Alastair Green

OpenCypher and SQL Property Graphs Standards Contributor Lead, Neo4j

openCypher and SQL Property Graphs standards contributor Lead, Query Languages Standards and Research, Neo4j Inc. Product Manager, Neo4j Morpheus/Cypher for Apache Spark Head of Enterprise Data Distribution Infrastructure, Barclays Investment Bank, 2011-2015 Co-author OASIS Business Transaction Protocol 1.1

UPCOMING SESSIONS

PAST SESSIONS

Neo4j Morpheus: Interweaving Table and Graph Data with SQL and Cypher in Apache SparkSummit 2019

Graph data and graph analytics are increasingly important in data science and engineering. Cypher is an open language used for querying and updating graph databases and analytics platforms, which is now available in the Apache Spark environment. Neo4j Morpheus leverages the open source graph language project to integrate data from Neo4j operational graph databases with Hive and JDBC SQL data sources, using new Cypher features like the Property Graph Catalog, named graphs, graph projection, parameterized graph view functions, and graph/table views. Input and output graphs can be loaded and stored as structured collections of DataFrames with strong graph schemas to ensure data consistency and graph query optimization. Property graphs can also be analyzed and transformed using graph algorithms such as those in the GraphFrames project. Besides describing and demonstrating these capabilities, this talk also discusses the Spark Project Improvement Proposal to bring Cypher into Spark 3.0, and outlines current work to unify Cypher with other graph query languages to form a new ISO standard Graph Query Language.

Neo4j Morpheus: Interweaving Table and Graph Data with SQL and Cypher in Apache Spark (continues)Summit 2019

Graph data and graph analytics are increasingly important in data science and engineering. Cypher is an open language used for querying and updating graph databases and analytics platforms, which is now available in the Apache Spark environment. Neo4j Morpheus leverages the open source graph language project to integrate data from Neo4j operational graph databases with Hive and JDBC SQL data sources, using new Cypher features like the Property Graph Catalog, named graphs, graph projection, parameterized graph view functions, and graph/table views. Input and output graphs can be loaded and stored as structured collections of DataFrames with strong graph schemas to ensure data consistency and graph query optimization. Property graphs can also be analyzed and transformed using graph algorithms such as those in the GraphFrames project. Besides describing and demonstrating these capabilities, this talk also discusses the Spark Project Improvement Proposal to bring Cypher into Spark 3.0, and outlines current work to unify Cypher with other graph query languages to form a new ISO standard Graph Query Language.

Neo4j Morpheus: Interweaving Documents, Tables and and Graph Data in SparkSummit Europe 2018

Fuse graph, document and relational data from transactional and analytic data sources, into a property graph "bird's eye view". The property graph data model is Chen's "entity relationship" model, without clutter. Use "ASCII Art" visual property graph schemas to define "graph data lifts", mapping from data lake, RDBMS, RDF or graph data cloud services into Spark. Graphs in Spark draw on multiple data sources. Leverage the Cypher query language to combine, split, and project graphs in Spark memory. Graph data is "woven" in Spark without altering or copying the original source. The results of graph workloads can be written back into HDFS or other file systems. Graphs can be read from, stored and merged into a Neo4j transactional database. And tabular datasets can be extracted from graphs. Data scientists and engineers load, wrangle and analyze mixed model data through Morpheus transformations. Enterprises use graphs to catalogue their disparate data assets and processes. They store graph datasets in the data lake. In a world of concern about data protection, see how graph data lifts allow tailored, canonical data views to be realized, in Spark, without remodeling and moving data. Morpheus combines SparkSQL and Cypher queries, and table/graph functions.Choose the right language for the job: eliminate cumbersome multi-joins for connected-data traversals by using super-concise Cypher patterns for sub-graph detection and graph projection; use the power of table projection, grouping, aggregation in SparkSQL, all in one application. Feel free to "dismantle your graph": expose your graph nodes or relationships as dataframes, or as Hive tables. Key Takeaways Graph technology meets Big Data and Spark Analytics Property graphs: the superset data model Graph, relational and document data, interwoven Lift, split, combine, and create new graphs, from any data source Get your data fit to exploit graph compute, without losing any of your existing tools undefined undefined undefined undefined undefined Session hashtag: #SAISDD9