
Databricks Delta:
Bringing Unprecedented Reliability 
and Performance to Cloud Data Lakes



 

AN “UNDER THE HOOD” LOOK

Databricks Delta, a component of the Databricks Unified Analytics Platform*, 
is a unified data management system that brings unprecedented reliability 
and performance (10-100 times faster than Apache Spark on Parquet) to cloud 
data lakes. Designed for both batch and stream processing, it also addresses 
concerns regarding system complexity. Its advanced architecture enables 
high reliability and low latency through the use of techniques such as schema 
validation, compaction, data skipping, etc. to address pipeline development, 
data management and as well query serving.

* Databricks Unified Analytics Platform, from the original creators of Apache Spark™, accelerates innovation by unifying data science, engineering and business.
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QUERY PERFORMANCE  
The required ETL processes can add significant 
latency such that it may take hours before 
incoming data manifests in a query response 
so the users do not benefit from the latest data. 
Further, increasing scale and the resulting  
longer query run times can prove unacceptably 
long for users.

DATA RELIABILITY 
The complex data pipelines are error-prone and 
complex consuming inordinate resources. Further, 
schema evolution as business needs change can be 
effort-intensive. Finally, errors or gaps in incoming 
data, a not uncommon occurrence, can cause 
failures in downstream applications.

SYSTEM COMPLEXITY 
It is difficult to build flexible data engineering 
pipelines that combine streaming and batch 
analytics. Building such systems requires complex 
and low-level code. Interventions during stream 
processing with batch correction or programming 
multiple streams from the same sources or to the 
same destinations is restricted.

Many organizations have responded to the their ever-growing data volumes by adopting data lakes 
as places to collect their data ahead of making it available for analysis. While this has tended to 
improve the situation somewhat data lakes suffer from some key challenges of their own:

Challenges in Harnessing Data
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Challenges in Harnessing Data

Practitioners typically organize their pipelines using a multi-hop architecture. The pipeline starts with a “firehose” of records 
from many different parts of the organization. These data are then normalized and enriched with dimension information. 
Following this it may be filtered down and aggregated for particular business objectives. Finally, high-level summaries of key 
business metrics might be created.

There are various challenges encountered through the pipeline stages:
• Schema changes can break enrichment, joins, transforms between stages

• Failures may cause data between stages to either drop on the floor or be duplicated

• Partitioning alone does not scale for multi-dimensional data

• Standard tables do not allow combining streaming and batch for best latencies

• Concurrent access suffer from inconsistent query results

• Failing streaming jobs can require resetting and restarting data processing

Databricks Delta addresses the challenges faced by data engineering professionals in marshalling their data head-on by 
providing the opportunity for a much simpler analytics architecture able to address both batch and stream use case with 
high query performance and high data reliability.
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The Delta architecture provides an efficient and 
transactional way to work with large data sets 
stored as files on S3 (or other blob stores). It 
employs an ordered log (the Delta Log) of atomic 
collections of actions (e.g. AddFile, RemoveFile, 
etc.). It is based on the notion of Databricks Delta 
tables built atop the Databricks File System (DBFS) 
which manifests:

Databricks Delta Architecture

• Versioned Parquet files (based on Apache Parquet1)

• Indexes and stats

• The Delta log

1  https://parquet.apache.org/
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Parquet is a columnar storage format and supports very efficient compression and encoding schemes.  
In Delta the versioned Parquet files enable tracking the evolution of the data. Indexes and statistics 
about the files are maintained to increase query efficiency. The Delta log can be appended to by 
multiple writers that are mediated using optimistic concurrency control providing serializable ACID 
transactions. Changes to the table are stored as ordered atomic units called commits. The log is 
designed such that it can be read in parallel by a cluster of Spark executors. 

The Delta design allows readers to efficiently query a snapshot of the state of a table, optionally 
filtering by partition value such that you get fast operations irrespective of the number of files.

Databricks Delta Architecture

7



Designing and building robust pipelines is the first 
step in realizing value from one’s data resources. The 
focus needs to be not only on ingesting the data but 
also on ensuring quality upon ingest and being able 
to maintain the data over time as enhancements 
and corrections need to be made and manage the 
environment effectively as queries as being run. Delta 
helps address challenges throughout the various 
pipeline stages while helping you address both batch 
and streaming data.

Building and Maintaining Robust Pipelines
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Delta uses a number of techniques to address query 
performance, data reliability and system complexity:

Query Performance
Query performance is a major driver of user 
satisfaction. The faster a query returns results, the 
sooner those results are available for using. With 
Delta we have observed query performance 10  
to 100 times faster than with Apache Spark on 
Parquet. Delta employs various techniques to  
deliver superior performance. 

Delta Details: Query Performance
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DATA INDEXING 
Delta creates and maintains indexes of the ingested data. This speeds up the 
querying dramatically.

DATA SKIPPING 
Delta maintains file statistics so that data subsets relevant to the query are 
used instead of entire tables — this partition pruning avoids processing 
data that is not relevant to the query. Multi-dimensional clustering (using 
Z-ordering algorithm) is used to enable this. This techniques is particularly 
helpful in the case of complex queries.

COMPACTION 
Often, especially in the case of streaming data, a large number of small files 
are created as data is ingested. Storing and accessing these small files can be 
processing-intensive, slow and inefficient from a storage utilization perspective. 
Delta manages file sizes (i.e. compacts or combines multiple small files into 
more efficient larger ones) to speed up query performance.

DATA CACHING 
Accessing data from storage repeatedly can slow query performance. Delta 
automatically caches highly accessed data to speed access for queries 
improving performance by an order of magnitude.

Delta Details: Query PerformanceDelta Details: Query Performance

Delta Details: Query Performance
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Data Reliability
Reliable datasets are key to successful 
data analytics and data use whether that 
be feeding dashboards or enabling ML 
initiatives. Delta uses various techniques to 
achieve data reliability.

Delta Details: Data Reliability
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ACID TRANSACTIONS 
The inevitable partial or failed writes risk corrupting the data. Delta employs 
an “all or nothing” ACID transaction approach to prevent such corruption.

SNAPSHOT ISOLATION 
In large environments with multiple concurrent readers and writers it is 
critical that metadata be maintained in a way such that reads in progress 
act on consistent views of data and are not impacted by writes in progress. 
Delta provides snapshot isolation ensuring that multiple writers can write to a 
dataset simultaneously without interfering with jobs reading the dataset. 

SCHEMA ENFORCEMENT 
Notionally similar data but from different sources or of different vintage 
can differ in its representation creating difficulties for using it effectively. 
Delta helps ensure data integrity for ingested data by providing schema 
enforcement so that data can be stored using the preferred schema and 
avoids potential data corruption with incorrect or invalid schemas.

EXACTLY ONCE 
When working with long running computations, multiple streams or with 
concurrent batch jobs there is a risk that some data is missed (due to 
transmission difficulties) or duplicated (in attempts to correct for the misses). 
Delta employs checkpointing to provide a robust exactly once delivery 
semantic to ensure that data are neither missed nor repeated erroneously.

UPSERTS AND DELETES SUPPORT 
Standard Spark tables are write-once i.e. they cannot be modified. Any 
necessary changes to take account of late-arriving data or data requiring 
updating must be addressed using new tables. Delta provides support for 
UPSERTS and DELETES making it easier to address these situation i.e. these 
commands provide a more “convenient” way of dealing with such changes.

Delta Details: Data Reliability
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System Complexity
System complexity is a key determinant not 
only of reliability and cost-effectiveness but 
very importantly, also of responsiveness. 
As business requirements evolve the data 
analytics architecture needs to be flexible 
and responsive to keep up.

Delta Details: System Complexity
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UNIFIED BATCH/STREAM 
Delta is able to handle both batch and streaming data (via a 
direct integration with Structured Streaming for low latency 
updates) including the ability to concurrently write batch and 
streaming data to the same data table. Not only does this result 
in a simpler system architecture, it also results in shorter time 
from data ingest to query result.

SCHEMA EVOLUTION 
Delta provides ability to infer schema from input data. This 
reduces the effort for dealing with schema impact of changing 
business needs at multiple levels of the pipeline/ data stack.

Delta Details: System Complexity
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Delta is a powerful new approach to managing data in a cloud data lake for analysis and ML 
uses cases. Adopting the following best practices will help you make the most of Delta:

Go Through Delta
All writes and reads should go through Delta to ensure consistent overall behavior. Further, Delta 
tables must not be accessed using earlier (pre-Delta) versions of Databricks Runtime because 
those versions do not understand Delta and do not support it.

Run OPTIMIZE Regularly
The OPTIMIZE command is used to trigger compaction. It makes no data related changes to the 
table, so a read before and after an OPTIMIZE has the same results. It should be run regularly 
on tables that analysts are querying to ensure efficiency. A good starting point is to do this on a 
daily basis. Note that OPTIMIZE should not however be run on base or staging tables.

Delta Best Practices
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Run VACUUM Regularly
To ensure that concurrent readers can continue reading a stale snapshot of a table, Databricks 
Delta leaves deleted files on DBFS for a period of time. The VACUUM command helps save on 
storage costs by cleaning up these invalid files. It can, however, interrupt users querying a Delta 
table similar to when partitions are re-written. VACUUM should be run regularly to clean up 
expired snapshots that are no longer required. 

Batch Modifications
Parquet files, that form the underpinning of Delta, are immutable and thus need to be rewritten 
completely to reflect changes regardless of the extent of the change. Use MERGE INTO to batch 
changes to amortize costs.

Use DELETEs
Manually deleting files from the underlying storage is likely to break the Delta table so instead 
you should use DELETE commands to ensure proper progression of the change.

Delta Best Practices

16



Trying Databricks Delta

Delta is easy to put into production — Databricks customers have been able to get 
into production with a Delta-based solution in just a few weeks using a small team 
compared to alternate approaches that take much longer and more resources. It is 
easy to get started with Delta. 

Porting existing Spark code for using Delta is as simple as changing 
“CREATE TABLE ... USING parquet” to
“CREATE TABLE ... USING delta”

or changing
“dataframe.write.format(“parquet”).load(“/data/events”)”
“dataframe.write.format(“delta”).load(“/data/events”)”
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Trying Databricks Delta

If you are already using Azure Databricks Premium you can explore Delta 
today using:

• Databricks Delta quickstart notebook for a simple “hello world” with Databricks Delta

• OPTIMIZE notebook to try out Databricks Delta’s indexing and statistics capabilities and see how Delta’s OPTIMIZE and ZORDER 
commands accelerate queries 

If you are not already using Azure Databricks Premium, you can try Delta for 
free by signing up for the free trial and using the notebooks above.

You can learn more about Delta from the Databricks Delta documentation.
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