead of a "read", we now use a "readStream",
# for the rest our statement is just like any other spark Delta read

# Uncomment the ignoreChanges option when you want to receive only
# new records, and no updated records
stream_df = \
spark \
.readStream \
.option("ignoreChanges", True) \
.format("delta") \
.load("/mnt/datalake/book/chapter08/LimitedRecords.delta")
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If we now rerun the streaming query, it will succeed. However, when we look at the
raw data, we still see all 50 input rows, which looks wrong:

{
"1d" : "d89a5c02-052b-436c-a372-2445fb8d88d6",
"runId" : "b1304246-4083-4275-8637-1f99768b8e03",
"name" : null,
"timestamp" : "2023-04-13T717:28:31.380Z",
"batchId" : 3,
"numInputRows" : 50,
"{inputRowsPerSecond" : 0.0

This behavior is normal. The ignoreChanges option will still emit all rewritten files
in the Delta table to the stream. This is typically the superset of all changed records.
However, only the inserted records will actually be processed.

The StreamingQuery class
Let’s look at the type of the streamQuery variable:

# Let's take a look at the type
# of the streamQuery variable
print(type(streamQuery))

Output:
<class 'pyspark.sql.streaming.query.StreamingQuery'>

We can see that the type is StreamingQuery. If we invoke the status property of our
streamQuery, we get the following:

# Print out the status of the last StreamingQuery
print(streamQuery.status)

Output:
{'message': 'Stopped', 'isDataAvailable': False, 'isTriggerActive': False}

The query is currently stopped and there is no data available. No trigger is active.
Another interesting property is recentProgress, which will print out the same out-
put as the raw data section from our streaming output in the notebook. For example,
if we want to see the number of input rows, we can print the following:

print(streamQuery.recentProgress[0]["numInputRows"])
Output:
50

This object also has some interesting methods. For example, if we want to wait until
the stream terminates, we can use the awaitTermination() method.
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Reprocessing all or part of the source records

As we have been processing a number of batches from the source table, the check-
point file has systematically been building up all of these changes. If we delete
the checkpoint file and run the streaming query again, it will start from the very
beginning of the source table and bring in all records:

%sh
# Uncomment this line if you want to reset the checkpoint
rm -r /dbfs/mnt/datalake/book/chapter08/StreamingTarget/_checkpoint

Output of the streaming query:
{

"numInputRows" : 50,

"stateOperators" : [ 1,

"sources" : [ {
"description" : "DeltaSource[dbfs:/mnt/.../LimitedRecords.delta]",
"startOffset" : null,
"endOffset" : {

"reservoirVersion" : 5,

1,
"latestOffset" : null,
"numInputRows" : 50,

We read all rows in the source table. We started at offset null and ended at reservoir
Version 5.

We can also just stream in part of the changes. To do this, we can specify a starting
Version in the readStream after we clear out the checkpoint again:

stream_df =
spark
.readStream
.option("ignoreChanges", True)
.option("startingVersion", 3)
.format("delta")
.load("/mnt/datalake/book/chapter08/LimitedRecords.delta")

— - - -

When we look at the raw data, we get the following result:
{
"batchId" : 0,

"numInputRows" : 70,
"{nputRowAnd" : 0.0,

"stateOperators" : [ ],
"sources" : [ {
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"startOffset" : null,
"endOffset" : {
"sourceVersion" : 1,
"reservoirId" : "32c71d93-ca81-4d6e-9928-c1a095183016",
"reservoirVersion" : 6,
"index" : -1,
"{sStartingVersion" : false

3

We get 70 rows. That is incorrect because we started from version 3. Let’s take a look
at Table 8-1, which summarizes the versions and operations we’ve worked with so far.

Table 8-1. Record counts for each version

Version Number of rows affected From operation

5 50 Update
4 10 Insert
3 10 Insert
Total 70

This validates the total number of input rows for the streaming query. Setting the
startingVersion gives us many options when we combine it with the DESCRIBE
HISTORY command. We can look at the history and decide from what point in time we
would like to load the data.

Reading a Stream from the Change Data Feed

In Chapter 6, you read about how Delta Lake records “change events” for all the data
written into the table via the CDF. These changes can be transmitted to downstream
consumers. These downstream consumers can read the change events captured and
transmitted in the CDF using streaming queries with . readStream().

To get the changes from the CDF while reading a table with CDF enabled, set the
option readChangeFeed to true. Setting readChangeFeed to true in conjunction
with .readStream() will allow us to efficiently stream changes from a source table to
a downstream target table. We can also use startingVersion or startingTimestamp
to specify the starting point of the Delta table streaming source without processing
the entire table:

# Read CDF stream with readChangeFeed since version 5

spark.readStream \
.format("delta") \
.option("readChangeFeed", "true") \
.option("startingVersion", 5) \

.table("<delta_table_name>")

# Read CDF stream since starting timestamp 2023-01-01 00:00:00
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spark.readStream \

.format("delta") \
.option("readChangeFeed", "true") \
.option("startingTimestamp", "2023-01-01 00:00:00") \

.table("<delta_table_name>")

Using .option("readChangeFeed", "true") will return table changes with the CDF
schema that provides the _change_type, _commit_timestamp, and _commit_version
that the readStream will consume. Here is an example of the CDF data (this is from
Chapter 6):

R B LR B R R +
| VendorId | PassengerCount | FareAmount | _change_type | _commit_version |
R B LR B R R +
| 1 | 1000 | 2000 | update_preimage | 2 [
R B LR B R Fmmmm e +
| 1 | 1000 | 2500 | update_postimage | 2 [
R B LR B R Fmmmm e +
| 3 | 7000 | 10000 | delete | 3 [
R B LR B R Fmmmm e +
| 4 | 500 | 1000 | insert | 4 [
R B LR B R Fmmmm e +

The previous code snippets for reading the change feed specified the
startingVersion or startingTimestamp. It's important to note that these methods
are optional, and if not provided, the stream fetches the latest snapshot of the table at
the time of streaming as an INSERT and future changes as change data.

While initiating the streaming source from a specified version or
timestamp is possible, the schema associated with the streaming
source reflects the most recent schema of the Delta table. It's impor-

. tant to ensure there are no incompatible schema changes to the
Delta table following the specified version or timestamp. Failing
to do so could result in inaccurate outcomes when the streaming
source retrieves data with a schema that doesn't match.

When reading change data, there are other options that we can specify, specifically
around data changes and rate limits (how much data is processed in each micro-
batch). Table 8-2 highlights additional, important options for use in streaming quer-
ies when using Delta tables as a stream source.
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Table 8-2. Additional streaming options

Option Definition

maxFilesPer Controls how many new files are considered in every micro-batch. The default is 1,000.

Trigger

maxBytesPer Controls how much data gets processed in each micro-batch. If you use Trigger .Once, this option
Trigger is ignored. This option is not set by default.

ignoreDeletes Ignores transactions that delete data at partition boundaries.

ignoreChanges  Reprocesses updates if files had to be rewritten in the source table due to a data changing operation
such as UPDATE, MERGE INTO, DELETE (within partitions), or OVERWRITE. ignoreChanges
also incorporates ignoreDeletes.

Rate limit options can be useful for better control of overall resource management
and utilization. For example, we may want to avoid potentially overloading process-
ing resources (e.g., our cluster) when there is an influx of new data files or a large
volume of data to process. Controlling rate limits can help achieve a more balanced
processing experience by controlling micro-batch size. If we want to effectively con-
trol rate limits, while also ignoring deletes to avoid disrupting the existing streaming
query, we can specify these options in the streaming query:

# Read CDF stream with readChangeFeed and don’t specify the
# starting timestamp or version. Specify rate limits and ignore deletes.

spark.readStream \

.format("delta") \
.option("maxFilesPerTrigger", 50) \
.option("maxBytesPerTrigger", "10MB") \
.option("ignoreDeletes", "true") \

.option("readChangeFeed", "true") \

.table("delta_table_name")

In this example, we are setting rate limit options, ignoring deletes, and omitting the
starting timestamp and version options. This will read the latest version of the table
(since no version or timestamp is specified) and give us better control over the size
of micro-batches and processing resources to reduce potential interruptions to the
streaming query.
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Conclusion

One of Delta Lake’s key features is the unification of batch and streaming data into a
single table. This chapter dove into the particulars and examples of how Delta Lake
is fully integrated with Structured Streaming, and how Delta tables support scalable,
fault-tolerant, and low-latency processing of continuous data streams.

Integrated with Structured Streaming through readStream and writeStream, Delta
tables can be used as both streaming sources and targets, and leverage streaming
DataFrames. The examples in this chapter walked through reading changes into these
streaming DataFrames and how to perform simple processing to write streams to a
target. Then we explored checkpoint files and metadata, the query process log, and
the streaming class to better understand how streaming works and keeps track of
information under the hood. And finally, you learned how to leverage the CDF with
readStream to transmit and read row-level changes in streaming queries.

Having unified both batch and streaming data into a single Delta table, Chapter 9 will
dive into how to securely share this data with other organizations.
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CHAPTER9
Delta Sharing

The data-centric nature of today’s economy necessitates extensive data exchange
among organizations and their customers, suppliers, and partners. While efficiency
and immediate accessibility are crucial, they often clash with security concerns.
Organizations require an open and secure approach to data sharing to thrive in the
digital economy.

Often data sharing is required internally within an organization. Organizations have
geographically dispersed locations with local cloud solutions. These companies often
seek to implement a data mesh architecture, where ownership is decentralized and
data management is distributed and federated. Efficient and secure data sharing is a
critical enabler to efficiently share data products across the organization.

The different business groups across an enterprise need access to data to make
critical business decisions. Data teams want to integrate their solutions to create a
comprehensive enterprise view of the business.

Conventional Methods of Data Sharing

In the past, sharing data across various platforms, companies, and clouds has always
presented a complex challenge. Organizations were reluctant to share data due to
concerns about security risks, competition, and the considerable costs associated with
implementing data-sharing solutions.

Conventional data-sharing technologies face difficulties in meeting the demands of
modern requirements, such as compatibility with multiple cloud environments, and
support for open formats, while still delivering the required performance. Many data-
sharing solutions are tied to a specific vendor, creating problems for data providers
and consumers operating on incompatible platforms.
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Data-sharing solutions have been developed in three formats: legacy and homegrown
(custom-built) solutions, modern cloud object storage, and proprietary commercial
solutions. Each of these approaches has its pros and cons.

Legacy and Homegrown Solutions

Organizations have built homegrown systems to implement data-sharing solutions
based on legacy technology like email, SFTP, or custom APIs, as shown in Figure 9-1.

( Provider )
—
[ e |
Table1 i ?
) —
=S
T FTP/SSH/
ETL APl server
Table 2
|
Batch data from provider
[ Consumer )

FFP/ SSH/ ’E Run
AP| server Database Analyst analysis

Figure 9-1. Homegrown solutions to data sharing

Advantages of these solutions:

Vendor agnostic
FTP, email, and APIs are well-documented protocols, enabling data consumers to
utilize a variety of clients to access the data provided to them.

Flexibility
Many custom-built solutions are based on open source technologies, allowing
them to function both on premises and in cloud environments.
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Disadvantages of these solutions:

Data movement
Extracting data from cloud storage, transforming it, and hosting it on an FTP
server for different recipients requires significant effort. This approach also leads
to data duplication, hindering organizations from instantly accessing real-time
data.

Complexity of data sharing
Custom-built solutions often involve complex architectures due to replication
and provisioning. This complexity adds substantial time to data-sharing activities
and can result in outdated data for end consumers.

Operational overhead for data recipients
Data recipients need to perform data extraction, transformation, and loading
(ETL) for their specific use cases, further delaying the time to gain insights.
Whenever providers update the data, consumers must rerun the ETL pipelines
repeatedly.

Security and governance
As modern data requirements become more stringent, securing and governing
homegrown and legacy technologies becomes increasingly challenging.

Scalability
Managing and maintaining such solutions is costly, and they lack the scalability
to accommodate large datasets.

Proprietary Vendor Solutions

Commercial data-sharing solutions are widely chosen by companies seeking alterna-
tives to building in-house solutions. These solutions provide a balance between not
wanting to allocate extensive time and resources to developing a proprietary solution,
and desiring greater control than what cloud object storage can provide, as shown in
Figure 9-2.
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Figure 9-2. Proprietary vendor data-sharing solutions

Advantages of this solution:

Simplicity
Commercial solutions offer an easy way for users to share data with others on the
same platform.

Disadvantages of this solution:

Vendor lock-in
Commercial solutions often lack interoperability with other platforms, making it
difficult to share data with users of competing solutions. This limitation reduces
the accessibility of data and results in vendor lock-in. Additionally, platform
disparities between data providers and recipients introduce complexities in data
sharing.

Data movement
Data needs to be loaded onto a specific platform, which involves additional steps,
such as ETL and creating copies of the data.

Scalability
Commercial data-sharing solutions may have limitations on scaling imposed by
the vendors.

Cost
The aforementioned challenges contribute to additional costs for sharing data
with potential customers, as data providers need to replicate data for different
recipients across various cloud platforms.
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Cloud Object Storage

Object storage is highly regarded as a well-suited solution for cloud environments
due to its elastic nature and seamless scalability, allowing it to handle vast amounts
of data and effortlessly accommodate unlimited growth. Leading cloud providers,
such as Amazon S3, Azure Data Lake Storage (ADLS), and Google Cloud Storage
(GCS), offer cost-effective object storage services and deliver exceptional scalability
and reliability.

One noteworthy feature of cloud object storage is the capability to generate signed
URLs. These URLs provide time-limited permissions for downloading specific
objects. By sharing a pre-signed URL, anyone possessing it can conveniently access
the designated objects, facilitating efficient data sharing.

Advantages of this solution:

Sharing data in place
Object storage can be shared in place, allowing consumers access to the latest
available data.

Scalability
Cloud object storage profits from availability and durability guarantees that
typically cannot be achieved on premises. Data consumers retrieve data directly
from the cloud providers, saving bandwidth for the providers.

Disadvantages of this solution:

Limited to a single cloud provider
Recipients have to be on the same cloud to access the objects.

Cumbersome security and governance
There is complexity associated with assigning permissions and managing access.
Custom application logic is needed to generate signed URLSs.

Complexity
Personas managing data sharing (database administrators, analysts) find it diffi-
cult to understand identity and access management policies and how data is
mapped to underlying files. For companies with large volumes of data, sharing
via cloud storage is time-consuming, cumbersome, and nearly impossible to
scale.

Operational overhead for data recipients
The data recipients must ETL pipelines on the raw files before consuming them
for their end use cases.
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The lack of a comprehensive solution creates a struggle for data providers and con-
sumers to share data easily. Cumbersome and incomplete data sharing also constrains
the development of business opportunities from shared data.

Open Source Delta Sharing

Unlike proprietary solutions, open source data sharing is not associated with a
vendor-specific technology that introduces unnecessary limitations and financial
burdens. Open source Delta Sharing is readily available to anyone who needs to share
data at scale.

Delta Sharing Goals
Delta Sharing is an open source protocol designed with the following objectives:

Open cross-platform data sharing
Delta Sharing provides an open source, cross-platform solution that avoids ven-
dor lock-in. It allows data sharing in Delta Lake and Apache Parquet formats
with any platform, whether on premises or another cloud.

Share live data without data movement
Data recipients can directly connect to Delta Sharing without replicating the
data. This feature enables the easy and real-time sharing of existing data without
unnecessary data duplication or movement.

Support a wide range of clients
Delta Sharing supports a diverse range of clients, including popular tools like
Power BI, Tableau, Apache Spark, pandas, and Java. It offers flexibility for con-
suming data using the tools of choice for various use cases, such as business
intelligence, machine learning, and AL Implementing a Delta Sharing connector
is quick and straightforward.

Centralized governance
Delta Sharing provides robust security, auditing, and governance capabilities.
Data providers have granular control over data access, allowing them to share
an entire table or specific versions or partitions of a table. Access to shared data
is managed and audited from a single enforcement point, ensuring centralized
control and compliance.

Scalability for massive datasets
Delta Sharing is designed to handle massive structured datasets, and supports
sharing unstructured data and future data derivatives such as machine learning
models, dashboards, notebooks, and tabular data. Delta Sharing enables the
economical and reliable sharing of large-scale datasets by leveraging the cost-
effectiveness and scalability of cloud storage systems.
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Delta Sharing Under the Hood

Delta Sharing is an open protocol that defines REST API endpoints that enable secure
access to specific portions of a cloud dataset. It leverages the capabilities of modern
cloud storage systems like Amazon S3, ADLS, or GCS to ensure the reliable transfer
of large datasets. The process involves two key parties: data providers and recipients,
as depicted in Figure 9-3.
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Lake |sharing Easy tomanage

S Azure
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Java
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Figure 9-3. Overview of the Delta Sharing protocol

Data Providers and Recipients

As the data provider, Delta Sharing lets you share existing tables or parts thereof
(e.g., specific table versions of partitions) stored on your cloud data lake in Delta
Lake format. The data provider decides what data they want to share and runs a
sharing server in front of it that implements the Delta Sharing protocol and manages
access for recipients. Open source Delta Lake includes a reference sharing server, and
Databricks provides one for its platform; other vendors are expected to soon follow.

As a data recipient, you only need one of the many Delta Sharing clients supporting
the protocol. Open source Delta Lake has released open source connectors for pan-
das, Apache Spark, Rust, and Python, and is working with partners on more clients.

The actual exchange is carefully designed to be efficient by leveraging the functional-
ity of cloud storage systems and Delta Lake. The Delta Sharing protocol works as
follows (see Figure 9-4):

1. The recipient’s client authenticates to the sharing server (via a bearer token or
other method) and asks to query a specific table. The client can also provide
filters on the data (e.g., “country = US”) as a hint to read just a subset of the data.

2. The server verifies whether the client is allowed to access the data, logs the
request, and then determines which data to send back. This will be a subset of the
data objects in ALDS (on Azure), S3 (on AWS), or GCS (on GCP) that make up
the table.
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3. To transfer the data, the server generates short-lived pre-signed URLs that allow
the client to read these Parquet files directly from the cloud provider, so that
the transfer can happen in parallel with massive bandwidth, without streaming
through the sharing server. This powerful feature available in all the major clouds
makes it fast, cheap, and reliable to share very large datasets.

Access permissions V
e 2 e e .
I i | ' Request toread table “accounts” 2
al
<D OK, here are short-lived URLS to read;
o] o by | o anpoi e
Lake | Lake sharing | Pea0S gZUTE COMVpArte g"‘ sharing
table L server | client

<+

)
Direct access from ADLS

ADLS objects
(in Parquet format)
—_—

Figure 9-4. Delta Sharing protocol details

Benefits of the Design

The Delta Sharing design provides many benefits for both providers and consumers:

o Data providers can easily share an entire table, or just a version of a partition of
the table, because clients are only given access to a specific subset of the objects
in it.

o+ Data providers can update data reliably in real time using the ACID transactions
on Delta Lake, and recipients will always see a consistent view.

o Data recipients don’t need to be on the same platform as the provider, or even in
the cloud at all, sharing works across clouds and even from cloud to on-premise
users.

o The Delta Sharing protocol is simple for clients to implement if they already
leverage Parquet.

o Data transfer using the underlying cloud system is fast, cheap, reliable, and
parallelizable.
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The delta-sharing Repository

You can find the delta-sharing GitHub repository online. It contains the following
components:

o The Delta Sharing protocol specification.

o The Python connector. This is a Python library that implements the Delta Sharing
protocol to read shared tables as pandas or PySpark DataFrames.

o An Apache Spark connector. This connector implements the Delta Sharing proto-
col to read shared tables from a Delta Sharing Server. You can then use SQL,
Python, Scala, Java, or R to access the tables.

o A reference implementation of the Delta Sharing Protocol in a Delta Sharing
Server. Users can deploy this server to share existing tables in Delta Lake and
Parquet format on Azure, AWS, or GCP storage systems.

Next, lets use the Python connector to access Delta tables in an example Delta
Sharing Server, hosted by delto-io.

Step 1: Installing the Python Connector

The Python connector is offered as a PyPi library named delta-sharing, so we just
need to add this library to our cluster, as shown in Figure 9-5.

Status Name =t Type

@ delta-sharing PyPI

Figure 9-5. Installing the delta-sharing PyPi library on our cluster

Step 2: Installing the Profile File

The Python connector accesses shared tables based on profile files. You can download
the profile file for the example Delta Sharing Server by following the link. This file
will download as a file named open-datasets.share. This is a simple JSON file with the
credentials for the server (the bearer token in this example is obfuscated):

{

"shareCredentialsVersion": 1,
"endpoint": "https://sharing.delta.io/delta-sharing/",
"bearerToken": "faaleXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX"

}
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Upload the share file to a dbfs:/ location in the Databricks filesystem using the dbfs
cp command:

C:\Users|bhael\Downloads>dbfs cp open-datasets.share dbfs:/mnt/.../delta-sharing/

C:\Users|bhael\Downloads>dbfs 1s dbfs:/mnt/datalake/book/delta-sharing
open-datasets.share

C:\Users\bhael\Downloads>

Step 3: Reading a Shared Table

In the “01 - Sharing Example” notebook we can then reference the file:

# Point to the profile file. It can be a file on the local

# file system or remote file system. In this case, we have

# uploaded the file to dbfs

profile_path = "/dbfs/mnt/datalake/book/delta-sharing/open-datasets.share"

Depending on how you will access a shared table, you will have to
use a different path syntax. The profile_path specified here will
work when you access the table as a pandas DataFrame. If you
want to access the table with Spark, you will have to use the dbfs:/
syntax instead of the /dbfs/ port.

Next, we can create a SharingClient, passing it the profile path, and list all shared
Delta tables:

# Create a SharingClient and list all shared tables
client = delta_sharing.SharingClient(profile_path)
client.list_all_tables()

This produces the following output:

Out[22]: [Table(name='COVID_19 NYT', share='delta_sharing',
schema='default'), Table(name='boston-housing', share='delta_sharing',
schema='default'), Table(name='flight-asa_2008', share='delta_sharing',
schema='default'), Table(name='lending_club', share='delta_sharing',
schema='default'), Table(name='nyctaxi_2019', share='delta_sharing',
schema='default'), Table(name='nyctaxi_2019_part', share='delta_sharing',
schema='default'), Table(name='owid-covid-data', share='delta_sharing',
schema="'default')]

To create a URL to a shared table, we use the following syntax:

<profile file base name>#<share-name>.<schema-name>.<table-name>
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We can now build the URL and read the contents of the shared Delta table as a
pandas DataFrame:

# Create a URL to access a shared table

# A table path is the profile path following with

# ('<share-name>.<schema_name>.<table_name>)

# Here, we are loading the table as a pandas DataFrame

table_url = profile_path + "#delta_sharing.default.boston-housing"
df = delta_sharing.load_as_pandas(table_url, limit=10)

df.head()

Output (only showing relevant portions):

B B EEEEE EEEE +----- +
|ID|crim  |zn |indus| chas| nox | rm |
B B EEEEE EEEE +----- +
|1 10.00632|18 | 2.31|] © [0.538]6.575]|
|2 10.02731| 0 | 7.0 | © ]0.469|6.421]
|14 10.03237] 0 | 2.18] © [0.458]|6.998]|
|5 |0.06905| 0 | 2.18] © |0.458|7.147|
|7 10.08829|12.5] 7.87| © [0.524]|6.012]|
B B EEEEE EEEE +----- +

If we want to load the table as a standard PySpark DataFrame, we can use the
load_as_spark() method:

# We can also access the shared table with Spark. Note that we have to use the
# dbfs:/ path prefix here

profile_path_spark = "dbfs:/mnt/datalake/book/delta-sharing/open-datasets.share"
table_url_spark = profile_path_spark + "#delta_sharing.default.boston-housing"

df_spark = delta_sharing.load_as_spark(table_url_spark)
display(df_spark.limit(5))
Notice the slight change in the URL, as discussed earlier. This will produce the same
output as the pandas example.

Conclusion

Enabling data exchange using open source technology opens up many benefits for
both internal and external use. First, it offers significant flexibility, allowing the
team to tailor the data exchange process to meet specific business use cases and
requirements. Support from the active open source community ensures continuous
improvements, bug fixes, and access to a vast amount of knowledge, further empow-
ering the team and business users to stay at the forefront of data sharing practices.
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Among the key benefits of using Delta Sharing for data providers and data recipients,
the following are the most important:

o Scalability is critical for data teams working with ever-growing datasets and
high-demand use cases.

o Interoperability is another significant benefit. Delta Sharing, as an open source
technology, is designed to work in harmony with other components of the data
ecosystem, facilitating seamless integration.

o In addition, transparency and security are improved compared to the proprietary
solutions, as the Delta Sharing source code is available for review, which allows
for stronger security measures and the ability to respond to and proactively
address identified vulnerabilities.

By using Delta Sharing, teams avoid vendor lock-in by having the freedom to switch
between tools or vendors with no investment needed in adapting to the new architec-
ture. The rapid pace of innovation in the open source community allows teams to
embrace cutting-edge features and quickly adapt to new trends in data management
and analytics.

The ability to share data using Delta Sharing allows for a more agile, cost-effective,
and innovative data ecosystem by delivering better data-driven solutions and insights
for organizational success in an ever-changing environment and data landscape.

Building on the foundational components you have learned about to this point, in
Chapter 10 you will dive into the details of how to build a complete data lakehouse.
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CHAPTER 10
Building a Lakehouse on Delta Lake

Chapter 1 introduced the concept of a data lakehouse, which combines the best
elements of a traditional data warehouse and a data lake. Throughout this book you
have learned about the five key capabilities that help enable the lakehouse architec-
ture: the storage layer, data management, SQL analytics, data science and machine
learning, and the medallion architecture.

Before diving into building a lakehouse on Delta Lake, let’s quickly review the indus-
try’s data management and analytics evolution:

Data warehouse
From the 1970s through the early 2000s, data warehouses were designed to col-
lect and consolidate data into a business context, providing support for business
intelligence and analytics. As data volumes grew, velocity, variety, and veracity
also increased. Data warehouses had challenges with addressing these require-
ments in a flexible, unified, and cost-effective manner.

Data lake
In the early 2000s, increased volumes of data drove the development of data lakes
(initially on premises with Hadoop and later with the cloud), a cost-effective
central repository to store any format of data at any scale. But again, even with
added benefits there were additional challenges. Data lakes had no transactional
support, were not designed for business intelligence, offered limited data gover-
nance support, and still required other technologies (e.g., data warehouses) to
fully support the data ecosystem. This led to overly complex environments with
a patchwork of different tools, systems, technologies, and multiple copies of the
data.

The emergence of a coexisting data lake and data warehouse still leaves much to
be desired. The incomplete support for use cases and incompatible security and
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governance models has led to increased complexity from disjointed and duplica-
tive data silos that contain subsets of data across different tools and technologies.

Lakehouse

In the late 2010s, the concept of the lakehouse emerged. This introduced a mod-
ernized version of a data warehouse that provides all of the benefits and features
without compromising the flexibility of a data lake. The lakehouse leverages a
low-cost, flexible cloud storage layer, a data lake, combined with data reliability
and consistency guarantees through technologies that feature open-table formats
with support for ACID transactions. This flexibility helps support diverse work-
loads such as streaming, analytics, and machine learning under a single unified
platform, which ultimately enables a single security and governance approach for
all data assets. With the advent of Delta Lake and the lakehouse, the paradigm of
end-to-end data platforms has begun to shift due to the key features enabled by
this architectural pattern.

By combining the capabilities of the lakehouse with what you have learned in this
book, you will learn how to enable the key features offered by a lakehouse architec-
ture and be fully up and running with Delta Lake.

Storage Layer

The first step, or layer, in any well-designed architecture is deciding where to store
your data. In a world with increasing volumes of data coming in different forms and
shapes from multiple heterogeneous data sources, it is essential to have a system that
allows for storing massive amounts of data in a flexible, cost-effective, and scalable
manner. And that is why a cloud object store like a data lake is the foundational
storage layer for a lakehouse.

What Is a Data Lake?

Previously defined in Chapter 1, a data lake is a cost-effective central repository to
store structured, semi-structured, or unstructured data at any scale, in the form of
files and blobs. This is possible in a data lake because it does not impose a schema
when writing data, so data can be saved as is. A data lake uses a flat architecture
and object storage to store data, unlike a data warehouse, which typically stores data
in a hierarchical structure with directories and files while imposing a schema. Every
object is tagged with metadata and a unique identifier so that applications can use it
for easy access and retrieval.

Types of Data

One of the key elements of a data lake is that a cloud object store provides limitless
scalability to store any type of data. These different types of data have been covered in
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this book, but it is best to define the three classifications of data to demonstrate how
they are structured and where they originate:

Structured data
o What is it? In structured data all the data has a predefined structure, or schema.
This is most commonly relational data coming from a database in the form of
tables with rows and columns.

o What produces it? Data like this is typically produced by traditional relational
databases and is often used in enterprise resource planning (ERP), customer
relationship management (CRM), or inventory management systems.

Semi-structured data
o What is it? Semi-structured data does not conform to a typical relational format
like structured data. Rather it is loosely structured with patterns or tags that sepa-
rate elements of the data, such as key/value pairs. Examples of semi-structured
data are Parquet, JSON, XML, CSV files, and even emails or social feeds.

+ What produces it? Common data sources for this type of data can include
nonrelational or NoSQL databases, IoT devices, apps, and web services.

Unstructured data
o What is it? Unstructured data does not contain an organized structure; it is not
arranged in any type of schema or pattern. It is often delivered as media files,
such as photo (e.g., JPEG) or video files (e.g., MP4). The underlying video files
might have an overall structure to them, but the data that forms the video itself is

unstructured.

o What produces it? A vast majority of an organization’s data comes in the form
of unstructured data, and is produced from things like media files (e.g., audio,
video, photos), Word documents, log files, and other forms of rich text.

Unstructured and semi-structured data are often critical for AT and machine learning
use cases, whereas structured and semi-structured data are critical for BI use cases.
Because it natively supports all three types of data classifications, you can create a
unified system that supports these diverse workloads in a data lake. These workloads
can complement each other in a well-designed processing architecture, which you
will learn about further on in this chapter. A data lake helps solve many of the
challenges related to data volumes, types, and cost, and while Delta Lake runs on top
of a data lake, it is optimized to run best on a cloud data lake.

Key Benefits of a Cloud Data Lake

We've discussed how a data lake helps address some of the shortcomings of a data
warehouse. A cloud data lake, as opposed to an on-premises data lake or a data
warehouse, best supports a lakehouse architecture as the storage layer for a number
of reasons:
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Single storage layer

One of the most important features of a lakehouse is unifying platforms, and
a cloud data lake helps eliminate and consolidate data silos and different types
of data into a single object store. The cloud data lake allows you to process all
data on a single system, which prevents creating additional copies of your data
moving back and forth between different systems. Decreased movement of data
across different systems also results in fewer integration points, which means
fewer places for errors to occur. A single storage layer reduces the need for mul-
tiple security policies that cover different systems and helps resolve difficulties
with collaboration across systems. It also offers data consumers a single place to
look for all sources of data.

Flexible, on-demand storage layer

Whether it is velocity (streaming versus batch), volume, or variety (structured
versus unstructured), cloud data lakes allow for the ultimate flexibility to store
data. According to Rukmani Gopalan in his recently published book, The Cloud
Data Lake," “these systems are designed to work with data that enters the data
lake at any speed: real-time data emitted continuously as well as volumes of
data ingested in batches on a scheduled basis” Not only is there flexibility with
the data, but there is flexibility with the infrastructure as well. Cloud providers
allow you to provision infrastructure on demand, and quickly scale up or down
elastically. Because of this level of flexibility, the organization can have a single
storage layer that provides unlimited scalability.

Decoupled storage and compute

Traditional data warehouses and on-premises data lakes have traditionally had
tightly coupled storage and compute. Storage is generally inexpensive, whereas
compute is not. The cloud data lake allows you to decouple this and independ-
ently scale your storage and store vast amounts of data at very little cost.

Technology integration

Data lakes offer simple integration through standardized APIs so organizations
and users with completely different skills, tools, and programming languages
(e.g., SQL, Python, Scala, etc.) can perform different analytics tasks all at once.

Replication

Cloud providers offer easy to set up replication to different geographical loca-
tions for your data lake. The ease of enabling replication can make it useful in
meeting compliance requirements, failover for business-critical operations, disas-
ter recovery, and minimizing latency by storing the objects closer to different
locations.

1 Gopalan, Rukmani (2022). The Cloud Data Lake, 1st ed. Sebastopol, CA: O’Reilly.
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Availability
Most cloud systems offer different types of data availability for cloud data lakes.
This means that for data that is infrequently accessed, or archived, compared
to “hot” data that is accessed frequently, you can set up lifecycle policies. These
lifecycle policies allow you to move data across different storage availability
classes (with lower costs for infrequently accessed data) for compliance, business
needs, and cost optimization.

Availability can also be defined through service-level agreements (SLAs). In the
cloud, this is the cloud provider’s guarantee of the resources’ minimal level of
service. Most cloud providers guarantee greater than 99.99% uptime for these
business-critical resources.

Cost

With cloud data lakes you typically pay for what you use, so your costs always
align with your data volumes. Since there is only a single storage layer, less data
movement across different systems, availability settings, and decoupled storage
versus compute, you have isolated and minimized costs for just data storage. For
greater cost allocation, most cloud data lakes offer buckets, or containers (filesys-
tems, not to be confused with application containers), to store different layers
of the data (e.g., raw versus transformed data). These containers allow you to
have finer-grained cost allocation for different areas of your organization. Since
data sources and volumes are growing exponentially, it is extremely important to
allocate and optimize costs without limiting the volume or variety of data that
can be stored.

Figure 10-1 illustrates the different types of popular cloud-based data lakes at the
time of writing, along with the different types of data that are stored in them.

Cloud-based data lake

Google Azure Data
Cloud Lake
Storage Storage

Scalable, low-cost
Amazon S3 cloud-based data
storage IBM cloud storage

Structured, semi-structured, and unstructured data

Figure 10-1. Example of cloud-based data lakes and the types of data they support
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Overall, the storage layer is a critical component of a lakehouse architecture, as it
enables organizations to store and manage massive amounts of data in a cost-effective
and scalable manner. Now that you have a defined place to store your data, you also
need to appropriately manage it.

Data Management

Although a cloud data lake allows you to elastically store data at scale in its native
format, among other benefits, the next piece of the lakehouse foundation is facilitat-
ing data management. According to Gartner, data management (DM) consists of the
practices, architectural techniques, and tools for achieving consistent access to and
delivery of data across the spectrum of data subject areas and data structure types
in the enterprise, to meet the data consumption requirements of all applications and
business processes.”

Data management is a key function for any organization and greatly hinges on the
tools and technologies used in the access and delivery of data. Traditionally, data
lakes have managed data simply as a “bunch of files” in semi-structured formats
(e.g., Parquet), which makes it challenging to enable some of the key features of
data management, such as reliability, due to lack of support for ACID transactions,
schema enforcement, audit trails, and data integration and interoperability.

Data management on a data lake begins with a structured transactional layer for
reliability. This reliability comes from a transaction layer that supports ACID transac-
tions, open-table formats, integration between batch and streaming data processing,
and scalable metadata management. This is where Delta Lake is introduced as a core
component of the lakehouse architecture that supports data management.

In Figure 10-2, you can see the different types of data types that a cloud-based data
lake supports, with Delta Lake built on top of the data lake, acting as a structured
transactional layer.

2 “Data Management (DM).” Gartner, Inc, Accessed April 24, 2023, https://oreil.ly/xK4ws.
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Figure 10-2. Delta Lake transactional layer

Delta Lake brings durability, reliability, and consistency to your data lake. There are
several key elements of Delta Lake that help facilitate data management:

Metadata
At the core of Delta Lake is the metadata layer. This layer provides extensive and
scalable metadata tracking that enables most of the core features of Delta Lake.
It provides a level of abstraction to implement ACID transactions and a variety
of other management features. These metadata layers are also a natural place to
begin enabling governance features, such as access control and audit logging.

ACID transactions
Delta Lake will ensure that data is kept intact in case concurrency transactions
are active on a single table. Support for ACID transactions brings consistency
and reliability to your data lake, which is made possible through the transaction
log. The transaction log keeps track of all commits, and uses an isolation level to
guarantee consistency and accurate views of the data.

Versioning and audit history
Since Delta Lake stores information about which files are part of a table as
a transaction log, it allows users to query old versions of data and perform
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rollbacks, also referred to as time traveling. This provides full audit trails of your
data for business needs or regulatory requirements, and can also be supportive of
machine learning procedures.

Data integration
This can be defined as the consolidation of data from different sources into a
single place. Delta Lake can handle concurrent batch and streaming operations
on a table; it provides a single place for users to view data. Not only this, but the
ability to perform DML operations such as INSERTs, UPDATEs, and DELETEs
allows you to perform effective data integration and maintain consistency on all
tables.

Schema enforcement and evolution
Like traditional RDBMS systems, Delta Lake offers schema enforcement along
with flexible schema evolution. This helps guarantee clean and consistent data
quality through constraints while providing flexibility for schema drift caused by
other processes and upstream sources.

Data interoperability

Delta Lake is an open source framework that is cloud agnostic, and since it inter-
acts seamlessly with Apache Spark by providing a set of APIs and extensions,
there are a vast number of different integration capabilities across projects, other
APIs, and platforms. This enables you to easily integrate with existing data man-
agement workflows and processes through different tools and frameworks. Delta
UniForm offers format interoperability with Apache Iceberg, further expanding
the set of systems and tools you can integrate with. Together with Delta Sharing,
which makes it simple to securely share data across organizations, Delta Lake
avoids vendor lock-in and enables interoperability.

Machine learning
Because machine learning (ML) systems often require processing large sets of
data while using complex logic that isn’t well suited for traditional SQL, they can
now easily access and process data from Delta Lake using DataFrame APIs. These
APIs allow ML workloads to directly benefit from the optimizations and features
offered by Delta Lake. Data management across all different workloads can now
all be consolidated to Delta Lake.

By adding a structured transactional layer better equipped to handle data manage-
ment, the lakehouse simultaneously supports raw data, ETL/ELT processes that
curate data for analytics, and ML workloads. The curation of data through ETL/ELT
has traditionally been thought of and presented in the context of a data warehouse,
but through the data management features offered by Delta Lake, you can bring those
processes to a single place. That also allows ML systems to directly benefit from the
features and optimizations offered by Delta Lake to complete the management and
consolidation of data across different workloads. By combining all these efforts, you
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can bring greater reliability and consistency to your data lake and create a lakehouse
that becomes the single source of truth across the enterprise for all types of data.

SQL Analytics

In the world of data analysis, business intelligence, and data warehousing, it is
generally known that SQL is one of the most common and flexible languages. Part
of the reason for this is not only because it offers an accessible learning curve with
low barriers to entry, but because of the complex data analysis operations it can
perform. While allowing users to interact with data quickly, SQL also allows users
of all skill levels to write ad hoc queries, prepare data for BI tools, create reports
and dashboards, and perform a wide array of data analysis functions. For reasons
like this, SQL has become the language of choice for business intelligence and data
warehousing by the likes of everyone from data engineers to business users. This is
why it is necessary that the lakehouse architecture achieves great SQL performance
with respect to scalability and performance, and enables SQL analytics.

Fortunately, a lakehouse architecture built around Delta Lake as the transactional
layer for curated data has scalable metadata storage that is easily accessible through
Apache Spark and Spark SQL.

SQL Analytics via Spark SQL

Spark SQL is Apache Spark’s module, also referred to as a library, for working with
structured data. It provides a programming interface to work with structured data
using SQL and DataFrame APIs, all of which is underpinned by the Spark SQL
engine. Similar to other SQL engines, the Spark SQL engine is responsible for gener-
ating efficient queries and compact code. This execution plan is adapted at runtime.
The Apache Spark ecosystem consists of different libraries, where the Spark Core and
Spark SQL engine are the substrate on which they are built (Figure 10-3).

Spark SQL S : ;
park streaming MLIib GraphX
. %‘;Z;ng‘f;q%tr?gf = Structured streaming Machine learning Graph computations

Spark Core and Spark SQL engine
[ Scala I Python I Java I R I SQL ]

Figure 10-3. Apache Spark ecosystem, including Spark SQL
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The Spark SQL library supports ANSI SQL, which allows users to query and analyze
data using SQL syntax that they are familiar with. As we have seen in previous
chapters, Delta tables can easily be queried using Spark SQL and the sq1() method in
PySpark, for example:

%python
spark.sql("SELECT count(*) FROM taxidb.tripData")

Or, similar to how most queries in this book have been written, you can use magic
commands and %sql in notebooks or some IDEs to specify the language reference
and just write Spark SQL directly in the cell:

%sql

SELECT count(*) as count FROM taxidb.tripData
And not only SQL, but the Spark SQL library also allows you to use the DataFrame
API to interact with datasets and tables:

%python
spark.table("taxidb.tripData").count()

Analysts, report builders, and other data consumers will typically interact with data
through the SQL interface. This SQL interface means that users can leverage Spark
SQL to perform their simple, or complex, queries and analysis on Delta tables, taking
advantage of the performance and scalability that Delta tables offer, while also taking
advantage of the Spark SQL engine, distributed processing, and optimizations. Since
Delta Lake ensures serializability, there is full support for concurrent reads and
writes. This means that all data consumers can confidently read the data even as
data is updated through different ETL workloads. In short, the Spark SQL engine
generates an execution plan that is used to optimize and execute queries on your
Spark cluster to make queries as fast as possible.

Figure 10-4 illustrates that you can express SQL queries using the Spark SQL library,
or you can use the DataFrame API to interact with datasets and leverage the Spark
SQL engine and execution plan. Whether you are using Spark SQL or the DataFrame
API, the Spark SQL engine will generate a query plan used to optimize and execute
the command on the cluster.
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Figure 10-4. Spark SQL execution plan

In Figure 10-4, it is important to note that the Resilient Distributed
Datasets (RDDs) in the execution plan are not referring to tradi-
tional user-defined RDDs that leverage low-level APIs. Rather, the
RDDs mentioned in the figure are Spark SQL RDDs, also referred
to as DataFrames or datasets, that do not add additional overhead,
as they are optimized specifically to structured data.

Generally, it is recommended to use the DataFrame API for your ETL and data
ingestion processes® or machine learning workloads, whereas most of the data con-
sumers (e.g., analysts, report builders, etc.) will interact with your Delta tables using
Spark SQL. You can also interact with the SQL interface over standard JDBC/ODBC
database connectors or using the command line. The JDBC/ODBC connectors mean
that Spark SQL also provides a bridge between external tools such as Power BI,
Tableau, and other BI tools to interact with and consume tables for analytics.

SQL Analytics via Other Delta Lake Integrations

While Delta Lake provides powerful integration with Spark SQL and the rest of the
Spark ecosystem, it can also be accessed by a number of other high-performance
query engines. Supported query engines include:

o Apache Spark
« Apache Hive

e Presto

¢ Trino

3 Damji, Jules S, et al. (2020). Learning Spark, 2nd ed. Sebastopol, CA: O’Reilly.

SQL Analytics

227



These connectors help bring Delta Lake to big-data SQL engines other than just
Apache Spark and allow you to read and write (depending on the connector). The
Delta Lake connectors repository includes:

o Delta Standalone, a native library for reading and writing Delta Lake metadata

o Connectors to popular big-data engines (e.g., Apache Hive, Presto, Apache Flink)
and to common reporting tools like Microsoft Power BI.

There are also several managed services that allow you to integrate and read data
from Delta Lake, including:

o Amazon Athena and Redshift
 Azure Synapse and Stream Analytics
o Starburst

o Databricks

Please consult the Delta Lake website for a complete list of supported query engines
and managed services.

When it comes to performing SQL analytics, it is important to leverage a high-
performance query engine that can interpret SQL queries and execute them at scale
against your Delta tables for data analysis. In Figure 10-5, you can see that the
lakehouse is comprised of three different compounding layers, plus APIs that allow
different layers to communicate with one another:

Storage layer
Data lake used for scalable, low-cost cloud data storage for structured, semi-
structured, and unstructured data.

Transactional layer
ACID-compliant open-table format with scalable metadata made possible
through Delta Lake.

APIs
SQL APIs enable users to access Delta Lake and perform read and write opera-
tions. Then metadata API help systems understand the Delta Lake transaction
log to read data appropriately.

High-performance query engine
A query engine that interprets SQL so users can perform data analysis through
Apache Spark SQL or another query engine that Delta Lake integrates with.
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Figure 10-5. Example of the lakehouse layered architecture, with the high-performance
query engine used for BI and reports

Data for Data Science and Machine Learning

Since Delta Lake helps provide reliable and simplified data management across your
lakehouse, it helps bring a variety of benefits to data and data pipelines leveraged for
data science activities and machine learning.
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Challenges with Traditional Machine Learning

Generally speaking, machine learning operations (MLOps) are the set of practices and
principles involved in the end-to-end machine learning lifecycle. In MLOps, there
are a number of common challenges that a vast majority of organizations and data
scientists face when attempting to build and finally productionalize machine learning
models in their organization:

Data silos
Data silos often start to develop as the gap between data engineering activities
and data science activities begins to grow. Data scientists frequently spend the
majority of their time creating separate ETL and data pipelines that clean and
transform data and prepare it into features for their models. These silos usually
develop because the tools and technologies used for data engineering don’t sup-
port the same activities for data scientists.

Consolidating batch and streaming data
Machine learning models use historical data to train models in order to make
accurate predictions on streaming data. The problem is that traditional architec-
tures don’t support reliably combining both historical and streaming data, which
creates challenges in feeding both types of data into machine learning models.

Data volumes

Machine learning systems often need to process large sets of data while using
complex code that isn’t necessarily well suited for SQL. And if data scientists
wish to consume data via ODBC/JDBC interfaces from tables created through
data engineering pipelines, these interfaces can create a very inefficient process.
These inefficient processes are largely because these interfaces are designed to
work with SQL and offer limited support for non-SQL code logic. This results in
inefficient non-SQL queries that can be caused by data volume, data conversions,
and complex data structures that non-SQL code logic can often include.

Reproducibility

MLOps best practices include the need to reproduce and validate every stage of
the ML workflow. The ability to reproduce a model reduces the risk of errors,
and ensures the correctness and robustness of the ML solution. Consistent data is
the most difficult challenge faced in reproducibility, and an ML model will only
reproduce the exact same result if the exact same data is used. And since data
is constantly changing over time, this can introduce significant challenges to ML
reproducibility and MLOps.

Nontabular data
While typically we think of data as being stored in tables, there are growing
use cases for machine learning workloads to support large collections of nontab-
ular data, such as text, image, audio, video, or PDF files. This nontabular data
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requires the same governance, sharing, storage, and data exploration capabilities
that tabular data requires. Without having some type of feature to catalog these
collections of directories and nontabular data, it is very challenging to provide
the same governance and management features used with tabular data.

Due to the challenges that traditional architectures create for productionalizing
machine learning models, machine learning often becomes a very complex and
siloed process. These siloed complexities introduce even more challenges for data
management.

Delta Lake Features That Support Machine Learning

Fortunately, Delta Lake helps negate these data management challenges traditionally
introduced by machine learning activities, and bridges the gap between data and
processes used for Bl/reporting analytics and advanced analytics. There are several
different features of Delta Lake that help support the machine learning lifecycle:

Optimizations and data volumes
The benefits that Delta Lake offers all start with the fact that it is built on top
of Apache Spark. Data science activities can access data directly from Delta Lake
tables using DataFrame APIs via Spark SQL, which allows machine learning
workloads to directly benefit from the optimization and performance enhance-
ments offered by Delta Lake.

Consistency and reliability
Delta Lake provides ACID transactions, which ensures consistent and reliable
data. This is important for machine learning and data science workflows because
model training and predictions require this level of reliability to avoid negative
impacts from inaccurate or inconsistent data.

Consolidating batch and streaming data
Delta Lake tables can seamlessly handle the continuous flow of data from both
historical and streaming sources, made possible through Spark Streaming and
Spark Structured Streaming. This means that you can simplify the data flow
process for machine learning models since both types of data are consolidated
into a single table.

Schema enforcement and evolution
By default, Delta Lake tables have schema enforcement, which means that better
data quality can be enforced, thus increasing the reliability of data used for
machine learning inputs. But Delta Lake also supports schema evolution, which
means data scientists can easily add new columns to their existing machine
learning production tables without breaking existing data models.
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Versioning

You have learned in previous chapters that Delta Lake lets you easily version
your data and perform time travel via the transaction log. This versioning helps
mitigate the challenges often seen with ML reproducibility because it allows
you to easily re-create machine learning experiments and model outputs given
a specific set of data at a specific point in time. This helps significantly reduce
some of the challenges seen in the MLOps process since simplified versioning
can provide greater traceability, reproducibility, auditing, and compliance for ML
models.

Integrations

In Chapter 1, and in this chapter, you read about how Delta Lake can be accessed
using the Spark SQL library in Apache Spark. You also read about Spark Stream-
ing and Delta Lake’s integration with that library in Chapter 8. An additional
library in the Spark ecosystem is MLIib. MLIlib gives you access to common
learning algorithms, featurization, pipelines, persistence, and utilities. In fact,
many machine learning libraries (e.g., TensorFlow, scikit-learn) can also leverage
DataFrame APIs to access Delta Lake tables.

The Spark ecosystem consists of multiple libraries running on top of Spark Core
to provide multifunctional support for all types of data and analytics use cases
(Figure 10-6). Outside of the Spark standard libraries, Spark also has integrations
with other platforms such as MLflow, a popular open source platform for manag-
ing the end-to-end machine learning lifecycle, which allows Spark MLIib models
to be tracked, logged, and reproduced.

Spark SQL S . )
park streaming MLIib GraphX
. %‘;Z;ng‘f;q%tr?gf = Structured streaming Machine learning Graph computations

Scala I Python I Java I R I SQL ]

Spark Core and Spark SQL engine

Figure 10-6. Apache Spark ecosystem showing the Spark SQL, Spark Streaming, and
MLIib libraries

232

| Chapter 10: Building a Lakehouse on Delta Lake



As previously mentioned, machine learning models are typically built using libraries
such as TensorFlow, PyTorch, scikit-learn, etc. And while Delta Lake is not directly a
technology for building models, it does focus on addressing and providing valuable,
foundational support for many of the challenges that machine learning activities face.
MLOps and models are reliant on the data quality and integrity, reproducibility, relia-
bility, and unification of data that Delta Lake provides. The robust data management
and integration features offered by Delta Lake simplify MLOps and make it easier for
machine learning engineers and data scientists to access and work with the data used
to train and deploy their models.

Putting It All Together

Through the features enabled by Delta Lake, it becomes much easier to unify both
the machine learning and data engineering lifecycles. Delta Lake enables machine
learning models to learn and predict from historical (batch) and streaming data,
all sourced from a single place while natively leveraging Delta table optimizations.
ACID transactions and schema enforcement help bring data quality, consistency, and
reliability to the tables used for machine learning model inputs. And Delta Lake’s
schema evolution helps your machine learning outputs change over time without
introducing breaking changes to existing processes. Time travel enables easy auditing
or reproduction of your machine learning models, and the Spark ecosystem brings
additional libraries and other machine learning lifecycle tools to further enable data
scientists.

In Figure 10-7, you can see all of the resulting layers of a fully constructed lakehouse
environment. All together, the features of Delta Lake help bridge the gap between
data engineers and data scientists in an effort to reduce silos and unify workloads.
Together with Delta Lake and a robust lakehouse architecture, organizations can start
to build and manage machine learning models in a faster, more efficient way.
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Figure 10-7. The lakehouse architecture with the addition of data science and machine
learning workloads

Medallion Architecture

The lakehouse is centered around the idea of unification and combining the best
elements of different technologies in a single place. This means it is also important
that the data flow within the lakehouse itself supports this unification of data. In
order to support all use cases, this data flow requires merging batch and streaming
data into a single data flow to support scenarios across the entire data lifecycle.
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Chapter 1 introduced the idea of the medallion architecture, a popular data design
pattern with Bronze, Silver, and Gold layers that is ultimately enabled via Delta
Lake. This popular pattern is used to organize data in a lakehouse in an iterative
manner to improve the structure and quality of data across your data lake, with
each layer having specific functions and purposes for analytics while unifying batch
and streaming data flows. An example of the medallion architecture is provided in
Figure 10-8.
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Figure 10-8. Data lakehouse solution architecture
The Bronze, Silver, and Gold layers shown in Figure 10-8 are summarized in
Table 10-1. For each layer, you will see its business value, properties, and implementa-

tion details (such as “how it’s done”

Table 10-1. Medallion architecture summary

Bronze Silver Gold

Business . ) . . .
| « Audit on exactly what was « First layer that is useful tothe ~ « Data is in a format that is easy

value received from the source business for business users to navigate

« Ability to reprocess without going  + Enables data discovery, self- « Highly performant

back to the source service, ad hoc reporting,
advanced analytics, and ML

Properties

« Prioritize business use cases
and user experience

« Precalculated, business-specific
transformations

« (an have separate views of the
data for different consumption
use cases

+ No business rules or
transformations of any kind

« Should be fast and easy to get new
data to this layer

« Prioritize speed to market
and write performance—just
enough transformations

« Quality data expected
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Bronze Silver Gold
How it’s

done + Mustinclude a copy of what was ~  Delta merge « Prioritize denormalized, read-
received « (an indlude light modeling optimized data models
« Typically, data is stored in folders (3NF, vaulting) « Fully transformed
based upon the date received « Data quality checks shouldbe ~ + Aggregated
included

In the following sections, you will get a more detailed look at the different layers that
make up the medallion architecture.

The Bronze Layer (Raw Data)

Raw data from the data sources is ingested into the Bronze layer without any trans-
formations or business rule enforcement. This layer is the “landing zone” for our
raw data, so all table structures in this layer correspond exactly to the source system
structure. The format of the data source is maintained, so when the data source is a
CSV file, it is stored in Bronze as a CSV file, JSON data is written as JSON, etc. Data
extracted from a database table typically lands in Bronze as a Parquet or AVRO file.

At this point, no schema is required. As data is ingested, a detailed audit record is
maintained, which includes the data source, whether a full or incremental load was
performed, and detailed watermarks to support the incremental loads where needed.
The Bronze layer includes an archival mechanism, so that data can be retained for
long periods of time. This archive, together with the detailed audit records, can be
used to reprocess data in case of a failure somewhere downstream in the medallion
architecture.

The ingested data lands in the Bronze layer “source system mirrored,” maintaining
the structure and data types of the source system format, although it is often augmen-
ted with additional metadata, such as the date and time of the load, and ETL process
system identifiers. The goal of the ingestion process is to land the source data quickly
and easily in the Bronze layer with just enough auditing and metadata to enable data
lineage and reprocessing.

The Bronze layer is often used as a source for a Change Data Capture (CDC) process,
allowing newly arriving data to be immediately processed downstream through the
Silver and Gold layers.
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The Silver Layer

In the Silver layer we first cleanse and normalize the data. We ensure that standard
formats are used for constructs such as date and time, enforce the company’s column
naming standard, de-duplicate the data, and perform a series of additional data
quality checks, dropping low-quality data rows when needed.

Next, related data is combined and merged. The Delta Lake MERGE capabilities work
very well for this purpose. For example, customer data from various sources (sales,
CRM, POS systems, etc.) is combined into a single entity. Conformed data, which
are those data entities that are reused across different subject areas, is identified and
normalized across the views. In our previous example, the combined customer entity
would be an example of such conformed data.

At this point, the combined enterprise view of the data starts to emerge. Note that we
apply a “just-enough” philosophy here, where we provide just enough detail with the
least amount of effort possible, making sure that we maintain our agile approach to
building our medallion architecture.

At this point, we start enforcing schema, and allow the schema to evolve downstream.
The Silver layer is also where we can apply GDPR and/or PII/PHI enforcement rules.

Because this is the first layer where data quality is enforced, and the enterprise view is
created, it serves as a useful data source for the business, especially for purposes such
as self-service analytics and ad hoc reporting. The Silver layer proves to be a great
data source for machine learning and AI use cases. Indeed, these types of algorithms
work best with the “less polished” data in the Silver layer instead of the consumption
formats in the Gold layer.

The Gold Layer

In the Gold layer, we create business-level aggregates. This can be done through a
standard Kimball star schema, an Inmon snowflake schema dimensional model, or
any other modeling technique that fits the consumer business use case. The final
layer of data transformations and data quality rules is applied here, resulting in high-
quality, reliable data that can serve as the single source of truth in the organization.

The Gold layer continuously delivers business value by offering high-quality, clean
data to downstream users and applications. The data model in the Gold layer often
includes many different perspectives or views of the data, depending on the con-
sumption use cases. The Gold layer will implement several Delta Lake optimization
techniques, such as partitioning, data skipping, and Z-ordering, to ensure that we
deliver quality data in a performant way.
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Curated for optimal consumption by BI tools, reporting, applications, and business
users, this becomes the primary layer where data is read using a high-performance
query engine.

The Complete Lakehouse

Once you have implemented the medallion architecture as part of your Delta Lake-
based architecture, you can start seeing the full benefits and extensibility of the
lakehouse. While building the lakehouse throughout this chapter, you have seen
how the different layers complement each other in order to unify your entire data
platform.

Figure 10-9 illustrates the entire lakehouse, including how it looks with the medallion
architecture. While the medallion architecture is certainly not the only design pattern
for data flows in a lakehouse, it is one of the most popular, and for good reason. Ulti-
mately, the medallion architecture, through features enabled by Delta Lake, supports
the unification of data in a single data flow to support batch and streaming workload,
machine learning, business-level aggregates, and analytics as a whole for all personas.
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Conclusion

Throughout this book you have learned how the emergence of an open-table format,
open source standard in Delta Lake has brought reliability, scalability, and overall
better data management to data lakes. By overcoming many of the limitations of
traditional technologies, Delta Lake helps bridge the gap between traditional data
warehouses and data lakes, bringing to organizations a single unified, big data man-
agement platform in the form of a lakehouse.

Delta Lake continues to transform how organizations can store, manage, and process
data. Its robust features, such as ACID transactions, data versioning, streaming and
batch transaction support, schema enforcement, and performance tuning techniques,
have made it the de facto open-table format of choice for data lakes.

At the time of writing, Delta Lake is the world’s most widely adopted lakehouse
format with millions of downloads per month and a strong community of growing
contributors. As contributor strength and adoption of Delta Lake continues to grow,
the Delta ecosystem continues to expand, and as the overall field of big data continues
to evolve, naturally so will the functionality of Delta Lake due to its open source
format and the contributions of the open source community.

The continued rise of Delta Lake and the lakehouse paradigm poses a significant
milestone in the evolution of data platforms and data management. Delta Lake pro-
vides the functionality and features to succeed at scale in today’s data-driven world,
while the lakehouse provides a unified, scalable architecture to support it. Delta Lake
and the lakehouse will continue to play a critical role in simplifying architectures and
driving innovation in a growing data and technologies ecosystem.
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