Sarah Bird

AI Research and Products, Microsoft

Sarah leads research and emerging technology strategy for Azure AI. Sarah works to accelerate the adoption and impact of AI by bringing together the latest innovations research with the best of open source and product expertise to create new tools and technologies. Sarah is currently leading the development of responsible AI tools in Azure Machine Learning. She is also an active member of the Microsoft AETHER committee, where she works to develop and drive company-wide adoption of responsible AI principles, best practices, and technologies. Sarah was one of the founding researchers in the Microsoft FATE research group and prior to joining Microsoft worked on AI fairness in Facebook.

Sarah is active contributor to the open source ecosystem, she co-founded ONNX, Fairlearn, and WhiteNoise and was a leader in the Pytorch 1.0 and InterpretML projects. She was an early member of the machine learning systems research community and has been active in growing and forming the community. She co-founded the MLSys research conference and the Learning Systems workshops. She has a Ph.D. in computer science from UC Berkeley advised by Dave Patterson, Krste Asanovic, and Burton Smith.

UPCOMING SESSIONS

PAST SESSIONS

Spark + AI Summit 2020: Thursday Morning KeynotesSummit 2020

Clemens Mewal - Next Generation Data Science Workspace (Databricks) - 9:06 Lauren Richie - DEMO: Next Generation Data Science Workspace (Databricks) - 17:55 Matei Zaharia - MLflow Community and Product Updates (Databricks) - 27:40 Sue Ann Hong - DEMO: MLflow (Databricks) - 42:57 Rohan Kumar - Responsible ML (Microsoft) - 51:52 Sarah Bird - DEMO: Responsible ML (Microsoft) - 1:00:21 Anurag Sehgal - Data and AI (Credit Suisse) - 1:12:58


Introducing the Next Generation Data Science Workspace
Ali Ghodsi, Clemens Mewald and Lauren Richie

It is no longer a secret that data driven insights and decision making are essential in any company’s strategy to keep up with today’s rapid pace of change and remain relevant. Although we take this realization for granted, we are still in the very early stage of enabling data teams to deliver on their promise. One of the reasons is that we haven’t equipped this profession with the modern toolkit they deserve.

Existing solutions leave data teams with impossible trade-offs. Giving Data Scientists the freedom to use any open source tools on their laptops doesn’t provide a clear path to production and governance. Simply hosting those same tools in the Cloud may solve some of the data privacy and security issues, but doesn’t improve productivity nor collaboration. On the other hand, most robust and scalable production environments hinder innovation and experimentation by slowing Data Scientists down.

In this talk, we will unveil the next generation of the Databricks Data Science Workspace: An open and unified experience for modern data teams specifically designed to address these hard tradeoffs. We will introduce new features that leverage the open source tools you are familiar with to give you a laptop-like experience that provides the flexibility to experiment and the robustness to create reliable and reproducible production solutions.


Simplifying Model Development and Management with MLflow
Matei Zaharia and Sue Ann Hong

As organizations continue to develop their machine learning (ML) practice, the need for robust and reliable platforms capable of handling the entire ML lifecycle is becoming crucial for successful outcomes. Building models is difficult enough to do once, but deploying them into production in a reproducible, agile, and predictable way is exponentially harder due to the dependencies on parameters, environments, and the ever changing nature of data and business needs.

Introduced by Databricks in 2018, MLflow is the most widely used open source platform for managing the full ML lifecycle. With over 2 million PyPI downloads a month and over 200 contributors, the growing support from the developer community demonstrates the need for an open source approach to standardize tools, processes, and frameworks involved throughout the ML lifecycle. MLflow significantly simplifies the complex process of standardizing MLOps and productionizing ML models. In this talk, we’ll cover what’s new in MLflow, including simplified experiment tracking, new innovations to the model format to improve portability, new features to manage and compare model schemas, and new capabilities for deploying models faster.


Responsible ML - Bringing Accountability to Data Science
Rohan Kumar and Sarah Bird

Responsible ML is the most talked about field in AI at the moment. With the growing importance of ML, it is even more important for us to exercise ethical AI practices and ensure that the models we create live up to the highest standards of inclusiveness and transparency. Join Rohan Kumar, as he talks about how Microsoft brings cutting-edge research into the hands of customers to make them more accountable for their models and responsible in their use of AI. For the AI community, this is an open invitation to collaborate and contribute to shape the future of Responsible ML.


How Credit Suisse Is Leveraging Open Source Data and AI Platforms to Drive Digital Transformation, Innovation and Growth
Anurag Sehgal

Despite the increasing embrace of big data and AI, most financial services companies still experience significant challenges around data types, privacy, and scale. Credit Suisse is overcoming these obstacles by standardizing on open, cloud-based platforms, including Azure Databricks, to increase the speed and scale of operations, and the democratization of ML across the organization. Now, Credit Suisse is leading the way by successfully employing data and analytics to drive digital transformation, delivering new products to market faster, and driving business growth and operational efficiency.

Responsible AI: Protecting Privacy and Preserving Confidentiality in Machine Learning and Data AnalyticsSummit 2020

In this session, we will discuss a range of new emerging technologies for privacy and confidentiality in machine learning and data analytics. We will demonstrate how to use open source tools to put these technologies to work for your applications.