

WEBINAR

Productionizing Machine Learning: From Deployment to Drift Detection

Clemens Mewald, Director of Product Management, Databricks

Joel Thomas, Senior Solution Architect, Databricks

Logistics

- We can't hear you...
- Recording will be available...
- Slides will be available...
- Code samples and notebooks will be available...
- Submit your questions...
- Bookmark databricks.com/blog

VISION Accelerate innovation by unifying data science, engineering and business

SOLUTION Unified Analytics Platform

WHO WE ARE

- Original creators of **Spork belta Lake mlflow**
- 2,000+ global companies use our platform across big data & machine learning lifecycle

UNIFIED ANALYTICS PLATFORM

About Today's Presenters

Clemens Mewald, Director of Product Management at Databricks

- MSc in Computer Science from UAS Wiener Neustadt, Austria
- MBA from MIT Sloan
- Previously Product Lead on the Google Brain Team for TensorFlow, TFX
- Product Management Lead for Data Science and ML at Databricks

Joel Thomas, Senior Solutions Architect at Databricks

- MS in Electrical Engineering from University of Houston
- Previously Principal Data Scientist at Micron
- Architect and implement data & AI solutions for customers

Outline

- / ML Development Challenges
- / How MLflow, Delta Lake, + Databricks tackles these
- / Real Life End to End Data + ML Lifecycle
- Demo of Model Drift Detection on Databricks

ML Lifecycle and Challenges

Unifying the End-to-end Data & ML Lifecycle Overview

Unifying the End-to-end Data & ML Lifecycle Overview

Reliability & Performance With Open Standards

Reliability - High Quality Data

- Transactions and schema enforcement
- Data quality validation and expectation

Performance - Fast Queries at Scale

- Optimizations data skipping, caching & indexing
- Compaction optimizes file layout

Open Standard - Easier Adoption

- Open source, open format; compatible with Spark API's
- Data stays in your data lake under your control

databricks.com/delta

github.com/delta-io

Unifying the End-to-end Data & ML Lifecycle Overview

ML environment and Model Training

databricks | Runtime for ML

Built-in Optimization for Distributed Deep Learning —

Distribute and Scale any Single-Machine ML Code to 1,000's of machines.

Built-In AutoML and Experiment Tracking

AutoML and Tracking / Visualizations with MLflow

Unifying the End-to-end Data & ML Lifecycle Overview

An open source framework for the complete ML Lifecycle databricks | mlflow

Simplified experiment tracking, reproducibility, and deployment, from experimentation to production

databricks.com/mlflow

mlflow.org

github.com/mlflow

Unifying the End-to-end Data & ML Lifecycle Overview

What happens after Deployment?

Heraclitus (paraphrased): "Change is the only constant in life"

Types of change to worry about in Machine Learning

Concept Drift

- Statistical properties of target variable change (i.e. what you are trying to predict changes)
- E.g. fraud detection

Types of change to worry about in Machine Learning

Concept Drift

Data Drift

- Statistical properties of target variable change (i.e. what you are trying to predict changes)
- E.g. fraud detection

- Statistical properties of input variables change
- E.g. seasionality, personal preferences, trends change

Types of change to worry about in Machine Learning

Concept Drift

Data Drift

Upstream Data Changes

- Statistical properties of target variable change (i.e. what you are trying to predict changes)
- E.g. fraud detection

- Statistical properties of input variables change
- E.g. seasionality, personal preferences, trends change

- Encoding of a feature changes (e.g. switch from Fahrenheit to Celsius)
- Features are no longer being generated (leads to missing values)

Ways to detect and protect against changes

Monitor

Training Data

- Schema & distribution of incoming data
- Distribution of labels

Requests & Predictions

- Schema & distribution of requests
- Distribution of predictions
- Quality of predictions

Ways to detect and protect against changes

Monitor

Training Data

- Schema & distribution of incoming data
- Distribution of labels

Requests & Predictions

- Schema & distribution of requests
- Distribution of predictions
- Quality of predictions

Intervene

Correct Data Problems

- Detect and correct upstream data problems early
- Clean up erroneous labels

Retrain / Calibrate Model

- In ca keer
 - In cases where there is concept or data drift, keep models fresh by retraining them

Your Machine Learning Models become stale

Model Staleness over time

Time

Your Machine Learning Models become stale

Model Staleness over time

Refreshing models over time

Real-Life Examples of Drift

- Sensor readings can change over time (that's why sensors need to be recalibrated)
- Sensor readings may change with seasonality
- Inventory changes over time
- Customer preferences change over time
- Regional changes and trends
- Content changes every second
- Today's patterns may not apply tomorrow

From Data Prep to Production: Real Life IoT Example Process and Prepare Data at Scale

From Data Prep to Production: Real Life IoT Example

Train, Deploy, and Monitor at Scale

From Data Prep to Production: Real Life IoT Example 1) Training at Scale

From Data Prep to Production: Real Life IoT Example 2) Deploying at Scale

1 line of code to apply UDF to *n* new sensor readings

From Data Prep to Production: Real Life IoT Example 2) Deploying at Scale

•••

From Data Prep to Production: Real Life IoT Example 3) Monitoring at Scale

1 line of code to apply UDF to *n* predictions

Write out our alerts to a Delta table

Write out our notifications to a table

```
notifications.write.format("delta") \
.mode("append").partitionBy("SensorId").save(notifications_path)
```


Demo

Who wants a perfect cake?

300 F 325 F 350 F 375 F 400 F

Parameters like temperature and duration have an impact on quality of cake

Glassware Manufacturing Dataset

Data streaming from IoT sensors

- Temperature
- Pressure
- Duration

These parameters in ideal combination gives good quality product.

Goal: Predict product quality inline to be used for additional manual inspection

Synthesized dataset to showcase model drift

- 1. To understand the data, we start with EDA (Exploratory Data Analysis)
- 2. Using historical data, we explore various modeling methods, tune its hyperparameters, and identify our best model
- 3. All the experiment runs are tracked using MLflow and we tag the best model for production use
- 4. While scoring in a streaming pipeline, production model is accessed from MLflow
- 5. Model is stable for first 'x' days

KPI to Monitor Model Quality

Model Drift KPIs:

- KPIs and its margin depends on the model and business problem
- Sometimes more than 1 KPI maybe needed at times to capture behavior changes

- After 'y' days, we see model drift occur, as identified by tracking KPIs
- This triggers re-training process

- Once again, we explore various modeling methods, tune its hyperparameters, and identify our new best model
- The new model is tagged as current production model in MLflow
- We once again observe that KPIs are back within acceptable range
- Over time, based on business demands, it may be needed to update KPIs and its acceptable limits

Summary - Deployment to Drift Detection

Model Drift Demo: Source Code

https://github.com/joelcthomas/modeldrift

Summary

/ The only constant is change. Concept drift, data drift, and upstream data problems all affect your ML pipeline.

/ Monitoring data and ML model performance is critical.

In many cases, your ML model needs to adapt to changes.

/ Databricks provides an end-to-end platform to deploy, monitor, and automatically retrain your ML models.

Coming soon

mlflow Model Registry

Tagging, sharing and versioning models in the MLflow tracking server

- Register any model in MLflow Model format
- Deploy to serving systems
- Add metadata (e.g. tags/notes) and track model creators and users

- 15-17 October 2019 | Amsterdam
- New product announcements around Delta Lake, MLflow, etc.
- Sign up at <u>databricks.com/sparkaisummit</u>

Get Started - <u>databricks.com/try</u> **Contact us** - <u>databricks.com/contact</u>

