Wenchen Fan - Databricks

Wenchen Fan

Software Engineer, Databricks

Wenchen Fan is a software engineer at Databricks, working on Spark Core and Spark SQL. He mainly focuses on the Apache Spark open source community, leading the discussion and reviews of many features/fixes in Spark. He is a Spark committer and a Spark PMC member.

UPCOMING SESSIONS

Apache Spark Data Source V2—continuesSummit 2018

As a general computing engine, Spark can process data from various data management/storage systems, including HDFS, Hive, Cassandra and Kafka. For flexibility and high throughput, Spark defines the Data Source API, which is an abstraction of the storage layer. The Data Source API has two requirements. 1) Generality: support reading/writing most data management/storage systems. 2) Flexibility: customize and optimize the read and write paths for different systems based on their capabilities. Data Source API V2 is one of the most important features coming with Spark 2.3. This talk will dive into the design and implementation of Data Source API V2, with comparison to the Data Source API V1. We also demonstrate how to implement a file-based data source using the Data Source API V2 for showing its generality and flexibility. Session hashtag: #DDSAIS12

Apache Spark Data Source V2Summit 2018

As a general computing engine, Spark can process data from various data management/storage systems, including HDFS, Hive, Cassandra and Kafka. For flexibility and high throughput, Spark defines the Data Source API, which is an abstraction of the storage layer. The Data Source API has two requirements. 1) Generality: support reading/writing most data management/storage systems. 2) Flexibility: customize and optimize the read and write paths for different systems based on their capabilities. Data Source API V2 is one of the most important features coming with Spark 2.3. This talk will dive into the design and implementation of Data Source API V2, with comparison to the Data Source API V1. We also demonstrate how to implement a file-based data source using the Data Source API V2 for showing its generality and flexibility. Session hashtag: #DDSAIS12

Deep Dive into Spark SQL with Advanced Performance TuningSummit 2018

Spark SQL is a highly scalable and efficient relational processing engine with ease-to-use APIs and mid-query fault tolerance. It is a core module of Apache Spark. Spark SQL can process, integrate and analyze the data from diverse data sources (e.g., Hive, Cassandra, Kafka and Oracle) and file formats (e.g., Parquet, ORC, CSV, and JSON). This talk will dive into the technical details of SparkSQL spanning the entire lifecycle of a query execution. The audience will get a deeper understanding of Spark SQL and understand how to tune Spark SQL performance. Session hashtag: #Exp3SAIS

PAST SESSIONS

A Developer’s View into Spark’s Memory ModelSummit 2017

As part of Project Tungsten, we started an ongoing effort to substantially improve the memory and CPU efficiency of Apache Spark's backend execution and push performance closer to the limits of modern hardware. In this talk, we'll take a deep dive into Apache Spark's unified memory model and discuss how Spark exploits memory hierarchy and leverages application semantics to manage memory explicitly (both on and off-heap) to eliminate the overheads of JVM object model and garbage collection. Session hashtag: #SFdev25

A Developer’s View Into Spark’s Memory ModelSummit Europe 2017

As part of Project Tungsten, we started an ongoing effort to substantially improve the memory and CPU efficiency of Apache Spark’s backend execution and push performance closer to the limits of modern hardware. In this talk, we’ll take a deep dive into Apache Spark’s unified memory model and discuss how Spark exploits memory hierarchy and leverages application semantics to manage memory explicitly (both on and off-heap) to eliminate the overheads of JVM object model and garbage collection. Session hashtag: #EUdd2