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Logistics

- We can’t hear you...
Recording will be available...
- Slides will be available...
* Code samples and notebooks will be available...
* Queue up Questions...
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Deep Learning Fundamentals Series

This is a three-part series:
* Introduction to Neural Networks

* Training Neural Networks

* Applying your Convolutional Neural Network

This series will be make use of Keras (TensorFlow backend) but as it
IS a fundamentals series, we are focusing primarily on the concepts.


https://databricks.com/tensorflow/deep-learning-event

Current Session: Applying Neural Networks

 Diving further into CNNs
« CNN Architectures

« Convolutions at Work!



A quick review
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Overfitting and underfitting

under fitting balanced over fitting

(or OPAfitting)
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For this linear regression example, to
determine the begy  (slope of the line)
for

y=x-p

we can calculate the cost function,
such as Mean Square Error, Mean
absolute error, Mean bias error, SVM
Loss, etc.

For this example, we’ll use sum of
squared absolutfirfteleyq@es

COoSt =



Gradient Descent Optimization

Cost at step 12 = 0.451 200 Labelled data & model output
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Small Learning Rate

u Cost function
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Small Learning Rate
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Small Learning Rate
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Cost function
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Hyperparameters: Activation Functions?

- (Good starting point: ReLU

* Note many neural networks samples: Keras MNIST, TensorFlow CIFAR10
Pruning, etc.

- Note that each activation function has its own strengths and weaknesses. A
good quote on activation functions from CS231N summarizes the choice well:

“What neuron type should | use?” Use the ReLU non-linearity, be careful with your
learning rates and possibly monitor the fraction of “dead” units in a network. If this
concerns you, give Leaky RelLLU or Maxout a try. Never use sigmoid. Try tanh, but

expect it to work worse than ReLU/Maxout.


https://github.com/keras-team/keras/blob/master/examples/mnist_cnn.py
https://github.com/tensorflow/tensorflow/blob/9590c4c32dd4346ea5c35673336f5912c6072bf2/tensorflow/contrib/model_pruning/examples/cifar10/cifar10_pruning.py
https://github.com/tensorflow/tensorflow/blob/9590c4c32dd4346ea5c35673336f5912c6072bf2/tensorflow/contrib/model_pruning/examples/cifar10/cifar10_pruning.py
https://github.com/tensorflow/tensorflow/blob/9590c4c32dd4346ea5c35673336f5912c6072bf2/tensorflow/contrib/model_pruning/examples/cifar10/cifar10_pruning.py
https://github.com/tensorflow/tensorflow/blob/9590c4c32dd4346ea5c35673336f5912c6072bf2/tensorflow/contrib/model_pruning/examples/cifar10/cifar10_pruning.py
http://cs231n.github.io/neural-networks-1/

Simplified Two-Layer ANN

Do [ snowboard this weekend?

x, = Apres Ski'er
X, = Shredder

h, — weather
h, — powder

hy — driving

Input Hidden Output



Simpilified Two-Layer ANN

/) 6 \
@ 02 hy = 6(1x0.8 4+ 1x0.6) = 0.80

hy, = o(1x0.2 + 1x0.9) = 0.75
hy = o(1x0.7 + 1x0.1) = 0.69




Simplified Two-Layer ANN

out = 6(0.2x0.8 + 0.8x0.75 + 0.5x0.69)

— 5(1.105)

= 0.75




Backpropagation
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Backpropagation

- Backpropagation: calculate the
gradient of the cost function in a
neural network

» Used by gradient descent
optimization algorithm to adjust
weight of neurons

- Also known as backward
propagation of errors as the error
IS calculated and distributed back
through the network of layers

Input Hidden Output



Sigmoid function (continued)
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Output is not zero-centered: During
gradient descent, if all values are
positive then during backpropagation
the weights will become all positive or all
negative creating zig zagging dynamics.


https://bit.ly/2IoAGzL

Learning Rate Callouts

* Too small, it may take too long to get minima

* Too large, it may skip the minima altogether



tralning cost

Which Optimizer?

10

107

1 MNIST Multilayer Neural Network + dropout

— AdaGrad
-  RMSProp
— SGDNesterov
—  AdaDelta

0 50 100 150
iterations over entire dataset

200

Source: https://goo.gl/2dad WY

“In practice Adam is currently recommended
as the default algorithm to use, and often
works slightly better than RMSProp.
However, it is often also worth trying
SGD+Nesterov Momentum as an
alternative..”

Andrej Karpathy, et al, CS231n

Comparison of Adam to Other Optimization Algorithms Training a Multilayer Perceptron
Taken from Adam: A Method for Stochastic Optimization, 2015.


http://cs231n.github.io/neural-networks-3/

Optimization on loss surface contours

Source: http://cs231n.github.io/neural-networks-3/#hyper
Image credit: Alec Radford
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http://cs231n.github.io/neural-networks-3/#hyper
https://twitter.com/alecrad

Optimization on saddle point

Source: http://cs231n.github.io/neural-networks-3/#hyper
Image credit: Alec Radford
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http://cs231n.github.io/neural-networks-3/#hyper
https://twitter.com/alecrad

Good References

« Suki Lau's Learning Rate Schedules and Adaptive Learning Rate

Methods for Deep Learning

- (CS23n Convolutional Neural Networks for Visual Recognition

- Fundamentals of Deep Learning

- ADADELTA: An Adaptive Learning Rate Method

- Gentle Introduction to the Adam Optimization Algorithm for Deep

Learning


https://towardsdatascience.com/learning-rate-schedules-and-adaptive-learning-rate-methods-for-deep-learning-2c8f433990d1
https://towardsdatascience.com/learning-rate-schedules-and-adaptive-learning-rate-methods-for-deep-learning-2c8f433990d1
https://towardsdatascience.com/learning-rate-schedules-and-adaptive-learning-rate-methods-for-deep-learning-2c8f433990d1
http://cs231n.github.io/neural-networks-3
https://www.oreilly.com/library/view/fundamentals-of-deep/9781491925607/ch04.html
https://arxiv.org/pdf/1212.5701.pdf
https://machinelearningmastery.com/adam-optimization-algorithm-for-deep-learning/
https://machinelearningmastery.com/adam-optimization-algorithm-for-deep-learning/

Convolutional Networks
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Convolutional Neural Networks

- Similar to Artificial Neural Networks but CNNs (or ConvNets) make
explicit assumptions that the input are images

- Regular neural networks do not scale well against images

E.g. CIFAR-10 images are 32x32x3 (32 width, 32 height, 3 color
channels) = 3072 weights — somewhat manageable

A larger image of 200x200x3 = 120,000 weights
*  CNNs have neurons arranged in 3D: width, height, depth.

Neurons in a layer will only be connected to a small region of the layer
before it, i.e. NOT all of the neurons in a fully-connected manner.

Final output layer for CIFAR-10 is 1x1x10 as we will reduce the full
image into a single vector of class scores, arranged along the depth
dimension



CNNs / ConvNets

R
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hidden layer 1 nidden layer 2

Regular 3-layer
neural network

depth

(T height

—

QOO0
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900060 Width

* ConvNet arranges neurons in 3
dimensions

« 3D input results in 3D output

Source: https://cs231n.github.io/convolutional-networks/



https://cs231n.github.io/convolutional-networks/

Convolutional Neural Networks
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Convolutional Neural Networks

Input
2828 28 x 28 Pixel value of 32x32x3: 32 width,
32 height, 3 color channels (RGB)

Brm g

Convolution Convolution Suosarpry I =
32 filters 64 filters Stride (2,2) ® U O —F— 9

Feature Extraction Classification



Convolutional Neural Networks

28 x 28

Convolution

llf

Convolution
64 filters

Subs
Stric

Convolutions

Compute output of neurons (dot
product between their weights)
connected to a small local region.

we use 32 filters, then the output is
28x28x32 (using 5x5 filter)

L

Feature Extraction

Classification




Convolution: Kernel = Filter

= kernel = filter = feature detector

1(1(1(0|0
0,J1/1/1]0 4 During forward pass, we
0,/0,1|1(1 slide over the image
spatially (i.e. convolve)
0/0/1]1]0 each filter across the
011(1(0|0 width and height,
Convolved computing dot products.
Image
Feature

Source: http://deeplearning.stanford.edu/wiki/index.php/Feature_extraction_using_convolution



Convolution: Local Connectivity

1(1(1(0|0
0,1,/1/1]0 4 Connect neurons to only a
Olo0ol111!1 small local region as it is
0"1 0"° 1"1 110 impractical to connect to
all neurons. Depth of filter
0(1|11(0(0 = depth of input volume.
I Convolved
MAge Feature

Source: http://deeplearning.stanford.edu/wiki/index.php/Feature_extraction_using_convolution



Convolution: Local Connectivity

The neurons still compute a dot product of their weights with the input followed by a non-linearity,
but their connectivity is now restricted to be local spatially.

32414010
0/1/1/1|0 4 O\ Moo
()x1 Oxo 1,‘1 1(1 Ty cell body
0/[0|1|1]|0 i > i — b
o|l1]{1]|0]0 N
mage Convolved e
Feature

g

I (Z w,r, + b)

y B

i
output axon

activation
function

Source: http://deeplearning.stanford.edu/wiki/index.php/Feature_extraction using_convolution

Source: https://cs231n.github.io/convolutional-networks/



http://deeplearning.stanford.edu/wiki/index.php/Feature_extraction_using_convolution
https://cs231n.github.io/convolutional-networks/

Convolution Goal

Goal is to create an entire set of filters in each CONV
layer and produce 2D activation maps (e.g. for 6 filters)

activation maps

32

Convolution Layer

32 28

3 6
Source: http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture5.pdf




Convolution Example with 8 filters

Activations:

[

Activation Gradients:

conv (24x24x8) Activations:
filter size 5x5x1, stride 1 - Y
max activation: 2.72095, min: -2.44127 ","‘ 4 o |
max gradient: 0.01954, min: -0.02194 AT
parameters: 8x5x5x1+8 = 208 Activation Gradients:

Weights:

(u)(ad)(w)( ) () (m)(™)(2)

Weight Gradients:

(F)(Z)(")(2)(W)(®)()(E)

Source: https://cs.stanford.edu/people/karpathy/convnetjs/demo/mnist.html



Convolution: 32x32 to 28x28 using 5x5 filter
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Taklng a Strlde' - Source: http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture5.r

Stride = 1 Stride =2

Stride = 3 Output Size:
(N —F) / stride + 1
Does not fit! eg.N=7,F=3:
Stride 1 =5
Stride2=3

Stride 3 = 2.33 (doh!)



Padding

o OO0 O O

Input: 7 x 7

Filter: 3 x 3

Stride = 1
Zero Pad = 1
Output: 7 x 7

Source: http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture5.f

Zero pad image border to preserve size spatially

0 00 0 0fO
0 00 0 0O
0 0
00
0 0
0 O
Common Practice:
e Stride =1
 Filter size: F x F
Input: 7 x 7 « Zero Padding: (F—1)/2
Filter:5 x 5
Stride = 1
Zero Pad =2

Output: 7 x 7



Output Volume Size:

(Input + 2) x Padding — Filter
Stride + 1

B2+2)x2-15
I+1

= 32

32 x 32 x5

------

Source: http://cs231n.stanford.edu/slides/
2017/cs231n_2017_lecture5.pdf

------

l
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Stride = 1

Padding = 2

Input: 32 x 32 x 3



Calculate Output Size

5 5Xf filters

l

Number of Parameters

(Filter x Filter x Depth + 1)(# of Filters) =

Gx5x3+DH) x5 =

380

Source: http://cs231n.stanford.edu/slides/
2017/cs231n_2017_lecture5.pdf
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Stride = 1

Padding = 2

Input: 32 x 32 x 3



Convolutional Neural Networks

28 x 28

Convolution

28 x 28

Convolution
64 filters

Ilf

Subs
Stric

Activation Function (ReLU)

Compute output of neurons (dot
product between their weights)
connected to a small local region.

we use 32 filters, then the output is
28x28x32 (using 5x5 filter)

Feature Extraction

Classification




RelLU Step (Local Connectivity)

The neurons still compute a dot product of their weights with the input followed by a non-linearity,

but their connectivity is now restricted to

1,‘1 1’(0 1,‘1 0 0 axona;:)oma HGUFO;:I:U Synapse
0/1/1/1|0 4 O\ Moo
()x1 Oxo 1,‘1 1|1 ey cell body
o|of1|1]0 i
0/1(11(0{0 |
mage Convolved a2
Feature

be local spatially.

I (Z w,r, + b)

y B

g

i
output axon

activation
function

Source: http://deeplearning.stanford.edu/wiki/index.php/Feature_extraction using_convolution

Source: https://cs231n.github.io/convolutional-networks/



http://deeplearning.stanford.edu/wiki/index.php/Feature_extraction_using_convolution
https://cs231n.github.io/convolutional-networks/

Convolutional Neural Networks

Pooling
28 x 28 28 x 28 4y 14 Perform down sampling
-operation

ﬁ along spatial dimensions (w, h)

O

|® X

resulting in reduced volume,
e.g. 14x14x2.

Convolution Convolution

32 filters 64 filters rnde (2,

ceee

I
o
N

Feature Extraction Classification



Pooling = subsampling = reduce image size

Single depth slice

-

Source: https://cs231n.github.io/convolutional-networks/#pool

1112 | 4
max pool with 2x2 filters
2 (6| 7|8 and stride 2
3 | 2 Il
1| 2 S a
Y

Commonly insert
pooling layers between
successive convolution
ayers

Reduces size spatially

Reduces amount of
parameters

Minimizes likelihood of
overfitting



https://cs231n.github.io/convolutional-networks/#pool

Pooling common practices

224x224x64

112x112x64
pool ,

— e

{F=2,85=2} I

-~ e 112
e S downsampling .
112

224

Source: hitps://cs231n.github.io/convolutional-networks/#pool

Input: W, x H, x D,
Output: W, x H, x D, where

(W, —F)

_(H,-F)
s
Typically (F=2 §=2)

%v%r?apg p:oaﬁng)

Pooling with larger receptive
fidlels (. ) too destructive.

+ 1



https://cs231n.github.io/convolutional-networks/#pool

Stride, Pooling, Oh my!

- Smaller strides = Larger Output

» Larger strides = Smaller Output (less overlaps)
Less memory required (i.e. smaller volume)
Minimizes overfitting
* Potentially use larger strides in convolution layer to
reduce number of pooling layers

Larger strides = smaller output reduce in spatial size ala
pooling
ImageNet 2015 winner ResNet has only two pooling layers



Convolutional Neural Networks

asS

Fully Connected

Neurons in a fully connected layer
have full connections to all
activations in the previous layer,

seen in regular Neural Networks.

nodoig

0000000000

Feature Extraction

Classification



Convolutional Neural Networks Layers

28 x 28 28 x 28 14 x14

-0
I

O

Convolution Convolution Subsampling
32 filters 64 filters Stride (2,2)

T 1 ll;lll
o |

0000000000

—>

Feature Extraction

Classification



ConvNetdS MNIST Demo

https://cs.stanford.edu/people/karpathy/convnetjs/demo/mnist.ntml
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CNN Architectures
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LeNet-5

* Introduced by Yann LeCun:
http://yann.lecun.com/exdb/

publis/pdf/lecun-01a.pdf
» Useful for recognizing single
object images

* Used for handwritten digits
recognition

W0 -y o WM e O



http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf
http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf

AlexNet

: 3 N Nt !
. . “_.q- \". .
\ S . RS, - dense
et 152 192 128 2048 2048
5 27 18\ e
N AN\ 13 13
\ 192 192 128 Max -
. 204

Strid Max T Max pooling 2048
Uof 4 pooling pooling
3 a8

https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-
networks.pdf

 Introduced by Krizhevsky, Sutskever and Hinton
» 1000-class object recognition
* 60 million parameters, 650k neurons, 1.1 billion computation units in a forward pas:



https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

Inception

https://arxiv.org/pdf/1409.4842.pdf

L HH O Hi S
il
Convolution
o0 AvgPool
@ Concar. * Inception takes its name from the movie’s e,
@ Dropout . v t——
@ Fully connected t|t|e /,//’ 1 B e =p:
& Scftmax . - . - - s — :
* Many repetitive structures called inception «emosins | | scconouias | | seconowns | | 23 mpociog
modules iy S T

* 1000-class ILSVRC winner i



https://arxiv.org/pdf/1409.4842.pdf

VGG

 Introduced by Simnyan and
Zisserman in 2014

* VGG after Visual Geometry
Group at Oxford

« Conv3 layers stacked on top of
each other

* The latest: VGG19 — 19 layers
In the network

224 x 224 x3 224 x 224 x 64

112x[112 % 128

TxTx512

14x14x 512 l

28 x 28 x 512
a, 1x1x4096

f—

@ convolution+ReLU
r’ 7] max pooling
1 fully connected+ReLU

] softmax

111000



ResNet

34-layer residual

* Introduced by He, Zhang, Ren,
Sun from MS Research 2

« Use residual learning as a weight layer
lu
building block where the BE) _iE
weight layer
identity is propagated through

: X)+X
the network along with detected s
features Figure 2. Residual learning: a building block.

« Won ILSVRC2015

identity
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Great References

- Andrej Karparthy’s ConvNetJS MNIST Demo

- What is back propagation in neural networks?

- CS231n: Convolutional Neural Networks for Visual Recognition
- Syllabus and Slides | Course Notes | YouTube

 With particular focus on CS231n: Lecture 7: Convolution Neural Networks

- Neural Networks and Deep Learning

* TensorFlow



https://cs.stanford.edu/people/karpathy/convnetjs/demo/mnist.html
https://www.quora.com/What-is-back-propagation-in-neural-networks
http://cs231n.stanford.edu/syllabus.html
https://cs231n.github.io/
https://www.youtube.com/watch?v=g-PvXUjD6qg&list=PLlJy-eBtNFt6EuMxFYRiNRS07MCWN5UIA
https://www.youtube.com/watch?v=LxfUGhug-iQ
http://neuralnetworksanddeeplearning.com/index.html
https://www.tensorflow.org/

Great References

- Deep Visualization Toolbox
- Back Propagation with TensorFlow
- TensorFrames: Google TensorFlow with Apache Spark

- Integrating deep learning libraries with Apache Spark
- Build, Scale, and Deploy Deep Learning Pipelines with Ease



https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwjKl4-y8fDUAhUKz2MKHcV5AVIQyCkIKjAA&url=https://www.youtube.com/watch?v=AgkfIQ4IGaM&usg=AFQjCNE9vcdHNSTJ7AucOiXZFyHlc_N2xA
http://blog.aloni.org/posts/backprop-with-tensorflow/
https://www.slideshare.net/SparkSummit/spark-summit-eu-talk-by-tim-hunter%20https:/www.slideshare.net/SparkSummit/spark-summit-eu-talk-by-tim-hunter
https://www.slideshare.net/databricks/integrating-deep-learning-libraries-with-apache-spark
http://go.databricks.com/deep-learning-pipeline-library-webinar-1
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