
Databricks Delta:
Bringing Unprecedented Reliability
and Performance to Cloud Data Lakes

AN “UNDER THE HOOD” LOOK

Databricks Delta, a component of the Databricks Unified Analytics Platform*,
is a unified data management system that brings unprecedented reliability
and performance (10-100 times faster than Apache Spark on Parquet) to cloud
data lakes. Designed for both batch and stream processing, it also addresses
concerns regarding system complexity. Its advanced architecture enables
high reliability and low latency through the use of techniques such as schema
validation, compaction, data skipping, etc. to address pipeline development,
data management and as well query serving.

* Databricks Unified Analytics Platform, from the original creators of Apache Spark™, accelerates innovation by unifying data science, engineering and business.

2

Challenges in Harnessing Data

Databricks Delta Architecture

Building and Maintaining Robust Pipelines

Delta Details

Query Performance

Data Indexing

Data Skipping

Compaction

Data Caching

Data Reliability

ACID Transactions

Snapshot Isolation

Schema Enforcement

Exactly Once

UPSERTS and DELETES Support

System Complexity

Unified Batch/Stream

Schema Evolution

Content
Delta Best Practices

Go Through Delta

Run OPTIMIZE Regularly

Run VACUUM Regularly

Batch Modifications

Use DELETEs

Trying Databricks Delta

3

QUERY PERFORMANCE
The required ETL processes can add significant
latency such that it may take hours before
incoming data manifests in a query response
so the users do not benefit from the latest data.
Further, increasing scale and the resulting
longer query run times can prove unacceptably
long for users.

DATA RELIABILITY
The complex data pipelines are error-prone and
complex consuming inordinate resources. Further,
schema evolution as business needs change can be
effort-intensive. Finally, errors or gaps in incoming
data, a not uncommon occurrence, can cause
failures in downstream applications.

SYSTEM COMPLEXITY
It is difficult to build flexible data engineering
pipelines that combine streaming and batch
analytics. Building such systems requires complex
and low-level code. Interventions during stream
processing with batch correction or programming
multiple streams from the same sources or to the
same destinations is restricted.

Many organizations have responded to the their ever-growing data volumes by adopting data lakes
as places to collect their data ahead of making it available for analysis. While this has tended to
improve the situation somewhat data lakes suffer from some key challenges of their own:

Challenges in Harnessing Data

4

Challenges in Harnessing Data

Practitioners typically organize their pipelines using a multi-hop architecture. The pipeline starts with a “firehose” of records
from many different parts of the organization. These data are then normalized and enriched with dimension information.
Following this it may be filtered down and aggregated for particular business objectives. Finally, high-level summaries of key
business metrics might be created.

There are various challenges encountered through the pipeline stages:
• Schema changes can break enrichment, joins, transforms between stages

• Failures may cause data between stages to either drop on the floor or be duplicated

• Partitioning alone does not scale for multi-dimensional data

• Standard tables do not allow combining streaming and batch for best latencies

• Concurrent access suffer from inconsistent query results

• Failing streaming jobs can require resetting and restarting data processing

Databricks Delta addresses the challenges faced by data engineering professionals in marshalling their data head-on by
providing the opportunity for a much simpler analytics architecture able to address both batch and stream use case with
high query performance and high data reliability.

5

The Delta architecture provides an efficient and
transactional way to work with large data sets
stored as files on S3 (or other blob stores). It
employs an ordered log (the Delta Log) of atomic
collections of actions (e.g. AddFile, RemoveFile,
etc.). It is based on the notion of Databricks Delta
tables built atop the Databricks File System (DBFS)
which manifests:

Databricks Delta Architecture

• Versioned Parquet files (based on Apache Parquet1)

• Indexes and stats

• The Delta log

1 https://parquet.apache.org/

6

Parquet is a columnar storage format and supports very efficient compression and encoding schemes.
In Delta the versioned Parquet files enable tracking the evolution of the data. Indexes and statistics
about the files are maintained to increase query efficiency. The Delta log can be appended to by
multiple writers that are mediated using optimistic concurrency control providing serializable ACID
transactions. Changes to the table are stored as ordered atomic units called commits. The log is
designed such that it can be read in parallel by a cluster of Spark executors.

The Delta design allows readers to efficiently query a snapshot of the state of a table, optionally
filtering by partition value such that you get fast operations irrespective of the number of files.

Databricks Delta Architecture

7

Designing and building robust pipelines is the first
step in realizing value from one’s data resources. The
focus needs to be not only on ingesting the data but
also on ensuring quality upon ingest and being able
to maintain the data over time as enhancements
and corrections need to be made and manage the
environment effectively as queries as being run. Delta
helps address challenges throughout the various
pipeline stages while helping you address both batch
and streaming data.

Building and Maintaining Robust Pipelines

8

Delta uses a number of techniques to address query
performance, data reliability and system complexity:

Query Performance
Query performance is a major driver of user
satisfaction. The faster a query returns results, the
sooner those results are available for using. With
Delta we have observed query performance 10
to 100 times faster than with Apache Spark on
Parquet. Delta employs various techniques to
deliver superior performance.

Delta Details: Query Performance

9

DATA INDEXING
Delta creates and maintains indexes of the ingested data. This speeds up the
querying dramatically.

DATA SKIPPING
Delta maintains file statistics so that data subsets relevant to the query are
used instead of entire tables — this partition pruning avoids processing
data that is not relevant to the query. Multi-dimensional clustering (using
Z-ordering algorithm) is used to enable this. This techniques is particularly
helpful in the case of complex queries.

COMPACTION
Often, especially in the case of streaming data, a large number of small files
are created as data is ingested. Storing and accessing these small files can be
processing-intensive, slow and inefficient from a storage utilization perspective.
Delta manages file sizes (i.e. compacts or combines multiple small files into
more efficient larger ones) to speed up query performance.

DATA CACHING
Accessing data from storage repeatedly can slow query performance. Delta
automatically caches highly accessed data to speed access for queries
improving performance by an order of magnitude.

Delta Details: Query PerformanceDelta Details: Query Performance

Delta Details: Query Performance

10

Data Reliability
Reliable datasets are key to successful
data analytics and data use whether that
be feeding dashboards or enabling ML
initiatives. Delta uses various techniques to
achieve data reliability.

Delta Details: Data Reliability

11

ACID TRANSACTIONS
The inevitable partial or failed writes risk corrupting the data. Delta employs
an “all or nothing” ACID transaction approach to prevent such corruption.

SNAPSHOT ISOLATION
In large environments with multiple concurrent readers and writers it is
critical that metadata be maintained in a way such that reads in progress
act on consistent views of data and are not impacted by writes in progress.
Delta provides snapshot isolation ensuring that multiple writers can write to a
dataset simultaneously without interfering with jobs reading the dataset.

SCHEMA ENFORCEMENT
Notionally similar data but from different sources or of different vintage
can differ in its representation creating difficulties for using it effectively.
Delta helps ensure data integrity for ingested data by providing schema
enforcement so that data can be stored using the preferred schema and
avoids potential data corruption with incorrect or invalid schemas.

EXACTLY ONCE
When working with long running computations, multiple streams or with
concurrent batch jobs there is a risk that some data is missed (due to
transmission difficulties) or duplicated (in attempts to correct for the misses).
Delta employs checkpointing to provide a robust exactly once delivery
semantic to ensure that data are neither missed nor repeated erroneously.

UPSERTS AND DELETES SUPPORT
Standard Spark tables are write-once i.e. they cannot be modified. Any
necessary changes to take account of late-arriving data or data requiring
updating must be addressed using new tables. Delta provides support for
UPSERTS and DELETES making it easier to address these situation i.e. these
commands provide a more “convenient” way of dealing with such changes.

Delta Details: Data Reliability

12

System Complexity
System complexity is a key determinant not
only of reliability and cost-effectiveness but
very importantly, also of responsiveness.
As business requirements evolve the data
analytics architecture needs to be flexible
and responsive to keep up.

Delta Details: System Complexity

13

UNIFIED BATCH/STREAM
Delta is able to handle both batch and streaming data (via a
direct integration with Structured Streaming for low latency
updates) including the ability to concurrently write batch and
streaming data to the same data table. Not only does this result
in a simpler system architecture, it also results in shorter time
from data ingest to query result.

SCHEMA EVOLUTION
Delta provides ability to infer schema from input data. This
reduces the effort for dealing with schema impact of changing
business needs at multiple levels of the pipeline/ data stack.

Delta Details: System Complexity

14

Delta is a powerful new approach to managing data in a cloud data lake for analysis and ML
uses cases. Adopting the following best practices will help you make the most of Delta:

Go Through Delta
All writes and reads should go through Delta to ensure consistent overall behavior. Further, Delta
tables must not be accessed using earlier (pre-Delta) versions of Databricks Runtime because
those versions do not understand Delta and do not support it.

Run OPTIMIZE Regularly
The OPTIMIZE command is used to trigger compaction. It makes no data related changes to the
table, so a read before and after an OPTIMIZE has the same results. It should be run regularly
on tables that analysts are querying to ensure efficiency. A good starting point is to do this on a
daily basis. Note that OPTIMIZE should not however be run on base or staging tables.

Delta Best Practices

15

Run VACUUM Regularly
To ensure that concurrent readers can continue reading a stale snapshot of a table, Databricks
Delta leaves deleted files on DBFS for a period of time. The VACUUM command helps save on
storage costs by cleaning up these invalid files. It can, however, interrupt users querying a Delta
table similar to when partitions are re-written. VACUUM should be run regularly to clean up
expired snapshots that are no longer required.

Batch Modifications
Parquet files, that form the underpinning of Delta, are immutable and thus need to be rewritten
completely to reflect changes regardless of the extent of the change. Use MERGE INTO to batch
changes to amortize costs.

Use DELETEs
Manually deleting files from the underlying storage is likely to break the Delta table so instead
you should use DELETE commands to ensure proper progression of the change.

Delta Best Practices

16

Trying Databricks Delta

Delta is easy to put into production — Databricks customers have been able to get
into production with a Delta-based solution in just a few weeks using a small team
compared to alternate approaches that take much longer and more resources. It is
easy to get started with Delta.

Porting existing Spark code for using Delta is as simple as changing
“CREATE TABLE ... USING parquet” to
“CREATE TABLE ... USING delta”

or changing
“dataframe.write.format(“parquet”).load(“/data/events”)”
“dataframe.write.format(“delta”).load(“/data/events”)”

17

Trying Databricks Delta

If you are already using Azure Databricks Premium you can explore Delta
today using:

• Databricks Delta quickstart notebook for a simple “hello world” with Databricks Delta

• OPTIMIZE notebook to try out Databricks Delta’s indexing and statistics capabilities and see how Delta’s OPTIMIZE and ZORDER
commands accelerate queries

If you are not already using Azure Databricks Premium, you can try Delta for
free by signing up for the free trial and using the notebooks above.

You can learn more about Delta from the Databricks Delta documentation.

18

