Zak Hassan

Senior Software Engineer - AI/ML CoE, CTO Office, Red Hat, Inc.

Currently focused on developing analytics platform on OpenShift and leveraging Open Source ML Frameworks: Apache Spark, Tensorflow and more. Designing high performance and scalable ML platform that exposes metrics through cloud-native technology: Prometheus and Kubernetes.

Past sessions

Understanding the dynamics of GPU utilization and workloads in containerized systems is critical to creating efficient software systems. We create a set of dashboards to monitor and evaluate GPU performance in the context of TensorFlow. We monitor performance in real time to gain insight into GPU load, GPU memory and temperature metrics in a Kubernetes GPU enabled system. Visualizing TensorFlow training job metrics in real time using Prometheus allows us to tune and optimize GPU usage. Also, because Tensor flow jobs can have both GPU and CPU implementations it is useful to view detailed real time performance data from each implementation and choose the best implementation. To illustrate our system, we will show a live demo gathering and visualizing GPU metrics on a GPU enabled Kubernetes cluster with Prometheus and Grafana.

As Apache Spark applications move to a containerized environment, there are many questions about how to best configure server systems in the container world. In this talk we will demonstrate a set of tools to better monitor performance and identify optimal configuration settings. We will demonstrate how Prometheus, a project that is now part of the Cloud Native Computing Foundation (CNCF: https://www.cncf.io/projects/), can be applied to monitor and archive system performance data in a containerized spark environment.

In our examples, we will gather spark metric output through Prometheus and present the data with Grafana dashboards. We will use our examples to demonstrate how performance can be enhanced through different tuned configuration settings. Our demo will show how to configure settings across the cluster as well as within each node.

Session hashtag: #ExpSAIS12