
BY SUMIT PAL
JANUARY 2024

Data Pipeline Orchestration
Modernizing Workflows
to Drive Success with AI/ML

White Paper

This publication may not be reproduced or distributed
without Eckerson Group’s prior permission.

RESEARCH SPONSORED BY

2

Data Pipeline Orchestration

About the Author
Sumit Pal was a VP analyst in data management and analytics for Gartner, where he advised
CTOs, CDOs, CDAOs, enterprise architects, and data architects on data strategy, data
architectures, implementation, and choosing tools, frameworks, and vendors for building
data platforms and end-to-end data-driven systems. Sumit has advised organizations and
CDOs with guidance, insights, and analysis on best practices to solve data challenges.

Sumit has more than 30 years of experience in the software and data industry spanning companies from
start-ups to enterprises. His book is SQL on Big Data: Technology, Architecture, and Innovation (Apress,
2016), and he has developed a massive open online course on big data. Sumit has also hiked to Mt.
Everest Base Camp.

About Eckerson Group
Eckerson Group is a global research,
consulting, and advisory firm that helps
organizations get more value from data.
Our experts think critically, write clearly,
and present persuasively about data
analytics. They specialize in data strategy,
data architecture, self-service analytics, master data management, data governance, and data science.
Organizations rely on us to demystify data and analytics and develop business-driven strategies that
harness the power of data. Learn what Eckerson Group can do for you!

About This Report
Research for this report comes from discussions with Databricks and various practitioners. This report is
sponsored by Databricks, which has exclusive permission to syndicate its content.

G E T • M O R E • V A L U E • F R O M • Y O U R • D A T A

http://www.eckerson.com/
https://calendly.com/eckerson-consulting/request

3

Data Pipeline Orchestration

Table of Contents

Executive Summary ... 4

Introduction .. 6

Guiding Principles for Tool Selection .. 10

Databricks Workflows ... 15

Conclusion .. 17

About Eckerson Group ... 19

About the Sponsor .. 20

4

Data Pipeline Orchestration

Executive Summary
Data will decide who wins the AI race. The problem is that data engineering teams are drowning in
technical and organizational complexity that slows them down. The disaggregated data stack is causing
organizations to duct-tape end-to-end data solutions. Organizations need to repeatedly combine data
from diverse and disparate data sources and make it available for downstream applications, data science
projects, and AI systems. Data pipeline orchestration helps standardize and simplify these workflows to
make AI and ML successful.

Key Takeaways
Data pipeline orchestration, also known as data orchestration, has become a critical success factor for
data engineering teams that support AI/ML initiatives.

 > Many organizations do not sufficiently address the critical last mile of data pipeline management. This
last mile centers on data orchestration—i.e., scheduling and optimization of pipelines and the larger
workflows they help drive.

 > For most organizations, data orchestration is in the early to mid-stage of maturity.

 > Current data orchestration tools place a lot of responsibility on data teams to build, manage and
maintain pipelines as they are based on imperative models.

 > Data orchestration is a fast-moving space with new tools emerging to overcome challenges with prior
generation tools.

 > Next-generation tools add declarative capabilities to streamline self-service for pipeline development,
eliminating long implementation time and easing maintenance across the data lifecycle.

 > These emergent tools also simplify the process of building, tracking, deploying, and managing data
pipelines. In addition, they help integrate pipelines with applications and tools and manage resources
efficiently.

 > Cloud vendors lack native data orchestration and workflow management tools. Most of them are
building managed services on top of open-source tools.

 > Most data orchestration tools have insufficient support for streaming workloads.

5

Data Pipeline Orchestration

Recommendations
Data engineers and DataOps teams should:

 > Select data orchestration tools early in the project. Do not leave this decision to the DataOps team to
consider during deployment. Data orchestration tool selection should be formally planned with a proof
of concept, tested, and reviewed by all stakeholders.

 > Leverage data orchestration tools only for data orchestration. Don’t run expensive, compute-heavy tasks
within the data orchestration tools.

 > Avoid manual and ad hoc approaches for data orchestration with scripts and non-standard approaches.

 > Carefully evaluate cloud-native solutions, especially those that are based on open-source software, as
they may be too restrictive for certain use cases.

6

Data Pipeline Orchestration

Introduction
Data teams deliver data assets and products. To make this happen, data engineers manage a spectrum
of tasks that includes infrastructure provisioning and setting up and managing data connections for
ingestion. They also must manage data security, privacy, storage, processing, and testing. Because
technologies depend on each other in a variety of ways, data, DevOps, and DataOps engineers must
manage a myriad of tools, frameworks, and services as part of an end-to-end ecosystem. Defining,
testing, managing, troubleshooting, and deploying data pipelines with complex workflows is incredibly
challenging and time-consuming—and getting worse.

Definition. Data pipeline orchestration (referred to here as data orchestration) is the process of
managing the complex interoperability of technologies in a modern data stack. Data orchestration
provides the necessary coordination, scheduling, and automation to guarantee reproducibility and
reusability of complex interdependent data flows. When designed and implemented well, it powers BI
and AI insights as well as data-driven products and solutions.The success of being data-driven depends
on DataOps, data orchestration, and automation.

Data pipeline orchestration is the process of composing, building, and streamlining complex data
pipelines, plus reliably and efficiently releasing data artifacts to production. It enables automation and
accelerates data flow from diverse sources for operational and analytics initiatives to drive business value.

The success of becoming data-driven depends on DataOps,
data orchestration, and automation.

Old approach. Data orchestration was traditionally addressed with homegrown scripted tools and a lot
of manual effort—with little or no automation, monitoring, or recoverability. This approach did not scale
for midsize and large organizations whose data pipelines continue to grow. Cumbersome point-to-point
Integrations and custom worked only for smaller, slow-changing environments.

Modern data pipelines. The modern data stack is a disaggregation of rich tools, frameworks, and
libraries, rather than a unified platform for building end-to-end, data-driven systems. In this fragmented
ecosystem, data teams stitch together diverse tools and services to build functioning data platforms,
solutions, and services.

Data pipeline orchestration is the process of composing, building, and
streamlining complex data pipelines, plus reliably and efficiently releasing

data artifacts to production.

https://medium.com/orchestras-data-release-pipeline-blog/a-new-paradigm-for-data-continuous-data-integration-and-delivery-miniseries-part-5-a3338b3ffd03
https://medium.com/orchestras-data-release-pipeline-blog/a-new-paradigm-for-data-continuous-data-integration-and-delivery-miniseries-part-5-a3338b3ffd03

7

Data Pipeline Orchestration

Many organizations have hundreds of interdependent data pipelines that deliver heterogeneous data
across diverse data sources, targets, and locations. There is inherent complexity in distributed multi-
modal data pipelines, creating challenges for data managers:

 > How do we keep track of data sets?

 > How do we ensure that data sets are available at the time data pipelines execute?

Many modern data pipelines run on a distributed architecture with dependent subcomponents
spanning multiple servers and virtual machines. Production data pipelines are complex, with forks and
dependencies and different mixes of trigger logic for the tasks. There are innumerable handshakes across
these components, with multiple failure points from networks to servers.

Many organizations have hundreds of interdependent
data pipelines that deliver heterogeneous data across

diverse data sources, targets, and locations.

When building such complex interdependent pipelines, data teams need to guarantee that pipelines
execute tasks as intended. Proper exception, error, and flow handling is critical. This becomes more
important for large data sets with demanding service-level agreements (SLAs). Data orchestration
coordinates the different components and ensures pipeline resiliency, handling failover and
recoverability from the failure point.

Market Evolution
Data orchestration products have evolved to keep pace with rapid changes in the data management
space. Today we are in the fifth generation of data orchestration, with tools that span capabilities from
the third generation onward.

 > First-generation data orchestration tools were ad hoc solutions based on cron jobs (1990s) and
scripts.

 > Second-generation tools such as SSIS (SQL Server Integration Services) (2005) and Oracle OWB
offered a graphical interface to reduce scripting.

 > Third-generation tools such as Airflow (2014), Luigi (2012), and Oozie (2010) used standard code-
centric mechanisms to build workflows. They focused on task-driven approaches to orchestration,
decoupling task management from execution.

https://learn.microsoft.com/en-us/sql/integration-services/sql-server-integration-services?view=sql-server-ver16

8

Data Pipeline Orchestration

 > Fourth-generation tools, based on Python and SQL-like tools such as Prefect (2018), Kedro, Dagster
(2019), and dbt, use declarative and functional approaches to classify functions as tasks and create
DAGs (directed acyclic graphs). These tools are primarily data-driven, with inherent knowledge of data
types that empower testing, version control, state management, and recoverability.

 > Fifth-generation systems are fully managed declarative pipelines with minimal code to build end-to-end
pipelines, such as Ascent, Palantir Foundry, and data lake–specific solutions such as Databricks Workflows.

Figure 1 shows the evolution of the data orchestration market over the last few decades.

Figure 1. Data Orchestration Market Evolution

1990s
> Cron Jobs

2005
> Microso� SSIS
> Oracle OWB

2010-14
> Luigi
> Azkaban
> Oozie
> Airflow

2018
> Prefect
> Dagster
> Kedro

2021-Present
> Ascent
> Mage
> Palantir Foundry
> Databricks Workflow
> dbt Cloud

The near future. Going forward, vendors will add capabilities for automated recoverability from failures
at the software and hardware level. They are incorporating assistants based on large language models,
enabling domain experts to self-serve their data flows declaratively (as in SQL, where one declares
the results needed, not the steps to achieve those results). They are also becoming Kubernetes native
and transitioning to becoming fully managed platforms. These next-generation orchestrators support
streaming pipelines and include serverless capabilities that help relieve data and DevOps teams from
provisioning and managing infrastructure.

We are now in the fifth generation of data orchestration, with tools
spanning capabilities from the third generation onward.

Challenges
Data orchestration tools and frameworks need to overcome several challenges to become effective.
Some of these challenges include:

9

Data Pipeline Orchestration

 > Complex workflows. Modern data orchestration tools (i.e., data orchestrators) need to reduce the
complexity of interconnecting diverse components of data pipelines across a spectrum of tasks and
jobs. To achieve this, data orchestrators need to provide the right level of abstraction for personas who
build pipelines with UI, CLI, or APIs with self-service.

 > Reliability. In data-driven organizations, data orchestration becomes the critical part of the data
supply chain. Data orchestrators need to ensure data flows are reliable across a multitude of failure
scenarios with different failure-handling mechanisms. This plays an important role in minimizing data
downtime.

 > Non-functional requirements. Data orchestrators use a variety of components, from web servers
to schedulers, workflow tasks, and DAG management engines. They must manage, coordinate, and
ensure there is no single point of failure (SPOF). Another deployment and architectural challenge is
ensuring high availability and fault tolerance across these different processes running on distributed
systems.

 > Scaling. Scaling data orchestration, scheduling, and workflow management in large enterprises that
have hundreds and thousands of pipelines running 24-7 and across multiple tenants with a large
number of data pipelines is extremely challenging. Orchestration engines should scale data-related
operations through parallel processing and reusable pipelines, ensuring robustness as data volume
and velocity rises.

 > Integration. Data orchestrators need to integrate with enterprise tools and systems that span security,
governance, and data cataloging. They need to support a wide array of prebuilt connectors and plug-
ins for diverse data sources through REST APIs, database exports, cloud platforms, and messaging
systems. Data orchestrators also need to integrate with machine learning (ML), artificial intelligence (AI)
tools, and business process management tools across the enterprise.

Adoption Drivers
Three types of strategic initiatives contribute to enterprise investment in data orchestrators: digital
transformation, data modernization, and advanced analytics.

1. As enterprises digitally transform businesses, they create software and hardware processes that
need to be orchestrated.

2. The adoption of cloud platforms creates new interdependencies between on-premises systems and
other cloud systems.

3. To adopt advanced analytics projects, organizations must integrate AI and ML projects with a
complex web of data pipelines.

10

Data Pipeline Orchestration

Given the increasing complexity of evolving data sources and requirements, there is a need to enable seamless
data flow across the pipelines in enterprises by scheduling, automating, and monitoring the workflows to
ensure recoverability, reproducibility, and resiliency. Some of the major adoption drivers include:

 > Automation. Data orchestration makes it possible to accelerate data flow, automate repetitive tasks,
streamline data pipelines, and operationalize them with increased efficiency accelerating data processing.

 > Integrate. Data orchestrators integrate and interconnect different components into workflows with
tasks and steps. They provision resources, manage schedules, provide state management across jobs,
and enforce dependencies through a DAG.

 > Velocity. Orchestration engines trigger jobs and coordinate tasks within jobs to enforce dependencies,
log actions, and maintain traces for troubleshooting. This enhances the productivity of data pipelines
with monitoring, testing, and quick feedback loops with repeatability, reusability, and reproducibility.

Guiding Principles for Tool Selection
In the rapidly evolving landscape of data engineering, various data orchestration tools offer distinct
capabilities for managing, orchestrating, and automating data workflows. These workflows range from
open-source software to commercial, from managed and self-hosted with low-code to code-heavy options.

Data orchestration solutions center around the concept of a direct acyclic graph (DAG)—that is, a graph
with no loops or cycles—describing a collection of tasks that need to be executed. The DAG incorporates
the interrelationships and dependencies of those tasks.

For every type of data orchestration tool—all of them have a few common components, such as
operators—the fundamental unit of abstraction is a task. Operators are instantiated with specific
arguments to define tasks. Each task consumes inputs and produces outputs. These data artifacts
may be files, services, or in-memory data structures. All data orchestration tools also have a scheduler,
workflow manager, and web server.

The next section discusses the common characteristics of data orchestration tools across the spectrum.

Must-Have Characteristics of Modern Data Orchestration Tools
Data teams should follow these guidelines when selecting data orchestrators:

1. Selection. Choose these tools carefully, as the wrong choice can increase total cost of
ownershipTCO, lower return on investment, ROI and hamper an organization’s ability to become
data-driven. Assess your organizational readiness and core competencies before selecting.

11

Data Pipeline Orchestration

2. Ease of use. Evaluate whether a declarative or an imperative framework is best for the organization
based on flexibility, ease of deployment, and turnaround time.

3. Integration. Ensure selected tools integrate with other tools and frameworks in the ecosystem—
especially data observability, data quality, and data integration tools, as well as external third-party tools.

Figure 2 shows the different criteria data teams can use to understand and select data orchestration tools
and frameworks.

Figure 2. Data Orchestration Requirements as a Mind Map

Criteria

Deployment Options

Container Management - Docker Setup

Local Setup

Sandbox Creation

Managed Service

Resource Management
CPU / Memory / Disk Space

Containerization & Kubernetes Support

Error and Exception Handling Configurable Retries

Notification Integration with
Other Tools in the Ecosystem

Integration With Slack

Architecture

Scalability

High Avalialblity

Fault Tolerance

Serverless Serverless(eg - AWS Step Fn, Google
Workflow, Prefect, Databricks

Avoid SPOF

Task Architecture
Parallel Execution

Data Passing between Tasks

Self Healing

State Management & Storage Checkpointing Automatic Resumption

Automation

Auto Failover

Licensing
Open Source

Closed Source

Logging

Monitoring

Schedule Management

Workflow Management

Parametrization

Backfill

Dependency Management

Dynamic DAG Development

APIs / SDKs

Configuration

ReUse Of Modules and DAGs

DAG Management

History

Audit Trail

DAG Authoring

Versioning

Testing DAGs

Out of the box Blueprints / Templates

Version Management

Development Language

Declarative

Imperative

Low Code

Gen AI and NLP

UISingle Pane of Glass

Integrations

Other tools in the Modern ata Stack

Compute Engines
Spark

Dask

Data SourcesDatabases

Data Observability Tools

Data Quality Tools / Frameworks

Enterprise BPM Tools

ML / AI Tools

Enterprise Readiness

SecurityAccess Management

Governance

Auditing

Preserve History of Executions

SLA Tracking

Multi-Tenancy

Architecture. For most organizations, the complexity and sheer volume of data pipelines is ever-
increasing. Data orchestration framework should not only address current data processing requirements
but scale with future growth without requiring substantial re-engineering time and infrastructure

12

Data Pipeline Orchestration

changes. It is imperative that the architecture be scalable for each component, highly available, and
does not have a SPOF. Scaling als necessitates complex resource management capabilities and where
particular tasks are executed on allocated resources in the most efficient and optimized manner.

The architecture should run orchestration processes in parallel with distributed tasks to increase
workflow efficiency and pass data between tasks efficiently.

Wherever possible the architecture should embrace serverless capabilities to alleviate provisioning &
managing infrastructure to reduce operational overhead. Any orchestration framework should provide
flexibility to execute a diverse set of tasks and be expandable to implement different task types as needed.

Workflow management. The most important capability for a data orchestration tool is to build,
manage, and schedule workflows. Workflow definition and task dependency management is a critical
capability that differentiates data orchestration tools.

Build:

 > Workflow CRUD operations with APIs, CLI, and UI that organize workflows for easy management with
tagging and facets

 > Parameterized & dynamic workflows

 > Rapid conversion of functions to tasks, for example with Python decorators.

 > No-code, low-code, drag-and-drop interface that integrates with LLM based assistants that enable non-
technical domain experts to build data pipelines.

 > Bindings to different languages for defining workflows with autocomplete, and code validation
integrated in the IDE.

Operationalize:

 > Secure workflow operations based on user identity, role, and access.

 > DAG serialization and deserialization for workflow portability across systems.

 > Configuration-based declarative pipeline definition to define orchestration, data flows, and
dependencies.

 > Modular orchestration in workflows that allows complex DAGs to be broken down into sub-DAGs for
better management and reusability across teams.

 > Conditional execution of tasks that creates branching logic in workflows with complex task
dependencies.

13

Data Pipeline Orchestration

Enterprise readiness. Data orchestration tools should be enterprise-ready and integrate with enterprise
security frameworks and support SSO, RBAC, worker groups, and user access controls. Governance
features such as data lineage tracking and metadata management help ensure compliance and maintain
a clear understanding of job history and integrate with code & data version tools for job definition and
version management of job runs.

UI capabilities. When running complex workflows, it’s essential to have a clear place for observing
what went wrong and for quickly taking relevant action. Ideally, tools should offer a single pane of glass,
providing a unified point of control to create, manage, and observe different workflows. Additionally,
they should enable users to drill down for granular insights into metrics for data pipelines.

These tools should integrate with enterprise security and access controls, offer a Command Line
Interface (CLI), and allow integration with CI/CD flows to generate automated scripts. Furthermore, they
should feature an intuitive UI with dashboards, such as Gantt charts and graphs. These dashboards
should display job status, visualize task dependencies, and enable users to drill down into job history
and resource consumption details.

Resource management. Data orchestration tools should provide configuration driven approaches for
capacity planning of the associated tasks and their processes—in terms of memory, CPU and disk usage.
This is especially important when workflow complexity grows with multiple tenants in an enterprise setup.

Data orchestration tools should keep track of resource consumption and integrate it with the dashboard.
Managed cloud services report and monitor costs, and put proactive guardrails in place to ensure teams
don’t accidentally consume more resources than budgeted.

Deployment options. Fast deployments cycles that can be automated are critical for data pipelines
to improve data product velocity. Orchestrators should integrate with deployment tools, spin up new
environments, expand capacity of existing deployments and create separate deployments to isolate
and support multi-tenancy. Ideally for large enterprises data orchestrators should deploy and manage
workflows across availability zones, regions and across multiple clouds.

Testing. Testing is an important but often overlooked aspect of data orchestrators. Test workflows, their
scheduling, testing failure scenarios both functionally as well as across the non-functional requirements.
Data orchestration tools should include tests across handshaking points in a workflow, either natively or
through third party tools and libraries.

Monitoring, logging, auditing. Data orchestration tools should offer centralized access to monitoring
and observability of task statuses, landing times, and execution durations through logs and traces. This
diagnostic information should be actionable, either manually or through rule-guided automation, to take
necessary actions that affect the execution of the data pipeline.

14

Data Pipeline Orchestration

Data orchestration tools should either natively support configuration-driven data monitoring and
observability capabilities or integrate with external tools. They should provide alerts and notifications
through diverse channels when failures occur or when service-level agreements are violated. They
should store all the metadata for lineage and auditing as well as for training machine-learning algorithms
powering the data observability tools.

Schedule management. Scheduling workflows and managing and monitoring schedules are integral to
data orchestrators. Data orchestrators should be able to trigger simple, ad hoc parameterized jobs and
be able to create customized complex schedules and manage them. They should provide a user interface
that is intuitive to allow monitoring of the scheduled DAGs, as well as configuration-based and API-based
approaches to work with schedules. Next-generation tools are trending to make task execution be “data-
aware,” as it is often difficult to predict tasks’ completion time.

Error and exception handling. It is critical for data orchestration tools to quickly detect failures, errors,
and exceptions in data pipelines and recover where possible. In the modern data ecosystem with its
distributed architecture, failure is not a question of IF, but of WHEN. These failures can be caused by bad
data or faulty servers. Whatever the cause—these issues need to be quickly detected and remedial action
must be taken.

Data orchestration tools should incorporate (at the core level) retry techniques to recover from failures.
They should offer a concise interface for configuring retry behavior with settings such as exponential
backoff. They should handle timeouts gracefully. Tasks and pipelines will fail, so data orchestration
tools should allow rescheduling, replay, reproduce, and retry capabilities. They should also provide
capabilities to easily roll back any task or subtask and make data pipelines idempotent (meaning they
produce the same results when rerun) wherever possible.

Integration. For the highly disaggregated data ecosystem to be successful, any data tool, framework, or
library needs to integrate with other internal and external systems. Data orchestration tools in particular
need to integrate with enterprise process and application orchestration tools as well as with ML and AI
operational and orchestration tools.

Data orchestration tools need to integrate across internal and external business processes, share and
transfer data across processes and systems, and support bidirectional data flows for synchronization and
migration. They should be able to connect and work with plugins to data sources, such as databases,
APIs, Git, cloud providers, OpenAI ChatGPT, and much more.

Out-of-the-box data orchestration should support a wide array of prebuilt connectors and plugins that
simplify integration with almost any data source. They should provide capabilities to communicate with
REST- and GraphQL-based APIs.

15

Data Pipeline Orchestration

They should integrate data lineage and data observability and data quality tools and store and manage
metadata that pipelines emit every time they run. This metadata should be integrated with the UI layer
of the data orchestration tool to allow data teams to observe health and performance of mission-critical
data pipelines and the data that flows through them and quickly troubleshoot issues as they happen.

Best practices. Some best practices in data orchestration include:

 > Ensure data orchestrators provide different data personas with the ability to create, manage, and
maintain data pipelines for their workloads with self-service.

 > Reduce code (imperative/declarative) when creating DAGs with parameterization, build templates and
blueprints, reuse them, and make DAGs configurable.

 > Ensure data pipeline definitions are decoupled from actual orchestration definitions.

 > Reduce data downtime and blast radius by enabling data teams to be alerted on the right channels
when failure happens or when SLAs are violated.

 > Choose orchestrators that integrate with data observability tools to provide insights and visibility into
state of data pipelines.

 > Choose orchestrators that validate input and output schemas. Define schema checkpoints before and
after tasks to ensure schema validity.

 > Capture and manage operational metadata, including audit logs and lineage for observability.

 > Design automated distribution process coupled to CI (continuous integration) / CD (continuous
deployment) process.

Databricks Workflows
Most data orchestration tools stand alone, with limited integration to data lakehouses and data
warehouses. This leads to increased development, deployment, and troubleshooting time, with back-
and-forth across different systems to build, manage, and operate data pipelines at scale. This introduces
longer feedback loops and reduces velocity.

Unified. With the addition of a fully managed orchestration capabilities, the Databricks Data Intelligence
Platform has become a one-stop shop for data ingestion and ETL/ELT. Users don’t need to shift back and
forth between third-party orchestration tools and Databricks to build, manage, and deploy data pipelines
that combine data engineering, analytics and ML/AI. Previously, data teams created workflows with third-

16

Data Pipeline Orchestration

party tools and executed Databricks and Spark jobs by using an API. These tools were not integrated with
the data lakehouse, making data practitioners unproductive, resulting in higher TCO and no single pane
of glass to manage myriad jobs with integrated data governance and access controls.

Operationalization. Data personas can build workflows on any cloud without managing complex
infrastructure. This mitigates operational overhead, allowing data teams to focus on workflows rather
than infrastructure and deployment challenges. Databricks Workflows can be used by all personas, and
workflows can be built using UI, API and code, including Python, and Terraform.

Databricks Workflows offers some unique capabilities:

 > Configuration-driven repair and rerun when workflow fails by running failed tasks automatically.

 > Integration with code versioning systems to build and update workflows with committed code.

 > Supports a rich task API to set and retrieve values and share context from upstream tasks and systems,
making it easier to customize task dependency to outcomes.

 > Integrate diverse task types from dbt (an open source data build tool) to SQL, allowing teams to
orchestrate and coordinate complex jobs and chaining with parent-child and nested dependencies.

 > Diverse ways to create and execute jobs with CLI (command line interface), API, UI, and a single pane of
glass with a unified matrix view across tenants to monitor and diagnose health across executions.

 > Set callbacks for failures and SLA misses and track long-running workflows.

 > Integration with Unity Catalog for automatic data lineage and unified governance.

 > Fine-grained notification of alerts, with control over users and groups to be alerted across job stages,
as well as alerts types, events, and recipients.

 > Tracking costs with tags associated with jobs and clusters. For Databricks Workflows, the associated
cost is just the compute time.

 > Ability to associate tags with jobs, allowing easy findability across UI, CLI and APIs.

Best Practices
When working with the Databricks Workflows, some best practices include:

 > Jobs should be owned by service principals (i.e. machine users) and not individual users.

 > Always tag jobs for easy search and discovery.

https://www.databricks.com/product/workflows
https://airflow.apache.org/docs/apache-airflow/stable/administration-and-deployment/logging-monitoring/callbacks.html
https://www.databricks.com/product/unity-catalog
https://docs.databricks.com/en/dev-tools/service-principals.html

17

Data Pipeline Orchestration

 > Leverage integrated version control for notebooks to select the last committed job.

 > Use job clusters (ephemeral compute) that are active only as long as needed for the job to complete.

Databricks Workflows has simplified lakehouse customers’ workload and mitigated the challenges
of learning, setup, deployment, maintenance, and troubleshooting of separate systems for building
lakehouses and orchestrating workflows.

Customer Feedback Across Case Studies
Databricks’ customer-driven move to build an integrated data orchestration and workflow with the rest
of the Databricks ecosystem has reaped rich dividends for multiple customers across diverse verticals in
the form of a better user experience and a smaller footprint, resulting in higher deployment velocity (e.g.
Wood Mackenzie and YipitData). Databricks is the first data lakehouse platform to provide this capability.

Databricks Workflows has lowered the barrier to entry for building and orchestrating data pipelines. Its
features (configurable out of the box) and templates allow users to quickly define, schedule, manage,
and monitor data pipelines, empowering customers to quickly create reusable workflows that promote
productivity, data quality, transparency, and an easier path to troubleshoot and fix pipeline issues.

Customers find that cognitive overhead is reduced when working with an intuitive, single-pane-of-glass
UI that is natively integrated with Databricks workspace. Onboarding new users is faster and easier.
The UI enables users to search and identify running jobs among hundreds of simultaneously running
pipelines.

Integration with other tools in the ecosystem, such as data and code versioning and data observability,
has considerably reduced time to market, and Databricks Workflows’ capability of cluster reuse has
resulted in cost savings of more than 50% for some customers (such as Ahold Delhazie).

Conclusion
Many organizations do not sufficiently address the critical last mile of data pipeline management. This
last mile centers on data orchestration—that is, the scheduling and optimization of pipelines and the
larger workflows they help drive. Data engineers and data ops teams building data driven systems and
services with data pipelines should:

 > Select data orchestration tools early in the project. Do not leave this decision to the DataOps team
to consider during deployment. Data orchestration tool selection should be formally planned with a
proof of concept, tested, and reviewed by all stakeholders.

https://docs.databricks.com/en/clusters/index.html
https://www.databricks.com/customers/wood-mackenzie
https://www.databricks.com/blog/why-we-migrated-apache-airflow-databricks-workflows-yipitdata
https://www.databricks.com/customers/ahold-delhaize

18

Data Pipeline Orchestration

 > Leverage data orchestration tools only for data orchestration. Don’t run expensive, compute-heavy
tasks within the data orchestration tools.

 > Avoid manual and ad hoc approaches for data orchestration with scripts and non-standard
approaches.

 > Carefully evaluate cloud-native solutions, especially those that are based on open source software, as
they may be too restrictive for certain use cases.

19

Data Pipeline Orchestration

G E T • M O R E • V A L U E • F R O M • Y O U R • D A T A

About Eckerson Group
Wayne Eckerson, a globally-known author, speaker, and consultant, formed Eckerson
Group to help organizations get more value from data and analytics. His goal is to provide
organizations with expert guidance during every step of their data and analytics journey.

Eckerson Group helps organizations in three ways:

 > Our thought leaders publish practical, compelling content that keeps data analytics leaders abreast
of the latest trends, techniques, and tools in the field.

 > Our consultants listen carefully, think deeply, and craft tailored solutions that translate business
requirements into compelling strategies and solutions.

 > Our advisors provide competitive intelligence and market positioning guidance to software vendors
to improve their go-to-market strategies.

Eckerson Group is a global research, consulting, and advisory firm that focuses solely on data and
analytics. Our experts specialize in data governance, self-service analytics, data architecture, data
science, data management, and business intelligence.

Our clients say we are hard-working, insightful, and humble. It all stems from our love of data and our
desire to help organizations turn insights into action. We are a family of continuous learners, interpreting
the world of data and analytics for you.

Get more value from your data. Put an expert on your side. Learn what Eckerson Group can do for you!

http://www.eckerson.com/
http://www.eckerson.com/
https://meetings.hubspot.com/wayne-eckerson/eg-consulting

20

Data Pipeline Orchestration

About the Sponsor
Databricks is the Data and AI company. More than 10,000 organizations
worldwide — including Comcast, Condé Nast, and over 50% of the
Fortune 500 — rely on the Databricks Data Intelligence Platform to unify
their data, analytics and AI. Databricks is headquartered in San Francisco,
with offices around the globe. Founded by the original creators of Delta
Lake, Apache SparkTM, and MLflow, Databricks is on a mission to help data teams solve the world’s
toughest problems. To learn more, follow Databricks on Twitter, LinkedIn, and Facebook.

https://www.databricks.com/
https://twitter.com/databricks
https://www.linkedin.com/company/databricks
https://www.facebook.com/databricksinc

	_heading=h.i6rpadrnxffa
	_heading=h.2et92p0
	_heading=h.tyjcwt
	_heading=h.lnxbz9
	_heading=h.n42cc578tnyn
	_heading=h.s9e7u4doltv8
	_heading=h.35nkun2
	_heading=h.sbuxs4ftm6qf
	_heading=h.fdpsbz8d79ia
	_heading=h.y063frwwqggu
	_heading=h.6nofwfl3ru4
	_heading=h.aatz81gvrxma
	_heading=h.8xruu7wjv4xh
	_heading=h.16so90fgx7cf
	_heading=h.rd44de1g9wg6
	_heading=h.qil8cmo010hk
	_heading=h.cko3isht1ygc
	Executive Summary
	Introduction
	Guiding Principles for Tool Selection
	Databricks Workflows
	Conclusion
	About Eckerson Group
	About the Sponsor

