
The
Delta Lake
Series
Features

Use Delta Lake’s robust features
to reliably manage your data

Here’s what
you’ll find inside

What’s
inside?

What’s
next?

Why Use MERGE
With Delta Lake?

 Chapter

01
Simple, Reliable Upserts and Deletes
on Delta Lake Tables Using Python APIs

 Chapter

02
Time Travel for
Large-Scale Data Lakes

 Chapter

03
Easily Clone Your Delta Lake for
Testing, Sharing and ML Reproducibility

Chapter

04
Enabling Spark SQL DDL and DML
in Delta Lake on Apache Spark

Chapter

05

What is Delta Lake?
Introduction

The Delta Lake Series of eBooks is published
by Databricks to help leaders and practitioners
understand the full capabilities of Delta Lake as
well as the landscape it resides in. This eBook,
The Delta Lake Series — Features, focuses on
Delta Lake’s robust features so you can use them
to your benefit.

After reading this eBook, you’ll not only understand
what Delta Lake offers, but you’ll also understand
how its features result in substantial performance
improvements.

3The Delta Lake Series -- Features

Delta Lake is a unified data management system that brings data reliability and fast
analytics to cloud data lakes. Delta Lake runs on top of existing data lakes and is fully
compatible with Apache Spark™ APIs.

At Databricks, we’ve seen how Delta Lake can bring reliability, performance and
lifecycle management to data lakes. Our customers have found that Delta Lake solves
for challenges around malformed data ingestion, difficulties deleting data for
compliance, or issues modifying data for data capture.

With Delta Lake, you can accelerate the velocity that high-quality data can get into
your data lake and the rate that teams can leverage that data with a secure and scalable
cloud service.

What is
Delta Lake?

https://databricks.com/product/delta-lake-on-databricks

CHAPTER 01
Why Use MERGE With Delta Lake?

5The Delta Lake Series -- Features

Why Use MERGE
With Delta Lake? 01
Delta Lake, the next-generation engine built on top of Apache Spark, supports the
MERGE command, which allows you to efficiently upsert and delete records in your
data lakes.

MERGE dramatically simplifies how a number of common data pipelines can be built
-- all the complicated multi-hop processes that inefficiently rewrote entire partitions
can now be replaced by simple MERGE queries.

This finer-grained update capability simplifies how you build your big data
pipelines for various use cases ranging from change data capture to GDPR. You
no longer need to write complicated logic to overwrite tables and overcome a lack
of snapshot isolation.

With changing data, another critical capability required is the ability to roll back, in
case of bad writes. Delta Lake also offers rollback capabilities with the Time Travel
feature, so that if you do a bad merge, you can easily roll back to an earlier version.

In this chapter, we’ll discuss common use cases where existing data might need to be
updated or deleted. We’ll also explore the challenges inherent to upserts and explain
how MERGE can address them.

https://databricks.com/product/delta-lake-on-databricks
https://databricks.com/blog/2019/02/04/introducing-delta-time-travel-for-large-scale-data-lakes.html
https://databricks.com/blog/2019/02/04/introducing-delta-time-travel-for-large-scale-data-lakes.html

6The Delta Lake Series -- Features

When are upserts necessary?
There are a number of common use cases where existing data in a data lake needs to
be updated or deleted:
• General Data Protection Regulation (GDPR) compliance: With the introduction of

the right to be forgotten (also known as data erasure) in GDPR, organizations must
remove a user’s information upon request. This data erasure includes deleting user
information in the data lake as well.

• Change data capture from traditional databases: In a service-oriented
architecture, typically web and mobile applications are served by microservices
built on traditional SQL/NoSQL databases that are optimized for low latency. One
of the biggest challenges organizations face is joining data across these various
siloed data systems, and hence data engineers build pipelines to consolidate
all data sources into a central data lake to facilitate analytics. These pipelines
often have to periodically read changes made on a traditional SQL/NoSQL table
and apply them to corresponding tables in the data lake. Such changes can take
various forms: Tables with slowly changing dimensions, change data capture of all
inserted/updated/deleted rows, etc.

• Sessionization: Grouping multiple events into a single session is a common use
case in many areas ranging from product analytics to targeted advertising to
predictive maintenance. Building continuous applications to track sessions and
recording the results that write into data lakes is difficult because data lakes have
always been optimized for appending data.

• De-duplication: A common data pipeline use case is to collect system logs into a
Delta Lake table by appending data to the table. However, often the sources can
generate duplicate records and downstream de-duplication steps are needed to
take care of them.

7The Delta Lake Series -- Features

Why upserts into data lakes have
traditionally been challenging
Since data lakes are fundamentally based on files, they have always been optimized
for appending data rather than for changing existing data. Hence, building the above
use case has always been challenging.

Users typically read the entire table (or a subset of partitions) and then overwrite
them. Therefore, every organization tries to reinvent the wheel for their requirement
by handwriting complicated queries in SQL, Spark, etc. This approach is:
• Inefficient: Reading and rewriting entire partitions (or entire tables) to update a

few records causes pipelines to be slow and costly. Hand-tuning the table layout
and query optimization is tedious and requires deep domain knowledge.

• Possibly incorrect: Handwritten code modifying data is very prone to logical and
human errors. For example, multiple pipelines concurrently modifying the same table
without any transactional support can lead to unpredictable data inconsistencies
and in the worst case, data losses. Often, even a single handwritten pipeline can
easily cause data corruptions due to errors in encoding the business logic.

• Hard to maintain: Fundamentally such handwritten code is hard to understand,
keep track of and maintain. In the long term, this alone can significantly increase
the organizational and infrastructural costs.

Introducing MERGE in Delta Lake
With Delta Lake, you can easily address the use cases above without any of the
aforementioned problems using the following MERGE command:

MERGE INTO

USING

ON

[WHEN MATCHED [AND] THEN]

[WHEN MATCHED [AND] THEN]

[WHEN NOT MATCHED [AND] THEN]

where

=

DELETE |

UPDATE SET * |

UPDATE SET column1 = value1 [, column2 = value2 ...]

=

INSERT * |

INSERT (column1 [, column2 ...]) VALUES (value1 [, value2 ...])

Let’s understand how to use MERGE with a simple example. Suppose you have a
slowly changing dimension table that maintains user information like addresses.
Furthermore, you have a table of new addresses for both existing and new users. To
merge all the new addresses to the main user table, you can run the following:

MERGE INTO users

USING updates

ON users.userId = updates.userId

WHEN MATCHED THEN

 UPDATE SET address = updates.addresses
WHEN NOT MATCHED THEN

 INSERT (userId, address) VALUES (updates.userId, updates.address)

This will perform exactly what the syntax says -- for existing users (i.e., MATCHED
clause), it will update the address column, and for new users (i.e., NOT MATCHED
clause) it will insert all the columns. For large tables with TBs of data, this Delta Lake
MERGE operation can be orders of magnitude faster than overwriting entire partitions
or tables since Delta Lake reads only relevant files and updates them. Specifically,
Delta Lake's MERGE has the following advantages:

https://en.wikipedia.org/wiki/Slowly_changing_dimension

8The Delta Lake Series -- Features

• Fine-grained: The operation rewrites data at the granularity of files and not
partitions. This eliminates all the complications of rewriting partitions, updating
the Hive metastore with MSCK and so on.

• Efficient: Delta Lake's data skipping makes the MERGE efficient at finding files to
rewrite, thus eliminating the need to hand-optimize your pipeline. Furthermore,
Delta Lake with all its I/O and processing optimizations makes all the reading and
writing data by MERGE significantly faster than similar operations in Apache Spark.

• Transactional: Delta Lake uses optimistic concurrency control to ensure that
concurrent writers update the data correctly with ACID transactions, and concurrent
readers always see a consistent snapshot of the data.

Here is a visual explanation of how MERGE compares with handwritten pipelines.

Simplifying use cases with MERGE
Deleting data due to GDPR
Complying with the “right to be forgotten” clause of GDPR for data in data lakes cannot
get any easier. You can set up a simple scheduled job with an example code, like
below, to delete all the users who have opted out of your service.

MERGE INTO users

USING opted_out_users

ON opted_out_users.userId = users.userId

WHEN MATCHED THEN DELETE

Applying change data from databases
You can easily apply all data changes — updates, deletes, inserts — generated from an
external database into a Delta Lake table with the MERGE syntax as follows:

MERGE INTO users

USING (

SELECT userId, latest.address AS address, latest.deleted AS deleted FROM

(

SELECT userId, MAX(struct(TIME, address, deleted)) AS latest

FROM changes GROUP BY userId

)

) latestChange

ON latestChange.userId = users.userId

WHEN MATCHED AND latestChange.deleted = TRUE THEN

DELETE

WHEN MATCHED THEN

UPDATE SET address = latestChange.address

WHEN NOT MATCHED AND latestChange.deleted = FALSE THEN

INSERT (userId, address) VALUES (userId, address)

9The Delta Lake Series -- Features

Updating session information from streaming
pipelines
If you have streaming event data flowing in and if you want to sessionize the streaming
event data and incrementally update and store sessions in a Delta Lake table, you
can accomplish this using the foreachBatch in Structured Streaming and MERGE.
For example, suppose you have a Structured Streaming DataFrame that computes
updated session information for each user. You can start a streaming query that
applies all the sessions update to a Delta Lake table as follows (Scala).

streamingSessionUpdatesDF.writeStream

.foreachBatch { (microBatchOutputDF: DataFrame, batchId: Long) =>
microBatchOutputDF.createOrReplaceTempView(“updates”)

microBatchOutputDF.sparkSession.sql(s”””

MERGE INTO sessions

USING updates

ON sessions.sessionId = updates.sessionId

WHEN MATCHED THEN UPDATE SET *

WHEN NOT MATCHED THEN INSERT * “””)

}.start()

For a complete working example of each Batch and MERGE, see this notebook
(Azure | AWS).

Additional resources
Tech Talk | Addressing GDPR and CCPA Scenarios With Delta Lake and Apache Spark

Tech Talk | Using Delta as a Change Data Capture Source

Simplifying Change Data Capture With Databricks Delta

Building Sessionization Pipeline at Scale With Databricks Delta

Tech Chat | Slowly Changing Dimensions (SCD) Type 2

https://docs.azuredatabricks.net/_static/notebooks/merge-in-streaming.html
https://docs.databricks.com/_static/notebooks/merge-in-streaming.html
https://www.youtube.com/watch?v=tCPslvUjG1w
https://www.youtube.com/watch?v=7y0AAQ6qX5w
https://databricks.com/blog/2018/10/29/simplifying-change-data-capture-with-databricks-delta.html
https://databricks.com/session/building-sessionization-pipeline-at-scale-with-databricks-delta
https://www.youtube.com/watch?v=HZWwZG07hzQ

Simple, Reliable Upserts and Deletes on
Delta Lake Tables Using Python APIs

CHAPTER 02

11The Delta Lake Series -- Features

In this chapter, we will demonstrate how to use Python and the new Python APIs in Delta
Lake within the context of an on-time flight performance scenario. We will show how
to upsert and delete data, query old versions of data with time travel, and vacuum
older versions for cleanup.

How to start using Delta Lake
The Delta Lake package is installable through PySpark by using the --packages
option. In our example, we will also demonstrate the ability to VACUUM files and execute
Delta Lake SQL commands within Apache Spark. As this is a short demonstration, we
will also enable the following configurations:

 spark.databricks.delta.retentionDurationCheck.enabled=false

to allow us to vacuum files shorter than the default retention duration of seven days.
Note, this is only required for the SQL command VACUUM
 spark.sql.extensions=io.delta.sql.DeltaSparkSessionExtension

to enable Delta Lake SQL commands within Apache Spark; this is not required for
Python or Scala API calls.

Using Spark Packages

./bin/pyspark --packages io.delta:delta-core_2.11:0.4.0 --conf “spark.

databricks.delta.retentionDurationCheck.enabled=false” --conf “spark.

sql.extensions=io.delta.sql.DeltaSparkSessionExtension”

Simple, Reliable Upserts and
Deletes on Delta Lake Tables
Using Python APIs02

12The Delta Lake Series -- Features

Loading and saving our Delta Lake data
This scenario will be using the On-time flight performance or Departure Delays data set
generated from the RITA BTS Flight Departure Statistics; some examples of this data
in action include the 2014 Flight Departure Performance via d3.js Crossfilter and On-
Time Flight Performance with GraphFrames for Apache Spark™. Within PySpark, start
by reading the data set.

 # Location variables

tripdelaysFilePath = “/root/data/departuredelays.csv”

pathToEventsTable = “/root/deltalake/departureDelays.delta”

Read flight delay data

departureDelays = spark.read \

.option(“header”, “true”) \

.option(“inferSchema”, “true”) \

.csv(tripdelaysFilePath)

Next, let’s save our departureDelays data set to a Delta Lake table. By saving this table
to Delta Lake storage, we will be able to take advantage of its features including ACID
transactions, unified batch and streaming and time travel.

Save flight delay data into Delta Lake format

departureDelays \

.write \

.format(“delta”) \

.mode(“overwrite”) \

.save(“departureDelays.delta”)

Note, this approach is similar to how you would normally save Parquet data; instead of
specifying format(“parquet”), you will now specify format(“delta”). If you
were to take a look at the underlying file system, you will notice four files created for
the departureDelays Delta Lake table.

/departureDelays.delta$ ls -l

.

..

_delta_log

part-00000-df6f69ea-e6aa-424b-bc0e-f3674c4f1906-c000.snappy.parquet

part-00001-711bcce3-fe9e-466e-a22c-8256f8b54930-c000.snappy.parquet

part-00002-778ba97d-89b8-4942-a495-5f6238830b68-c000.snappy.parquet

Part-00003-1a791c4a-6f11-49a8-8837-8093a3220581-c000.snappy.parquet

Now, let’s reload the data, but this time our DataFrame will be backed by Delta Lake.

Load flight delay data in Delta Lake format

delays_delta = spark \

.read \

.format(“delta”) \

.load(“departureDelays.delta”)

Create temporary view

delays_delta.createOrReplaceTempView(“delays_delta”)

How many flights are between Seattle and San Francisco

spark.sql(“select count(1) from delays_delta where origin = ‘SEA’ and

destination = ‘SFO’”).show()

https://dennyglee.com/2014/06/06/2014-flight-departure-performance-via-d3-js-crossfilter/

13The Delta Lake Series -- Features

Finally, let’s determine the number of flights originating from Seattle to San Francisco; in
this data set, there are 1698 flights.

In-place conversion to Delta Lake
If you have existing Parquet tables, you have the ability to convert them to Delta Lake
format in place, thus not needing to rewrite your table. To convert the table, you can
run the following commands.

from delta.tables import *

Convert non partitioned parquet table at path ‘/path/to/table’

deltaTable = DeltaTable.convertToDelta(spark, “parquet.`/path/to/

table`”)

Convert partitioned parquet table at path ‘/path/to/table’ and

partitioned by integer column named ‘part’

partitionedDeltaTable = DeltaTable.convertToDelta(spark,

“parquet.`/path/to/table`”, “part int”)

Delete our flight data
To delete data from a traditional data lake table, you will need to:
1. Select all of the data from your table not including the rows you want to delete
2. Create a new table based on the previous query
3. Delete the original table
4. Rename the new table to the original table name for downstream dependencies
Instead of performing all of these steps, with Delta Lake, we can simplify this process
by running a DELETE statement. To show this, let’s delete all of the flights that had
arrived early or on-time (i.e., delay < 0).

from delta.tables import *

from pyspark.sql.functions import *

Access the Delta Lake table

deltaTable = DeltaTable.forPath(spark, pathToEventsTable

)

Delete all on-time and early flights

deltaTable.delete(“delay < 0”)

How many flights are between Seattle and San Francisco

spark.sql(“select count(1) from delays_delta where origin = ‘SEA’ and

destination = ‘SFO’”).show()

After we delete (more on this below) all of the on-time and early flights, as you can
see from the preceding query there are 837 late flights originating from Seattle to
San Francisco. If you review the file system, you will notice there are more files even
though you deleted data.

/departureDelays.delta$ ls -l

_delta_log

part-00000-a2a19ba4-17e9-4931-9bbf-3c9d4997780b-c000.snappy.parquet

part-00000-df6f69ea-e6aa-424b-bc0e-f3674c4f1906-c000.snappy.parquet

part-00001-711bcce3-fe9e-466e-a22c-8256f8b54930-c000.snappy.parquet

part-00001-a0423a18-62eb-46b3-a82f-ca9aac1f1e93-c000.snappy.parquet

part-00002-778ba97d-89b8-4942-a495-5f6238830b68-c000.snappy.parquet

part-00002-bfaa0a2a-0a31-4abf-aa63-162402f802cc-c000.snappy.parquet

part-00003-1a791c4a-6f11-49a8-8837-8093a3220581-c000.snappy.parquet

part-00003-b0247e1d-f5ce-4b45-91cd-16413c784a66-c000.snappy.parquet

14The Delta Lake Series -- Features

In traditional data lakes, deletes are performed by rewriting the entire table
excluding the values to be deleted. With Delta Lake, deletes are instead performed
by selectively writing new versions of the files containing the data to be deleted and
only marks the previous files as deleted. This is because Delta Lake uses multiversion
concurrency control (MVCC) to do atomic operations on the table: For example, while
one user is deleting data, another user may be querying the previous version of the
table. This multiversion model also enables us to travel back in time (i.e., time travel)
and query previous versions as we will see later.

Update our flight data
To update data from your traditional Data Lake table, you will need to:
1. Select all of the data from your table not including the rows you want to modify
2. Modify the rows that need to be updated/changed
3. Merge these two tables to create a new table
4. Delete the original table
5. Rename the new table to the original table name for downstream dependencies

Instead of performing all of these steps, with Delta Lake, we can simplify this
process by running an UPDATE statement. To show this, let’s update all of the flights
originating from Detroit to Seattle.

Update all flights originating from Detroit to now be

originating from Seattle

deltaTable.update(“origin = ‘DTW’”, { “origin”: “’SEA’” })

How many flights are between Seattle and San Francisco

spark.sql(“select count(1) from delays_delta where origin = ‘SEA’

and destination = ‘SFO’”).show()

With the Detroit flights now tagged as Seattle flights, we now have 986 flights
originating from Seattle to San Francisco. If you were to list the file system for
your departureDelays folder (i.e., $../departureDelays/ls -l), you will
notice there are now 11 files (instead of the 8 right after deleting the files and the four
files after creating the table).

Merge our flight data
A common scenario when working with a data lake is to continuously append data to
your table. This often results in duplicate data (rows you do not want to be inserted
into your table again), new rows that need to be inserted, and some rows that need to
be updated. With Delta Lake, all of this can be achieved by using the merge operation
(similar to the SQL MERGE statement).

Let’s start with a sample data set that you will want to be updated, inserted or
de-duplicated with the following query.

What flights between SEA and SFO for these date periods

spark.sql(“select * from delays_delta where origin = ‘SEA’ and

destination = ‘SFO’ and date like ‘1010%’ limit 10”).show()

The output of this query looks like the following table. Note, the color-coding has been
added to clearly identify which rows are de-duplicated (blue), updated (yellow) and
inserted (green).

https://databricks.com/blog/2019/02/04/introducing-delta-time-travel-for-large-scale-data-lakes.html

15The Delta Lake Series -- Features

Next, let’s generate our own merge_table that contains data we will insert, update
or de-duplicate with the following code snippet.

items = [(1010710, 31, 590, ‘SEA’, ‘SFO’), (1010521, 10, 590,

‘SEA’, ‘SFO’),

(1010822, 31, 590, ‘SEA’, ‘SFO’)]

cols = [‘date’, ‘delay’, ‘distance’, ‘origin’, ‘destination’]

merge_table = spark.createDataFrame(items, cols)

merge_table.toPandas()

In the preceding table (merge_table), there are three rows with a unique date value:
1. 1010521: This row needs to update the flights table with a new delay value (yellow)
2. 1010710: This row is a duplicate (blue)
3. 1010832: This is a new row to be inserted (green)

With Delta Lake, this can be easily achieved via a merge statement as noted in the
following code snippet.

Merge merge_table with flights

deltaTable.alias(“flights”) \

 .merge(merge_table.alias(“updates”),”flights.date =

 updates.date”) \

 .whenMatchedUpdate(set = { “delay” : “updates.delay” }) \

 .whenNotMatchedInsertAll() \

 .execute()

What flights between SEA and SFO for these date periods

spark.sql(“select * from delays_delta where origin = ‘SEA’ and

destination = ‘SFO’ and date like ‘1010%’ limit 10”).show()

All three actions of de-duplication, update and insert were efficiently completed with
one statement.

View table history
As previously noted, after each of our transactions (delete, update), there were more
files created within the file system. This is because for each transaction, there are
different versions of the Delta Lake table.

16The Delta Lake Series -- Features

This can be seen by using the DeltaTable.history() method as noted below.

Note, you can also perform the same task with SQL:
spark.sql(“DESCRIBE HISTORY ‘” + pathToEventsTable + “’”).show()

As you can see, there are three rows representing the different versions of the table
(below is an abridged version to help make it easier to read) for each of the operations
(create table, delete and update):

Travel back in time with table history
With Time Travel, you can review the Delta Lake table as of the version or timestamp.
To view historical data, specify the version or timestamp option; in the following code
snippet, we will specify the version option.

Load DataFrames for each version

dfv0 = spark.read.format(“delta”).option(“versionAsOf”,

0).load(“departureDelays.delta”)

dfv1 = spark.read.format(“delta”).option(“versionAsOf”,

1).load(“departureDelays.delta”)

dfv2 = spark.read.format(“delta”).option(“versionAsOf”,

2).load(“departureDelays.delta”)

Calculate the SEA to SFO flight counts for each version of history

cnt0 = dfv0.where(“origin = ‘SEA’”).where(“destination = ‘SFO’”).count()

cnt1 = dfv1.where(“origin = ‘SEA’”).where(“destination = ‘SFO’”).count()

cnt2 = dfv2.where(“origin = ‘SEA’”).where(“destination = ‘SFO’”).count()

Print out the value

print(“SEA -> SFO Counts: Create Table: %s, Delete: %s, Update: %s” %

(cnt0, cnt1, cnt2))

Output

SEA -> SFO Counts: Create Table: 1698, Delete: 837, Update: 986

Whether for governance, risk management and compliance (GRC) or rolling back
errors, the Delta Lake table contains both the metadata (e.g., recording the fact that a
delete had occurred with these operators) and data (e.g., the actual rows deleted). But
how do we remove the data files either for compliance or size reasons?

Clean up old table versions with vacuum
The Delta Lake vacuum method will delete all of the rows (and files) by default that are
older than seven days’ reference. If you were to view the file system, you’ll notice the
11 files for your table.

/departureDelays.delta$ ls -l

_delta_log

https://docs.delta.io/0.7.0/delta-utility.html#vacuum

17The Delta Lake Series -- Features

part-00000-5e52736b-0e63-48f3-8d56-50f7cfa0494d-c000.snappy.parquet

part-00000-69eb53d5-34b4-408f-a7e4-86e000428c37-c000.snappy.parquet

part-00000-f8edaf04-712e-4ac4-8b42-368d0bbdb95b-c000.snappy.parquet

part-00001-20893eed-9d4f-4c1f-b619-3e6ea1fdd05f-c000.snappy.parquet

part-00001-9b68b9f6-bad3-434f-9498-f92dc4f503e3-c000.snappy.parquet

part-00001-d4823d2e-8f9d-42e3-918d-4060969e5844-c000.snappy.parquet

part-00002-24da7f4e-7e8d-40d1-b664-95bf93ffeadb-c000.snappy.parquet

part-00002-3027786c-20a9-4b19-868d-dc7586c275d4-c000.snappy.parquet

part-00002-f2609f27-3478-4bf9-aeb7-2c78a05e6ec1-c000.snappy.parquet

part-00003-850436a6-c4dd-4535-a1c0-5dc0f01d3d55-c000.snappy.parquet

Part-00003-b9292122-99a7-4223-aaa9-8646c281f199-c000.snappy.parquet

To delete all of the files so that you only keep the current snapshot of data, you will specify a
small value for the vacuum method (instead of the default retention of 7 days).

Remove all files older than 0 hours old.

deltaTable.vacuum(0)

Note, you perform the same task via SQL syntax:¸

Remove all files older than 0 hours old

spark.sql(“VACUUM ‘” + pathToEventsTable + “‘ RETAIN 0 HOURS”)

Once the vacuum has completed, when you review the file system you will notice fewer
files as the historical data has been removed.

/departureDelays.delta$ ls -l

_delta_log

part-00000-f8edaf04-712e-4ac4-8b42-368d0bbdb95b-c000.snappy.parquet

part-00001-9b68b9f6-bad3-434f-9498-f92dc4f503e3-c000.snappy.parquet

part-00002-24da7f4e-7e8d-40d1-b664-95bf93ffeadb-c000.snappy.parquet

part-00003-b9292122-99a7-4223-aaa9-8646c281f199-c000.snappy.parquet

Note, the ability to time travel back to a version older than the retention period is lost
after running vacuum.

Time Travel for Large-Scale Data Lakes

CHAPTER 03

19The Delta Lake Series -- Features

Time travel capabilities are available in Delta Lake. Delta Lake is an open-source storage
layer that brings reliability to data lakes. Delta Lake provides ACID transactions, scalable
metadata handling, and unifies streaming and batch data processing. Delta Lake runs on
top of your existing data lake and is fully compatible with Apache Spark APIs.

With this feature, Delta Lake automatically versions the big data that you store in your
data lake, and you can access any historical version of that data. This temporal data
management simplifies your data pipeline by making it easy to audit, roll back data
in case of accidental bad writes or deletes, and reproduce experiments and reports.

Your organization can finally standardize on a clean, centralized, versioned big data
repository in your own cloud storage for your analytics.

Common challenges with changing data
• Audit data changes: Auditing data changes is critical both in terms of data

compliance as well as simple debugging to understand how data has changed over
time. Organizations moving from traditional data systems to big data technologies
and the cloud struggle in such scenarios.

• Reproduce experiments and reports: During model training, data scientists
run various experiments with different parameters on a given set of data. When
scientists revisit their experiments after a period of time to reproduce the models,
typically the source data has been modified by upstream pipelines. A lot of times,
they are caught unaware by such upstream data changes and hence struggle to
reproduce their experiments. Some scientists and organizations engineer best

Time Travel for
Large-Scale Data Lakes03

https://databricks.com/product/delta-lake-on-databricks
https://delta.io/
https://github.com/delta-io/delta
https://github.com/delta-io/delta

20The Delta Lake Series -- Features

practices by creating multiple copies of the data, leading to increased storage
costs. The same is true for analysts generating reports.

• Rollbacks: Data pipelines can sometimes write bad data for downstream
consumers. This can happen because of issues ranging from infrastructure insta-
bilities to messy data to bugs in the pipeline. For pipelines that do simple appends to
directories or a table, rollbacks can easily be addressed by date-based partitioning.
With updates and deletes, this can become very complicated, and data engineers
typically have to engineer a complex pipeline to deal with such scenarios.

Working with Time Travel
Delta Lake’s time travel capabilities simplify building data pipelines for the above use
cases. Time Travel in Delta Lake improves developer productivity tremendously. It helps:
• Data scientists manage their experiments better
• Data engineers simplify their pipelines and roll back bad writes
• Data analysts do easy reporting

Organizations can finally standardize on a clean, centralized, versioned big data
repository in their own cloud storage for analytics. We are thrilled to see what you will
be able to accomplish with this feature.

As you write into a Delta Lake table or directory, every operation is automatically
versioned. You can access the different versions of the data two different ways:

1. Using a timestamp
Scala syntax
You can provide the timestamp or date string as an option to DataFrame reader:

val df = spark.read

 .format(“delta”)

 .option(“timestampAsOf”, “2019-01-01”)

 .load(“/path/to/my/table”)

21The Delta Lake Series -- Features

Python syntax
df = spark.read \

 .format(“delta”) \

 .option(“timestampAsOf”, “2019-01-01”) \

 .load(“/path/to/my/table”)

SQL syntax
SELECT count(*) FROM my_table TIMESTAMP AS OF “2019-01-01”

SELECT count(*) FROM my_table TIMESTAMP AS OF date_sub(current_date(), 1)

SELECT count(*) FROM my_table TIMESTAMP AS OF “2019-01-01 01:30:00.000”

If the reader code is in a library that you don’t have access to, and if you are passing
input parameters to the library to read data, you can still travel back in time for a table
by passing the timestamp in yyyyMMddHHmmssSSS format to the path:

val inputPath = “/path/to/my/table@20190101000000000”

val df = loadData(inputPath)

// Function in a library that you don’t have access to

def loadData(inputPath : String) : DataFrame = {

 spark.read

 .format(“delta”)

 .load(inputPath)

}

inputPath = “/path/to/my/table@20190101000000000”

df = loadData(inputPath)

Function in a library that you don’t have access to

def loadData(inputPath):

 return spark.read \

 .format(“delta”) \

 .load(inputPath)

}

22The Delta Lake Series -- Features

2. Using a version number
In Delta Lake, every write has a version number, and you can use the version number
to travel back in time as well.
Scala syntax
val df = spark.read

 .format(“delta”)

 .option(“versionAsOf”, “5238”)

 .load(“/path/to/my/table”)

val df = spark.read

 .format(“delta”)

 .load(“/path/to/my/table@v5238”)

Python syntax
df = spark.read \

 .format(“delta”) \

 .option(“versionAsOf”, “5238”) \

 .load(“/path/to/my/table”)

df = spark.read \

 .format(“delta”) \

 .load(“/path/to/my/table@v5238”)

SQL syntax
SELECT count(*) FROM my_table VERSION AS OF 5238

23The Delta Lake Series -- Features

Audit data changes
You can look at the history of table changes using the DESCRIBE HISTORY command
or through the UI.

Reproduce experiments and reports
Time travel also plays an important role in machine learning and data science.
Reproducibility of models and experiments is a key consideration for data scientists
because they often create hundreds of models before they put one into production,
and in that time-consuming process would like to go back to earlier models. However,
because data management is often separate from data science tools, this is really
hard to accomplish.

Databricks solves this reproducibility problem by integrating Delta Lake's Time Travel
capabilities with MLflow, an open-source platform for the machine learning lifecycle.
For reproducible machine learning training, you can simply log a timestamped URL to

the path as an MLflow parameter to track which version of the data was used for each
training job.

This enables you to go back to earlier settings and data sets to reproduce earlier
models. You neither need to coordinate with upstream teams on the data nor worry
about cloning data for different experiments. This is the power of unified analytics,
whereby data science is closely married with data engineering.

Rollbacks
Time travel also makes it easy to do rollbacks in case of bad writes. For example, if
your GDPR pipeline job had a bug that accidentally deleted user information, you can
easily fix the pipeline:

INSERT INTO my_table

SELECT * FROM my_table TIMESTAMP AS OF date_sub(current_date(), 1)

https://mlflow.org/

24The Delta Lake Series -- Features

WHERE userId = 111

You can also fix incorrect updates as follows:

MERGE INTO my_table target

USING my_table TIMESTAMP AS OF date_sub(current_date(), 1) source

ON source.userId = target.userId

WHEN MATCHED THEN UPDATE SET *

If you simply want to roll back to a previous version of your table, you can do so with
either of the following commands:

RESTORE TABLE my_table VERSION AS OF [version_number]

RESTORE TABLE my_table TIMESTAMP AS OF [timestamp]

Pinned view of a continuously updating
Delta Lake table across multiple downstream jobs
With AS OF queries, you can now pin the snapshot of a continuously updating Delta
Lake table for multiple downstream jobs. Consider a situation where a Delta Lake table
is being continuously updated, say every 15 seconds, and there is a downstream job
that periodically reads from this Delta Lake table and updates different destinations.
In such scenarios, typically you want a consistent view of the source Delta Lake table
so that all destination tables reflect the same state.

You can now easily handle such scenarios as follows:

version = spark.sql(“SELECT max(version) FROM (DESCRIBE HISTORY

my_table)”).collect()

Will use the latest version of the table for all operations below

data = spark.table(“my_table@v%s” % version[0][0]data.where

(“event_type = e1”).write.jdbc(“table1”)

data.where(“event_type = e2”).write.jdbc(“table2”)

...

data.where(“event_type = e10”).write.jdbc(“table10”)

Queries for time series analytics made simple
Time travel also simplifies time series analytics. For example, if you want to find out
how many new customers you added over the last week, your query could be a very
simple one like this:

SELECT count(distinct userId) - (

SELECT count(distinct userId)

FROM my_table TIMESTAMP AS OF date_sub(current_date(), 7))

FROM my_table

Additional resources
Tech Talk | Diving Into Delta Lake: Unpacking the Transaction Log

Tech Talk | Getting Data Ready for Data Science with Delta Lake and MLflow

Data + AI Summit Europe 2020 | Data Time Travel by Delta Time Machine

Spark + AI Summit NA 2020 | Machine Learning Data Lineage With

MLflow and Delta Lake

Productionizing Machine Learning With Delta Lake

https://databricks.com/discover/diving-into-delta-lake-talks/unpacking-transaction-log
https://databricks.com/discover/getting-started-with-delta-lake-tech-talks/getting-data-ready-data-science-delta-lake-mlflow
https://databricks.com/session_eu20/data-time-travel-by-delta-time-machine-2
https://databricks.com/session_na20/machine-learning-data-lineage-with-mlflow-and-delta-lake
https://databricks.com/session_na20/machine-learning-data-lineage-with-mlflow-and-delta-lake

Easily Clone Your Delta Lake for Testing,
Sharing and ML Reproducibility

CHAPTER 04

26The Delta Lake Series -- Features

Delta Lake has a feature called Table Cloning, which makes it easy to test, share and
recreate tables for ML reproducibility. Creating copies of tables in a data lake or data
warehouse has several practical uses. However, given the volume of data in tables
in a data lake and the rate of its growth, making physical copies of tables is an
expensive operation.

Delta Lake now makes the process simpler and cost-effective with the help of
table clones.

What are clones?
Clones are replicas of a source table at a given point in time. They have the same
metadata as the source table: same schema, constraints, column descriptions, statistics
and partitioning. However, they behave as a separate table with a separate lineage
or history. Any changes made to clones only affect the clone and not the source. Any
changes that happen to the source during or after the cloning process also do not get
reflected in the clone due to Snapshot Isolation. In Delta Lake we have two types of
clones: shallow or deep.

Shallow clones
A shallow (also known as a Zero-Copy) clone only duplicates the metadata of the
table being cloned; the data files of the table itself are not copied. This type of cloning
does not create another physical copy of the data resulting in minimal storage costs.
Shallow clones are inexpensive and can be extremely fast to create.

Easily Clone Your Delta Lake
for Testing, Sharing and ML
Reproducibility04

27The Delta Lake Series -- Features

These clones are not self-contained and depend on the source from which they
were cloned as the source of data. If the files in the source that the clone depends
on are removed, for example with VACUUM, a shallow clone may become unusable.
Therefore, shallow clones are typically used for short-lived use cases such as testing
and experimentation.

Deep clones
Shallow clones are great for short-lived use cases, but some scenarios require a
separate and independent copy of the table’s data. A deep clone makes a full copy
of the metadata and the data files of the table being cloned. In that sense, it is similar
in functionality to copying with a CTAS command (CREATE TABLE.. AS… SELECT…).
But it is simpler to specify since it makes a faithful copy of the original table at the
specified version, and you don’t need to re-specify partitioning, constraints and other
information as you have to do with CTAS. In addition, it is much faster, robust and can
work in an incremental manner against failures.

With deep clones, we copy additional metadata, such as your streaming application
transactions and COPY INTO transactions, so you can continue your ETL applications
exactly where it left off on a deep clone.

Where do clones help?
Sometimes I wish I had a clone to help with my chores or magic tricks. However, we’re
not talking about human clones here. There are many scenarios where you need a
copy of your data sets — for exploring, sharing or testing ML models or analytical
queries. Below are some examples of customer use cases.

Testing and experimentation with a production table
When users need to test a new version of their data pipeline they often have to rely
on sample test data sets that are not representative of all the data in their production
environment. Data teams may also want to experiment with various indexing techniques
to improve the performance of queries against massive tables. These experiments and

tests cannot be carried out in a production environment without risking production
data processes and affecting users.

It can take many hours or even days, to spin up copies of your production tables for a test
or a development environment. Add to that, the extra storage costs for your development
environment to hold all the duplicated data — there is a large overhead in setting a test
environment reflective of the production data. With a shallow clone, this is trivial:

-- SQL

CREATE TABLE delta.`/some/test/location` SHALLOW CLONE prod.events

Python

DeltaTable.forName(“spark”, “prod.events”).clone(“/some/test/location”,

isShallow=True)

// Scala

DeltaTable.forName(“spark”, “prod.events”).clone(“/some/test/location”,

isShallow=true)

After creating a shallow clone of your table in a matter of seconds, you can start
running a copy of your pipeline to test out your new code, or try optimizing your
table in different dimensions to see how you can improve your query performance,
and much much more. These changes will only affect your shallow clone, not your
original table.

Staging major changes to a production table
Sometimes, you may need to perform some major changes to your production table.
These changes may consist of many steps, and you don’t want other users to see the
changes that you’re making until you’re done with all of your work. A shallow clone can
help you out here:

28The Delta Lake Series -- Features

-- SQL

CREATE TABLE temp.staged_changes SHALLOW CLONE prod.events;

DELETE FROM temp.staged_changes WHERE event_id is null;

UPDATE temp.staged_changes SET change_date = current_date()

WHERE change_date is null;

...

-- Perform your verifications

Once you’re happy with the results, you have two options. If no other change has
been made to your source table, you can replace your source table with the clone.
If changes have been made to your source table, you can merge the changes into
your source table.

-- If no changes have been made to the source

REPLACE TABLE prod.events CLONE temp.staged_changes;

-- If the source table has changed

MERGE INTO prod.events USING temp.staged_changes

ON events.event_id <=> staged_changes.event_id

WHEN MATCHED THEN UPDATE SET *;

-- Drop the staged table

DROP TABLE temp.staged_changes;

Machine learning result reproducibility
Coming up with an effective ML model is an iterative process. Throughout this process
of tweaking the different parts of the model, data scientists need to assess the
accuracy of the model against a fixed data set.

This is hard to do in a system where the data is constantly being loaded or updated. A
snapshot of the data used to train and test the model is required. This snapshot allows
the results of the ML model to be reproducible for testing or model governance purposes.

29The Delta Lake Series -- Features

We recommend leveraging Time Travel to run multiple experiments across a snapshot; an
example of this in action can be seen in Machine Learning Data Lineage With MLflow
and Delta Lake.

Once you’re happy with the results and would like to archive the data for later retrieval,
for example, next Black Friday, you can use deep clones to simplify the archiving process.
MLflow integrates really well with Delta Lake, and the autologging feature (mlflow.spark.
autolog()) will tell you which version of the table was used to run a set of experiments.

Run your ML workloads using Python and then

DeltaTable.forName(spark, “feature_store”).cloneAtVersion(128, “feature_

store_bf2020”)

Data migration
A massive table may need to be moved to a new, dedicated bucket or storage system
for performance or governance reasons. The original table will not receive new
updates going forward and will be deactivated and removed at a future point in time.
Deep clones make the copying of massive tables more robust and scalable.

-- SQL

CREATE TABLE delta.`zz://my-new-bucket/events` CLONE prod.events;

ALTER TABLE prod.events SET LOCATION ‘zz://my-new-bucket/events’;

With deep clones, since we copy your streaming application transactions and COPY
INTO transactions, you can continue your ETL applications from exactly where it left
off after this migration!

Data sharing
In an organization, it is often the case that users from different departments are
looking for data sets that they can use to enrich their analysis or models. You may
want to share your data with other users across the organization. But rather than

https://databricks.com/blog/2019/02/04/introducing-delta-time-travel-for-large-scale-data-lakes.html
https://databricks.com/session_na20/machine-learning-data-lineage-with-mlflow-and-delta-lake
https://databricks.com/session_na20/machine-learning-data-lineage-with-mlflow-and-delta-lake

30The Delta Lake Series -- Features

setting up elaborate pipelines to move the data to yet another store, it is often easier
and economical to create a copy of the relevant data set for users to explore and
test the data to see if it is a fit for their needs without affecting your own production
systems. Here deep clones again come to the rescue.

-- The following code can be scheduled to run at your convenience

CREATE OR REPLACE TABLE data_science.events CLONE prod.events;

Data archiving
For regulatory or archiving purposes, all data in a table needs to be preserved for a
certain number of years, while the active table retains data for a few months. If you
want your data to be updated as soon as possible, but you have a requirement to keep
data for several years, storing this data in a single table and performing time travel
may become prohibitively expensive.

In this case, archiving your data in a daily, weekly or monthly manner is a better
solution. The incremental cloning capability of deep clones will really help you here.

-- The following code can be scheduled to run at your convenience

CREATE OR REPLACE TABLE archive.events CLONE prod.events;

Note that this table will have an independent history compared to the source table,
therefore, time travel queries on the source table and the clone may return different
results based on your frequency of archiving.

Looks awesome! Any gotchas?
Just to reiterate some of the gotchas mentioned above as a single list, here’s what you
should be wary of:
• Clones are executed on a snapshot of your data. Any changes that are made to the

source table after the cloning process starts will not be reflected in the clone.
• Shallow clones are not self-contained tables like deep clones. If the data is

deleted in the source table (for example through VACUUM), your shallow clone
may not be usable.

• Clones have a separate, independent history from the source table. Time travel
queries on your source table and clone may not return the same result.

• Shallow clones do not copy stream transactions or COPY INTO metadata. Use
deep clones to migrate your tables and continue your ETL processes from
where it left off.

How can I use it?
Shallow and deep clones support new advances in how data teams test and manage
their modern cloud data lakes and warehouses. Table clones can help your team
implement production-level testing of their pipelines, fine-tune their indexing for optimal
query performance, create table copies for sharing — all with minimal overhead and
expense. If this is a need in your organization, we hope you will take table cloning for
a spin and give us your feedback — we look forward to hearing about new use cases and
extensions you would like to see in the future.

Additional resources
Using Deep Clone for Disaster Recovery With Delta Lake on Databricks

Simplifying Disaster Recovery With Delta Lake

https://docs.databricks.com/spark/latest/spark-sql/language-manual/delta-clone.html
https://databricks.com/session_na20/simplifying-disaster-recovery-with-delta-lake

Enabling Spark SQL DDL and DML
in Delta Lake on Apache Spark 3.0

CHAPTER 05

32The Delta Lake Series -- Features

The release of Delta Lake 0.7.0 coincided with the release of Apache Spark 3.0, thus
enabling a new set of features that were simplified using Delta Lake from SQL. Here
are some of the key features.

Support for SQL DDL commands
to define tables in the Hive metastore
You can now define Delta tables in the Hive metastore and use the table name in all
SQL operations when creating (or replacing) tables.

Create or replace tables
-- Create table in the metastore

CREATE TABLE events (

 date DATE,

 eventId STRING,

 eventType STRING,

 data STRING)

USING DELTA

PARTITIONED BY (date)

LOCATION ‘/delta/events’

-- If a table with the same name already exists, the table is replaced

with

the new configuration, else it is created

CREATE OR REPLACE TABLE events (

Enabling Spark SQL DDL
and DML in Delta Lake on
Apache Spark 3.005

https://github.com/delta-io/delta/releases/tag/v0.7.0
https://github.com/delta-io/delta/releases/tag/v0.7.0
https://spark.apache.org/docs/latest/sql-data-sources-hive-tables.html#interacting-with-different-versions-of-hive-metastore
https://spark.apache.org/docs/latest/sql-data-sources-hive-tables.html#interacting-with-different-versions-of-hive-metastore

33The Delta Lake Series -- Features

 date DATE,

 eventId STRING,

 eventType STRING,

 data STRING)

USING DELTA

PARTITIONED BY (date)

LOCATION ‘/delta/events’

 Explicitly alter the table schema
-- Alter table and schema

ALTER TABLE table_name ADD COLUMNS (

 col_name data_type

 [COMMENT col_comment]

 [FIRST|AFTER colA_name],

 ...)

You can also use the Scala/Java/Python APIs:
• DataFrame.saveAsTable(tableName)and DataFrameWriterV2

APIs (#307).
• DeltaTable.forName(tableName) API to create instances of
io.delta.tables .DeltaTable which is useful for executing
Update/Delete/Merge operations in Scala/Java/Python.

Support for SQL Insert, Delete, Update and Merge
One of the most frequent questions through our Delta Lake Tech Talks was when
would DML operations such as delete, update and merge be available in Spark SQL?
Wait no more, these operations are now available in SQL! Below are examples of how
you can write delete, update and merge (insert, update, delete and de-duplication
operations using Spark SQL).

-- Using append mode, you can atomically add new data to an existing

Delta table

INSERT INTO events SELECT * FROM newEvents

-- To atomically replace all of the data in a table, you can use

overwrite mode

INSERT OVERWRITE events SELECT * FROM newEvents

-- Delete events

DELETE FROM events WHERE date < ‘2017-01-01’

-- Update events

UPDATE events SET eventType = ‘click’ WHERE eventType = ‘click’

-- Upsert data to a target Delta

-- table using merge

MERGE INTO events

USING updates

 ON events.eventId = updates.eventId

 WHEN MATCHED THEN UPDATE

 SET events.data = updates.data

 WHEN NOT MATCHED THEN INSERT (date, eventId, data)

 VALUES (date, eventId, data)

It is worth noting that the merge operation in Delta Lake supports more advanced
syntax than standard ANSI SQL syntax. For example, merge supports
• Delete actions -- Delete a target when matched with a source row. For example, “...

WHEN MATCHED THEN DELETE ...”
• Multiple matched actions with clause conditions -- Greater flexibility when target

and source rows match. For example:
...

WHEN MATCHED AND events.shouldDelete THEN DELETE

WHEN MATCHED THEN UPDATE SET events.data = updates.data

https://github.com/delta-io/delta/issues/307
https://databricks.com/discover/diving-into-delta-lake-talks

34The Delta Lake Series -- Features

• Star syntax -- Shorthand for setting target column value with the similarly-named
sources column. For example:

WHEN MATCHED THEN SET *

WHEN NOT MATCHED THEN INSERT *

-- equivalent to updating/inserting with event.date = updates.date,

 events.eventId = updates.eventId, event.data = updates.data

Automatic and incremental Presto/Athena manifest generation
As noted in Query Delta Lake Tables From Presto and Athena, Improved Operations
Concurrency, and Merge Performance, Delta Lake supports other processing engines
to read Delta Lake by using manifest files; the manifest files contain the list of the
most current version of files as of manifest generation. As described in the preceding
chapter, you will need to:
• Generate a Delta Lake manifest file
• Configure Presto or Athena to read the generated manifests
• Manually re-generate (update) the manifest file
New for Delta Lake 0.7.0 is the capability to update the manifest file automatically
with the following command:

ALTER TABLE delta.`pathToDeltaTable`

SET TBLPROPERTIES(

 delta.compatibility.symlinkFormatManifest.enabled=true

)

Configuring your table through table properties
With the ability to set table properties on your table by using ALTER TABLE SET
TBLPROPERTIES, you can enable, disable or configure many features of Delta Lake
such as automated manifest generation. For example, with table properties, you can

block deletes and updates in a Delta table using delta.appendOnly=true.

You can also easily control the history of your Delta Lake table retention by the
following properties:
 delta.logRetentionDuration: Controls how long the history for a table (i.e.,
transaction log history) is kept. By default, 30 days of history is kept, but you may want to
alter this value based on your requirements (e.g., GDPR historical context)
 delta.deletedFileRetentionDuration: Controls how long ago a file must

have been deleted before being a candidate for VACUUM. By default, data files older
than seven days are deleted.

As of Delta Lake 0.7.0, you can use ALTER TABLE SET TBLPROPERTIES to
configure these properties.

ALTER TABLE delta.`pathToDeltaTable`

SET TBLPROPERTIES(

 delta.logRetentionDuration = “interval “

 delta.deletedFileRetentionDuration = “interval “

)

Support for adding user-defined metadata
in Delta Lake table commits
You can specify user-defined strings as metadata in commits made by Delta
Lake table operations, either using the DataFrameWriter option userMetadata or
the SparkSession configuration spark.databricks.delta.commitInfo.
userMetadata .

In the following example, we are deleting a user (1xsdf1) from our data lake per user
request. To ensure we associate the user’s request with the deletion, we have also
added the DELETE request ID into the userMetadata.

https://databricks.com/blog/2020/01/29/query-delta-lake-tables-presto-athena-improved-operations-concurrency-merge-performance.html
https://databricks.com/blog/2020/01/29/query-delta-lake-tables-presto-athena-improved-operations-concurrency-merge-performance.html
https://docs.delta.io/latest/delta-batch.html#table-properties
https://docs.delta.io/0.7.0/delta-batch.html#data-retention

35The Delta Lake Series -- Features

SET spark.databricks.delta.commitInfo.userMetadata={

 “GDPR”:”DELETE Request 1x891jb23”

};

DELETE FROM user_table WHERE user_id = ‘1xsdf1’

When reviewing the history operations of the user table (user_table), you can easily
identify the associated deletion request within the transaction log.

Other highlights
Other highlights for the Delta Lake 0.7.0 release include:
• Support for Azure Data Lake Storage Gen2 — Spark 3.0 has support for Hadoop 3.2

libraries which enables support for Azure Data Lake Storage Gen2.
• I mproved support for streaming one-time triggers — With Spark 3.0, we now

ensure that a one-time trigger (Trigger.Once) processes all outstanding data
in a Delta Lake table in a single micro-batch even if rate limits are set with the
DataStreamReader option maxFilesPerTrigger.

There were a lot of great questions during the AMA concerning structured streaming
and using trigger.once.

For more information, some good resources explaining this concept include:
• Running Streaming Jobs Once a Day for 10x Cost Savings
• Beyond Lambda: Introducing Delta Architecture: Specifically the cost vs. latency

trade-off discussed here.

Additional resources
Tech Talk | Delta Lake 0.7.0 + Spark 3.0 AMA

Tech Talks | Apache Spark 3.0 + Delta Lake

Enabling Spark SQL DDL and DML in Delta Lake on Apache Spark 3.0

https://docs.delta.io/latest/delta-utility.html#-describe-history
https://spark.apache.org/docs/latest/structured-streaming-programming-guide.html#triggers
https://databricks.com/blog/2017/05/22/running-streaming-jobs-day-10x-cost-savings.html
https://www.youtube.com/watch?v=FePv0lro0z8&list=PLTPXxbhUt-YVPwG3OWNQ-1bJI_s_YRvqP&index=21
https://www.youtube.com/watch?v=FePv0lro0z8&list=PLTPXxbhUt-YVPwG3OWNQ-1bJI_s_YRvqP&index=21
https://www.youtube.com/watch?v=xzKqjCB8SWU
https://www.youtube.com/watch?v=x6RqJYqLoPI&list=PLTPXxbhUt-YWnAgh3RE8DOb46qZF57byx
https://databricks.com/blog/2020/08/27/enabling-spark-sql-ddl-and-dml-in-delta-lake-on-apache-spark-3-0.html

What’s
next?

© Databricks 2021. All rights reserved. Apache, Apache Spark, Spark and the Spark logo are trademarks of the Apache Software Foundation.

Now that you understand Delta Lake and how its features can improve
performance, it may be time to take a look at some additional resources.

Explore subsequent eBooks in the collection >
• The Delta Lake Series — Fundamentals and Performance
• The Delta Lake Series — Streaming
• The Delta Lake Series — Lakehouse
• The Delta Lake Series — Customer Use Cases

Do a deep dive into Delta Lake >
Getting Started With Delta Lake Tech Talk Series
Diving Into Delta Lake Tech Talk Series

Try Databricks for free >
Learn more >

http://www.apache.org/
https://databricks.com/product/delta-lake-on-databricks:
https://databricks.com/discover/getting-started-with-delta-lake-tech-talks
https://databricks.com/discover/diving-into-delta-lake-talks
https://databricks.com/try-databricks
https://pages.databricks.com/delta-lake-open-source-reliability-for-data-lakes-reg.html

