
Training Neural Networks

Logistics

• We can’t hear you…

• Recording will be available…

• Slides will be available…

• Code samples and notebooks will be available…

• Queue up Questions…

About our speaker

Denny Lee
Developer Advocate, Databricks

Former:
• Senior Director of Data Sciences Engineering at SAP Concur
• Principal Program Manager at Microsoft

• Azure Cosmos DB Engineering Spark and Graph Initiatives
• Isotope Incubation Team (currently known as HDInsight)
• Bing’s Audience Insights Team
• Yahoo!’s 24TB Analysis Services cube

Accelerate innovation by unifying data science, engineering
and business

• Founded by the original creators of Apache Spark

• Contributes 75% of the open source code, 10x more than
any other company

• Trained 100k+ Spark users on the Databricks platform

VISION

WHO WE ARE

Unified Analytics Platform powered by Apache Spark™PRODUCT

Deep Learning Fundamentals Series

This is a three-part series:

• Introduction to Neural Networks

• Training Neural Networks

• Applying your Neural Networks

This series will be make use of Keras (TensorFlow backend) but as it is a
fundamentals series, we are focusing primarily on the concepts.

https://pages.databricks.com/201909-APJ-WB-DeepLearningPart1Intro_03.On-demandpage.html
https://pages.databricks.com/201910-WB-APJ-DeepLearningPart2TrainNeural_01.Registrationpage.html
https://pages.databricks.com/201910-WB-APJ-DeepLearningPart3Apply_01.Registrationpage.html

Previous Session: Introduction to Neural Networks

• What is Deep Learning?

• What can Deep Learning do for you?

• What are artificial neural networks?

• Let’s start with a perceptron…

• Understanding the effect of activation functions

Current Session: Training Neural Networks

• Tuning training

• Training Algorithms

• Optimization (including Adam)

• Convolutional Neural Networks

Upcoming Session: Applying Neural Networks

• Diving further into CNNs

• CNN Architectures

• Convolutions at Work!

Convolutional Neural Networks

28 x 28 28 x 28 14 x 14

Convolution
32 filters

Convolution
64 filters

Subsampling
Stride (2,2)

Feature Extraction Classification

0
1

8
9

Fully Connected

Dropout

Dropout

Tuning Training

Hyperparameters
• Network
• How many layers?
• How many neurons in each layer?
• What activation functions to use?

• Learning algorithm
• What’s the best value of the learning rate?
• How quickly decay the learning rate? Momentum?
• What type of loss function should I use?
• What batch size?
• How many iterations is enough?

Overfitting and underfitting

Overfitting and underfitting

Overfitting and underfitting

Hyperparameters: Network
Generally, the more layers and the number of units in each layer:
• The greater the capacity of the artificial neural network
• The risk is overfitting when your goal is to build a generalized model.

From a practical perspective, a good starting point is:
• The number of input units equals the dimension of features
• The number of output units equals the number of classes (e.g. in the MNIST dataset, there

are 10 possible values represents digits (0…9) hence there are 10 output units
• Start with one hidden layer that is 2x the number of input units
• A good reference is Andrew Ng’s Coursera Machine Learning course.

https://www.coursera.org/learn/machine-learning

Hyperparameters: Activation Functions?
• Good starting point: ReLU
• Note many neural networks samples: Keras MNIST, TensorFlow CIFAR10 Pruning, etc.
• Note that each activation function has its own strengths and weaknesses. A good quote

on activation functions from CS231N summarizes the choice well:

“What neuron type should I use?” Use the ReLU non-linearity, be careful with your
learning rates and possibly monitor the fraction of “dead” units in a network. If this

concerns you, give Leaky ReLU or Maxout a try. Never use sigmoid. Try tanh, but
expect it to work worse than ReLU/Maxout.

https://github.com/keras-team/keras/blob/master/examples/mnist_cnn.py
https://github.com/tensorflow/tensorflow/blob/9590c4c32dd4346ea5c35673336f5912c6072bf2/tensorflow/contrib/model_pruning/examples/cifar10/cifar10_pruning.py
http://cs231n.github.io/neural-networks-1/

Neurons … Activate!

DEMO

Hyperparameters
Learning algorithm

• What’s the best value of the learning rate?

• How quickly decay the learning rate? Momentum?

• What type of loss function should I use?

• What batch size?

• How many iterations is enough?

Training Algorithms

Cost function

Source: https://bit.ly/2IoAGzL

For this linear regression example, to
determine the best (slope of the line) for

we can calculate the cost function, such as
Mean Square Error, Mean absolute error,
Mean bias error, SVM Loss, etc.

For this example, we’ll use sum of squared
absolute differences

𝑦 = 𝑥 ⋅ 𝑝
𝑝

𝑐𝑜𝑠𝑡 = ∑ | 𝑡 − 𝑦 |2

Gradient Descent Optimization

Source: https://bit.ly/2IoAGzL

Small Learning Rate

Source: https://bit.ly/2IoAGzL

Small Learning Rate

Source: https://bit.ly/2IoAGzL

Small Learning Rate

Source: https://bit.ly/2IoAGzL

Small Learning Rate

Source: https://bit.ly/2IoAGzL

Simplified Two-Layer ANN

1

1

0.8

0.2

0.7

0.6

0.9

0.1

0.8

0.75

0.69

h1 = 𝜎(1𝑥0.8 + 1𝑥0.6) = 0.80
h2 = 𝜎(1𝑥0.2 + 1𝑥0.9) = 0.75
h3 = 𝜎(1𝑥0.7 + 1𝑥0.1) = 0.69

Simplified Two-Layer ANN

1

1

0.8

0.2

0.7

0.6

0.9

0.1

0.8

0.75

0.69

0.2

0.8

0.5

0.75

𝑜𝑢𝑡 = 𝜎(0.2𝑥0.8 + 0.8𝑥0.75 + 0.5𝑥0.69)

= 𝜎(1.105)

= 0.75

Backpropagation

Input Hidden Output

0.8

0.2

0.75

Backpropagation

Input Hidden Output

0.85

• Backpropagation: calculate the

gradient of the cost function in a

neural network

• Used by gradient descent optimization

algorithm to adjust weight of neurons

• Also known as backward propagation

of errors as the error is calculated
and distributed back through the
network of layers

0.10

Sigmoid function (continued)

Output is not zero-centered: During gradient

descent, if all values are positive then during

backpropagation the weights will become all

positive or all negative creating zig zagging

dynamics.

Source: https://bit.ly/2IoAGzL

https://bit.ly/2IoAGzL

Learning Rate Callouts

• Too small, it may take too long to get minima

• Too large, it may skip the minima altogether

Optimization

Optimization Overview
• After backpropagation, the parameters are updated based on the gradients

calculated

• There are several approaches in this area of active research; we will focus on:

• Stochastic Gradient Descent
• Momentum, NAG
• Per-parameter adaptive learning rate methods

Stochastic Gradient Descent

• (Batch) Gradient Descent is computed on the full dataset (not efficient for large
scale models and datasets).

• Often converges faster because it performs updates more frequently
• But due to frequent updates, this may complicate convergence to the exact

minima
• For more information, refer to:
• Andrew Ng’s 2. Stochastic Gradient (https://goo.gl/bNrJbx)
• Types of Optimization Algorithms used in Neural Networks and Ways to

Optimize Gradient Descent (https://goo.gl/tB2e7S)

https://goo.gl/bNrJbx
https://goo.gl/bNrJbx

Gradient Descent Source: https://goo.gl/VUX2ZS

Momentum and NAG

• Obtain faster convergence by helping parameter vector build up velocity
• i.e. use the momentum of the gradient to converge faster

• Nesterov Accelerated Gradient (NAG): optimized version of Momentum
• Typically works better in practice than Momentum

Source: http://cs231n.github.io/neural-networks-3

Annealing the learning rate

• i.e. slow down the learning rate to prevent it from bouncing around too much

• Referred as the decay parameter (i.e., the learning rate decay over each

update) to reduce kinetic energy

• Note, this is different from rho (i.e. exponentially weighted average or
exponentially weighted decay of past gradients) to smooth the descent path
trajectory

Per-parameter adaptive learning rate methods
• Adaptively tune learning rates at the parameter level

• Popular methods include:

• Adaptive Gradient Algorithm (AdaGrad) improves performance on problems with
sparse gradients (e.g. natural language and computer vision problems).

• Root Mean Square Propagation (RMSProp) maintains per-parameter learning rates
based on the average of recent magnitudes of the gradients for the weight (e.g. how
quickly it is changing). This means the algorithm does well on online and non-stationary
problems (e.g. noisy).

• AdaDelta: Per dimension learning rate method for gradient descent with minimal
computational overhead, requires no manual tuning, and quite robust

Which Optimizer?

“In practice Adam is currently recommended as
the default algorithm to use, and often works
slightly better than RMSProp. However, it is often
also worth trying SGD+Nesterov Momentum as
an alternative..”

 Andrej Karpathy, et al, CS231n

Source: https://goo.gl/2da4WY

Comparison of Adam to Other Optimization Algorithms Training a Multilayer Perceptron 
Taken from Adam: A Method for Stochastic Optimization, 2015.

http://cs231n.github.io/neural-networks-3/

Optimization on loss surface contours

Adaptive algorithms converge
quickly and find the right direction
for the parameters.

In comparison, SGD is slow

Momentum-based methods
overshoot

Source: http://cs231n.github.io/neural-networks-3/#hyper
Image credit: Alec Radford

http://cs231n.github.io/neural-networks-3/#hyper
https://twitter.com/alecrad

Optimization on saddle point

Notice how SGD gets stuck near the
top

Meanwhile adaptive techniques
optimize the fastest

Source: http://cs231n.github.io/neural-networks-3/#hyper
Image credit: Alec Radford

http://cs231n.github.io/neural-networks-3/#hyper
https://twitter.com/alecrad

Good References
• Suki Lau's Learning Rate Schedules and Adaptive Learning Rate Methods for

Deep Learning

• CS23n Convolutional Neural Networks for Visual Recognition

• Fundamentals of Deep Learning

• ADADELTA: An Adaptive Learning Rate Method

• Gentle Introduction to the Adam Optimization Algorithm for Deep Learning

https://towardsdatascience.com/learning-rate-schedules-and-adaptive-learning-rate-methods-for-deep-learning-2c8f433990d1
https://towardsdatascience.com/learning-rate-schedules-and-adaptive-learning-rate-methods-for-deep-learning-2c8f433990d1
https://towardsdatascience.com/learning-rate-schedules-and-adaptive-learning-rate-methods-for-deep-learning-2c8f433990d1
http://cs231n.github.io/neural-networks-3
https://www.oreilly.com/library/view/fundamentals-of-deep/9781491925607/ch04.html
https://arxiv.org/pdf/1212.5701.pdf
https://machinelearningmastery.com/adam-optimization-algorithm-for-deep-learning/

Convolutional Networks

Convolutional Neural Networks

• Similar to Artificial Neural Networks but CNNs (or ConvNets) make explicit
assumptions that the input are images

• Regular neural networks do not scale well against images
• E.g. CIFAR-10 images are 32x32x3 (32 width, 32 height, 3 color channels) =

3072 weights – somewhat manageable
• A larger image of 200x200x3 = 120,000 weights

• CNNs have neurons arranged in 3D: width, height, depth.
• Neurons in a layer will only be connected to a small region of the layer before

it, i.e. NOT all of the neurons in a fully-connected manner.
• Final output layer for CIFAR-10 is 1x1x10 as we will reduce the full image into

a single vector of class scores, arranged along the depth dimension

CNNs / ConvNets

Regular 3-layer neural
network

• ConvNet arranges neurons in 3 dimensions
• 3D input results in 3D output

Source: https://cs231n.github.io/convolutional-networks/

https://cs231n.github.io/convolutional-networks/

Convolutional Neural Networks

28 x 28 28 x 28 14 x 14

Convolution
32 filters

Convolution
64 filters

Subsampling
Stride (2,2)

Feature Extraction Classification

0
1

8
9

Fully Connected

Dropout

Dropout

Convolutional Neural Networks

28 x 28 28 x 28 14 x 14

Convolution
32 filters

Convolution
64 filters

Subsampling
Stride (2,2)

Feature Extraction Classification

0
1

8
9

Fully Connected

Dropout

Dropout

Input
Pixel value of 32x32x3: 32 width,
32 height, 3 color channels (RGB)

Convolutional Neural Networks

28 x 28 28 x 28 14 x 14

Convolution
32 filters

Convolution
64 filters

Subsampling
Stride (2,2)

Feature Extraction Classification

0
1

8
9

Fully Connected

Dropout

Dropout

Convolutions
Compute output of neurons (dot
product between their weights)
connected to a small local region. If
we use 32 filters, then the output is
28x28x32 (using 5x5 filter)

Convolutional Neural Networks

28 x 28 28 x 28 14 x 14

Convolution
32 filters

Convolution
64 filters

Subsampling
Stride (2,2)

Feature Extraction Classification

0
1

8
9

Fully Connected

Dropout

Dropout

Pooling
Perform down sampling operation
along spatial dimensions (w, h)
resulting in reduced volume,
e.g. 14x14x2.

Convolutional Neural Networks

28 x 28 28 x 28 14 x 14

Convolution
32 filters

Convolution
64 filters

Subsampling
Stride (2,2)

Feature Extraction Classification

0
1

8
9

Fully Connected

Dropout

Dropout

Fully Connected
Neurons in a fully connected layer
have full connections to all
activations in the previous layer, as
seen in regular Neural Networks.

https://cs.stanford.edu/people/karpathy/convnetjs/demo/mnist.html

ConvNetJS MNIST Demo

Neurons … Activate!

DEMO

I’d like to thank…

Great References

• Andrej Karparthy’s ConvNetJS MNIST Demo

• What is back propagation in neural networks?

• CS231n: Convolutional Neural Networks for Visual Recognition

• Syllabus and Slides | Course Notes | YouTube

• With particular focus on CS231n: Lecture 7: Convolution Neural Networks

• Neural Networks and Deep Learning

• TensorFlow

https://cs.stanford.edu/people/karpathy/convnetjs/demo/mnist.html
https://www.quora.com/What-is-back-propagation-in-neural-networks
http://cs231n.stanford.edu/syllabus.html
https://cs231n.github.io/
https://www.youtube.com/watch?v=g-PvXUjD6qg&list=PLlJy-eBtNFt6EuMxFYRiNRS07MCWN5UIA
https://www.youtube.com/watch?v=LxfUGhug-iQ
http://neuralnetworksanddeeplearning.com/index.html
https://www.tensorflow.org/

Great References

• Deep Visualization Toolbox

• Back Propagation with TensorFlow

• TensorFrames: Google TensorFlow with Apache Spark

• Integrating deep learning libraries with Apache Spark

• Build, Scale, and Deploy Deep Learning Pipelines with Ease

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwjKl4-y8fDUAhUKz2MKHcV5AVIQyCkIKjAA&url=https://www.youtube.com/watch?v=AgkfIQ4IGaM&usg=AFQjCNE9vcdHNSTJ7AucOiXZFyHlc_N2xA
http://blog.aloni.org/posts/backprop-with-tensorflow/
https://www.slideshare.net/SparkSummit/spark-summit-eu-talk-by-tim-hunter%20https:/www.slideshare.net/SparkSummit/spark-summit-eu-talk-by-tim-hunter
https://www.slideshare.net/databricks/integrating-deep-learning-libraries-with-apache-spark
http://go.databricks.com/deep-learning-pipeline-library-webinar-1

Attribution
Tomek Drabas
Brooke Wenig
Timothee Hunter
Cyrielle Simeone

Q&A

What’s next?

Applying your Convolutional Neural Networks
October 24th, 2019
3pm Sydney | 12pm Singapore | 9.30am Mumbai

https://databricks.com/tensorflow/deep-learning-event

https://databricks.com/tensorflow/deep-learning-event

