Applying your Convolutional Neural Networks

Logistics

- We can't hear you...
- Recording will be available...
- Slides will be available...
- Code samples and notebooks will be available...
- Queue up Questions...

databricks

VISION

Accelerate innovation by unifying data science, engineering and business

PRODUC

Unified Analytics Platform powered by Apache Spark™

WHO WE ARE

- Founded by the original creators of Apache Spark
- Contributes 75% of the open source code, 10x more than any other company
- Trained 100k+ Spark users on the Databricks platform

About our speaker

Denny Lee Developer Advocate, Databricks

Former:

- Senior Director of Data Sciences Engineering at SAP Concur
- Principal Program Manager at Microsoft
 - Azure Cosmos DB Engineering Spark and Graph Initiatives
 - Isotope Incubation Team (currently known as HDInsight)
 - Bing's Audience Insights Team
 - Yahoo!'s 24TB Analysis Services cube

Deep Learning Fundamentals Series

This is a three-part series:

- Introduction to Neural Networks
- Training Neural Networks
- Applying your Convolutional Neural Network

This series will be make use of Keras (TensorFlow backend) but as it is a fundamentals series, we are focusing primarily on the concepts.

Current Session: Applying Neural Networks

- Diving further into CNNs
- CNN Architectures
- Convolutions at Work!

A quick review

Overfitting and underfitting

Cost function

For this linear regression example, to determine the best (slope of the line) for

$$y = x \cdot p$$

we can calculate the <u>cost function</u>, such as Mean Square Error, Mean absolute error, Mean bias error, SVM Loss, etc.

For this example, we'll use sum of squared absolute differences $\cos t = \int_{-cost}^{cost} |t-y|^2$

Gradient Descent Optimization

Hyperparameters: Activation Functions?

- Good starting point: ReLU
 - Note many neural networks samples: <u>Keras MNIST</u>, <u>TensorFlow CIFAR10</u>
 <u>Pruning</u>, etc.
 - Note that each activation function has its own strengths and weaknesses. A good quote on activation functions from <u>CS231N</u> summarizes the choice well:

"What neuron type should I use?" Use the ReLU non-linearity, be careful with your learning rates and possibly monitor the fraction of "dead" units in a network. If this concerns you, give Leaky ReLU or Maxout a try. Never use sigmoid. Try tanh, but expect it to work worse than ReLU/Maxout.

Simplified Two-Layer ANN

Do I snowboard this weekend?

 $x_1 \rightarrow Apres Ski'er$

 $x_2 \rightarrow Shredder$

 $h_1 \rightarrow weather$

 $h_2 \rightarrow powder$

 $h_3 \rightarrow driving$

Simplified Two-Layer ANN

$$h_1 = \sigma(1x0.8 + 1x0.6) = 0.80$$

 $h_2 = \sigma(1x0.2 + 1x0.9) = 0.75$
 $h_3 = \sigma(1x0.7 + 1x0.1) = 0.69$

Simplified Two-Layer ANN

Backpropagation

Backpropagation

- Backpropagation: calculate the gradient of the cost function in a neural network
- Used by gradient descent optimization algorithm to adjust weight of neurons
- Also known as backward
 propagation of errors as the error
 is calculated and distributed back
 through the network of layers

Sigmoid function (continued)

Output is not zero-centered: During gradient descent, if all values are positive then during backpropagation the weights will become all positive or all negative creating zig zagging dynamics.

Learning Rate Callouts

Too small, it may take too long to get minima

Too large, it may skip the minima altogether

Which Optimizer?

"In practice Adam is currently recommended as the default algorithm to use, and often works slightly better than RMSProp. However, it is often also worth trying SGD+Nesterov Momentum as an alternative.."

Andrej Karpathy, et al, <u>CS231n</u>

Comparison of Adam to Other Optimization Algorithms Training a Multilayer Perceptron Taken from Adam: A Method for Stochastic Optimization, 2015.

Optimization on loss surface contours

Source: http://cs231n.github.io/neural-networks-3/#hyper

Image credit: Alec Radford

Adaptive algorithms converge quickly and find the right direction for the parameters.

In comparison, SGD is slow

Momentum-based methods overshoot

Optimization on saddle point

Source: http://cs231n.github.io/neural-networks-3/#hyper

Image credit: Alec Radford

Notice how SGD gets stuck near the top

Meanwhile adaptive techniques optimize the fastest

Good References

- Suki Lau's <u>Learning Rate Schedules and Adaptive Learning Rate</u>
 <u>Methods for Deep Learning</u>
- CS23n Convolutional Neural Networks for Visual Recognition
- Fundamentals of Deep Learning
- ADADELTA: An Adaptive Learning Rate Method
- Gentle Introduction to the Adam Optimization Algorithm for Deep Learning

Convolutional Networks

- Similar to Artificial Neural Networks but CNNs (or ConvNets) make explicit assumptions that the input are images
- Regular neural networks do not scale well against images
 - E.g. CIFAR-10 images are 32x32x3 (32 width, 32 height, 3 color channels) = 3072 weights – somewhat manageable
 - A larger image of 200x200x3 = 120,000 weights
- CNNs have neurons arranged in 3D: width, height, depth.
 - Neurons in a layer will only be connected to a small region of the layer before it, i.e. NOT all of the neurons in a fully-connected manner.
 - Final output layer for CIFAR-10 is 1x1x10 as we will reduce the full image into a single vector of class scores, arranged along the depth dimension

CNNs / ConvNets

Regular 3-layer neural network

- ConvNet arranges neurons in 3 dimensions
- 3D input results in 3D output

Source: https://cs231n.github.io/convolutional-networks/

Convolution: Kernel = Filter

Image

Convolved Feature kernel = filter = feature detector

During forward pass, we slide over the image spatially (i.e. convolve) each filter across the width and height, computing dot products.

Source: http://deeplearning.stanford.edu/wiki/index.php/Feature_extraction_using_convolution

Convolution: Local Connectivity

4

Image

Convolved Feature Connect neurons to only a small local region as it is impractical to connect to all neurons. Depth of filter = depth of input volume.

Source: http://deeplearning.stanford.edu/wiki/index.php/Feature_extraction_using_convolution

Convolution: Local Connectivity

The neurons still compute a dot product of their weights with the input followed by a non-linearity, but their connectivity is now restricted to be local spatially.

Image

Convolved Feature

Source: http://deeplearning.stanford.edu/wiki/index.php/Feature extraction using convolution

Source: https://cs231n.github.io/convolutional-networks/

Convolution Goal

Goal is to create an entire set of filters in each CONV layer and produce 2D activation maps (e.g. for 6 filters)

Source: http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture5.pdf

Convolution Example with 8 filters

Activations:

Activation Gradients:

conv (24x24x8)

filter size 5x5x1, stride 1

max activation: 2.72095, min: -2.44127 max gradient: 0.01954, min: -0.02194

parameters: 8x5x5x1+8 = 208

Activations:

Activation Gradients:

Weights:

(語)(語)(語)(語)(語)(語)(證)

Weight Gradients:

(事)(事)(事)(事)(事)(事)(事)

Convolution: 32x32 to 28x28 using 5x5 filter

Taking a stride...

Source: http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture5.pdf

Stride = 3

Does not fit!

Stride = 2

Output Size:

$$(N - F) / stride + 1$$

e.g.
$$N = 7$$
, $F = 3$:

Stride
$$1 = 5$$

Stride
$$2 = 3$$

Stride
$$3 = 2.33 \text{ (doh!)}$$

Source: http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture5.pdf

Zero pad image border to preserve size spatially

Input: 7 x 7

Filter: 3 x 3

Stride = 1

Zero Pad = 1

Output: 7 x 7

Input: 7 x 7

Filter:5 x 5

Stride = 1

Zero Pad = 2

Output: 7 x 7

Common Practice:

• Stride = 1

Filter size: F x F

Zero Padding: (F − 1)/2

Calculate Output Size

Output Volume Size:

$$\frac{(Input + 2) x \frac{Padding - Filter}{Stride + 1}}{=}$$

$$\frac{(32+2) \times 2 - 5}{1+1} = 32$$

Source: http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture5.pdf

Calculate Output Size

Number of Parameters

$$(Filter \ x \ Filter \ x \ Depth + 1)(\# \ of \ Filters) =$$

$$(5 \ x \ 5 \ x \ 3 + 1) \ x \ (5) =$$

380

Source: http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture5.pdf

Convolutional Neural Networks

ReLU Step (Local Connectivity)

The neurons still compute a dot product of their weights with the input followed by a non-linearity, but their connectivity is now restricted to be local spatially.

Image

Convolved Feature

Source: http://deeplearning.stanford.edu/wiki/index.php/Feature extraction using convolution

Source: https://cs231n.github.io/convolutional-networks/

Convolutional Neural Networks

Pooling = subsampling = reduce image size

- Commonly insert pooling layers between successive convolution layers
- Reduces size spatially
- Reduces amount of parameters
- Minimizes likelihood of overfitting

Source: https://cs231n.github.io/convolutional-networks/#pool

Pooling common practices

Source: https://cs231n.github.io/convolutional-networks/#pool

- Input: $W_1 \times H_1 \times D_1$
- Output: $W_2 \times H_2 \times D_2$ where

$$W_2 = \frac{(W_1 - F)}{S} + 1, D_2 = D_1$$

$$H_2 = \frac{(H_1 - F)}{S} + 1$$

- Typically ${F = 2, S = 2}$ or ${\bar{o}v\bar{e}rlap \bar{p}\bar{o}olling}$
- Pooling with larger receptive fields (.) too destructive.

Stride, Pooling, Oh my!

- Smaller strides = Larger Output
- Larger strides = Smaller Output (less overlaps)
 - Less memory required (i.e. smaller volume)
 - Minimizes overfitting
- Potentially use larger strides in convolution layer to reduce number of pooling layers
 - Larger strides = smaller output reduce in spatial size ala pooling
 - ImageNet 2015 winner ResNet has only two pooling layers

Convolutional Neural Networks

Convolutional Neural Networks Layers

ConvNetJS MNIST Demo

https://cs.stanford.edu/people/karpathy/convnetjs/demo/mnist.html

CNN Architectures

LeNet-5

- Introduced by Yann LeCun: <u>http://yann.lecun.com/exdb/</u> publis/pdf/lecun-01a.pdf
- Useful for recognizing single object images
- Used for handwritten digits recognition

AlexNet

https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

- Introduced by Krizhevsky, Sutskever and Hinton
- 1000-class object recognition
- 60 million parameters, 650k neurons, 1.1 billion computation units in a forward pass

Inception

Fully connected

Softmax

https://arxiv.org/pdf/1409.4842.pdf

5x5 convolutions

3x3 may pooling

3x3 convolutions

Previous layer

title

Many repetitive structures called inception 1x1 corno utions modules

1000-class ILSVRC winner

VGG

- Introduced by Simnyan and Zisserman in 2014
- VGG after Visual Geometry Group at Oxford
- Conv3 layers stacked on top of each other
- The latest: VGG19 19 layers in the network

ResNet

- Introduced by He, Zhang, Ren,
 Sun from MS Research
- Use residual learning as a building block where the identity is propagated through the network along with detected features
- Won ILSVRC2015

Figure 2. Residual learning: a building block.

DEM(

Neurons ...
Activatel

I'd like to thank...

Great References

- Andrej Karparthy's ConvNetJS MNIST Demo
- What is back propagation in neural networks?
- CS231n: Convolutional Neural Networks for Visual Recognition
 - Syllabus and Slides I Course Notes I YouTube
 - With particular focus on <u>CS231n: Lecture 7: Convolution Neural Networks</u>
- Neural Networks and Deep Learning
- TensorFlow

Great References

- Deep Visualization Toolbox
- Back Propagation with TensorFlow
- TensorFrames: Google TensorFlow with Apache Spark
- Integrating deep learning libraries with Apache Spark
- Build, Scale, and Deploy Deep Learning Pipelines with Ease

Attribution

Tomek Drabas
Brooke Wenig
Timothee Hunter
Cyrielle Simeone

Q&A