
The
Delta Lake
Series
Streaming

Using Delta Lake to express 
computation on streaming data



Here’s what 
you’ll find inside

What’s   
inside? 

What’s   
next? 

How Delta Lake Solves Common 
Pain Points in Streaming

 Chapter

01
USE CASE #1: Simplifying Streaming Stock 
Data Analysis Using Delta Lake

 Chapter

02
USE CASE #2: How Tilting Point Does Streaming 
Ingestion Into Delta Lake

 Chapter

03
USE CASE #3: Building a Quality of Service Analytics 
Solution for Streaming Video Services

 Chapter

04

What is Delta Lake?
IntroductionThe Delta Lake Series of eBooks is published 

by Databricks to help leaders and practitioners 
understand the full capabilities of Delta Lake as well 
as the landscape it resides in. This eBook, The Delta 
Lake Series — Streaming, focuses on a number 
of use cases that showcase Delta Lake’s robust 
streaming capabilities so you can use them to your 
benefit.

After reading this eBook, you’ll not only understand 
what Delta Lake offers, but you’ll also understand 
how to use Delta Lake to express computation on 
streaming data in the same way you express a 
batch computation on static data.
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Delta Lake is a unified data management system that brings data reliability and fast 
analytics to cloud data lakes. Delta Lake runs on top of existing data lakes and is fully 
compatible with Apache Spark™ APIs.

At Databricks, we’ve seen how Delta Lake can bring reliability, performance and 
lifecycle management to data lakes. With Delta Lake, there will be no more 
malformed data ingestion, difficulties deleting data for compliance, or issues 
modifying data for data capture.

With Delta Lake, you can accelerate the velocity that high-quality data can get into 
your data lake, and the rate that teams can leverage that data with a secure and 
scalable cloud service.

What is 
Delta Lake?

https://databricks.com/product/delta-lake-on-databricks


How Delta Lake Solves Common 
Pain Points in Streaming

CHAPTER 01
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How Delta Lake Solves Common 
Pain Points in Streaming01
The pain points of a traditional streaming and data warehousing solution can be 
broken into two groups: data lake and data warehouse pains.

Data lake pain points
While data lakes allow you to flexibly store an immense amount of data in a file system, 
there are many pain points including (but not limited to):
• Consolidation of streaming data from many disparate systems is difficult.
• Updating data in a data lake is nearly impossible, and much of the streaming data 

needs to be updated as changes are made. This is especially important in scenarios 
involving financial reconciliation and subsequent adjustments.

• Query speeds for a data lake are typically very slow.
• Optimizing storage and file sizes is very difficult and often requires complicated logic.

Data warehouse pain points
The power of a data warehouse is that you have a persistent performant store of your 
data. But the pain points for building modern continuous applications include (but are 
not limited to):
• Constrained to SQL queries (i.e., no machine learning or advanced analytics).
• Accessing streaming data and stored data together is very difficult, if at all possible.
• Data warehouses do not scale very well.
• Tying compute and storage together makes using a warehouse very expensive.
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How Delta Lake on Databricks solves these issues
Delta Lake is a unified data management system that brings data reliability and 
performance optimizations to cloud data lakes. More succinctly, Delta Lake combines 
the advantages of data lakes and data warehouses with Apache Spark™ to allow you 
to do incredible things.
• Delta Lake, along with Structured Streaming, makes it possible to analyze streaming 

and historical data together at high speeds.
• When Delta Lake tables are used as sources and destinations of streaming big 

data, it is easy to consolidate disparate data sources.
• Upserts are supported on Delta Lake tables.
• Delta Lake is ACID compliant, making it easy to create a compliant data solution.
• Easily include machine learning scoring and advanced analytics into ETL and 

queries.
• Decouples compute and storage for a completely scalable solution.

In the following use cases, we’ll share what this looks like in practice.

https://docs.databricks.com/delta/index.html


Simplifying Streaming Stock Data 
Analysis Using Delta Lake

U S E  C A S E  # 1

CHAPTER 02



8The Delta Lake Series — Streaming   

Real-time analysis of stock data is a complicated endeavor. After all, there are many 
challenges in maintaining a streaming system and ensuring transactional consistency 
of legacy and streaming data concurrently. 

Thankfully, Delta Lake helps solve many of the pain points of building a streaming 
system to analyze stock data in real time. In this section, we’ll share how to simplify 
the streaming of stock data analysis using Delta Lake.

In the following diagram, you can see a high-level architecture that simplifies this 
problem. We start by ingesting two different sets of data into two Delta Lake tables. 
The two data sets are stock prices and fundamentals. 

After ingesting the data into their respective tables, we then join the data in an ETL 
process and write the data out into a third Delta Lake table for downstream analysis.

Delta Lake helps solve these problems by combining the scalability, streaming and 
access to the advanced analytics of Apache Spark with the performance and ACID 
compliance of a data warehouse.

02
U S E  C A S E  # 1

Simplifying Streaming Stock 
Data Analysis Using Delta Lake

https://databricks.com/product/delta-lake-on-databricks
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Implement your streaming  
stock analysis solution with Delta Lake
Delta Lake and Apache Spark do most of the work for our solution; you can try out the 
full notebook and follow along with the code samples below.

As noted in the preceding diagram, we have two data sets to process — one for 
fundamentals and one for price data. To create our two Delta Lake tables, we specify 
the .format(‘delta’) against our Databricks File System (DBFS) locations.

# Create Fundamental Data (Databricks Delta table)

dfBaseFund = spark \\

.read \\

.format(‘delta’) \\

.load(‘/delta/stocksFundamentals’)

 

# Create Price Data (Databricks Delta table)

dfBasePrice = spark \\

.read \\

.format(‘delta’) \\

.load(‘/delta/stocksDailyPrices’)

Real-Time
Analytics

https://pages.databricks.com/rs/094-YMS-629/images/streaming-stock-data-analysis-setup.html
https://docs.databricks.com/data/databricks-file-system.html
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While we’re updating the stockFundamentals and stocksDailyPrices, 
we will consolidate this data through a series of ETL jobs into a consolidated view 
(stocksDailyPricesWFund). 

With the following code snippet, we can determine the start and end date of available 
data and then combine the price and fundamentals data for that date range into DBFS.

# Determine start and end date of available data

row = dfBasePrice.agg( 

   func.max(dfBasePrice.price_date).alias(“maxDate”),  

   func.min(dfBasePrice.price_date).alias(“minDate”)

).collect()[0]

startDate = row[“minDate”]

endDate = row[“maxDate”]

 

# Define our date range function

def daterange(start_date, end_date):

    for n in range(int ((end_date - start_date).days)):

        yield start_date + datetime.timedelta(n)

 

# Define combinePriceAndFund information by date and 

def combinePriceAndFund(theDate):

  dfFund = dfBaseFund.where(dfBaseFund.price_date == theDate)  

  dfPrice = dfBasePrice.where(

dfBasePrice.price_date == theDate

).drop(‘price_date’)

  # Drop the updated column

  dfPriceWFund = dfPrice.join(dfFund, [‘ticker’]).drop(‘updated’)

 

  # Save data to DBFS    

   dfPriceWFund

.write

.format(‘delta’)

.mode(‘append’)

.save(‘/delta/stocksDailyPricesWFund’)

 

# Loop through dates to complete fundamentals + price ETL process

for single_date in daterange(

startDate, (endDate + datetime.timedelta(days=1))

):

  print ‘Starting ’ + single_date.strftime(‘%Y-%m-%d’)

  start = datetime.datetime.now()

  combinePriceAndFund(single_date)

  end = datetime.datetime.now()

  print (end - start)

Now we have a stream of consolidated fundamentals and price data that is being 
pushed into DBFS in the /delta/stocksDailyPricesWFund location. We can build a 
Delta Lake table by specifying .format(“delta”) against that DBFS location.

dfPriceWithFundamentals = spark

.readStream

.format(“delta”)

.load(“/delta/stocksDailyPricesWFund”)

 

// Create temporary view of the data

dfPriceWithFundamentals.createOrReplaceTempView(“priceWithFundamentals”)

https://docs.databricks.com/data/databricks-file-system.html
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Now that we have created our initial Delta Lake table, let’s create a view that will 
allow us to calculate the price/earnings ratio in real time (because of the underlying 
streaming data updating our Delta Lake table).

%sql

CREATE OR REPLACE TEMPORARY VIEW viewPE AS 

select ticker, 

       price_date, 

       first(close) as price, 

       (close/eps_basic_net) as pe

  from priceWithFundamentals

 where eps_basic_net > 0

 group by ticker, price_date, pe

Analyze streaming stock data in real time
With our view in place, we can quickly analyze our data using Spark SQL.

%sql

select *

from viewPE

where ticker == “AAPL”

order by price_date



12The Delta Lake Series — Streaming   

As the underlying source of this consolidated data set is a Delta Lake table, this view 
isn’t just showing the batch data but also any new streams of data that are coming in 
as per the following streaming dashboard.

Underneath the covers, Structured Streaming isn’t just writing the data to Delta Lake 
tables but also keeping the state of the distinct number of keys (in this case ticker 
symbols) that need to be tracked.

Because you are using Spark SQL, you can execute aggregate queries at scale
and in real time.
%sql

SELECT ticker, AVG(close) as Average_Close

FROM priceWithFundamentals

GROUP BY ticker

ORDER BY Average_Close

In closing, we demonstrated how to simplify streaming stock data analysis using 
Delta Lake. By combining Spark Structured Streaming and Delta Lake, we can use the 
Databricks integrated workspace to create a performant, scalable solution that has 
the advantages of both data lakes and data warehouses.  

The Databricks Unified Data Platform removes the data engineering complexities 
commonly associated with streaming and transactional consistency, enabling data 
engineering and data science teams to focus on understanding the trends in their 
stock data.

https://databricks.com/product/delta-lake-on-databricks
https://databricks.com/product/data-lakehouse


How Tilting Point Does Streaming 
Ingestion Into Delta Lake

U S E  C A S E  # 2

CHAPTER 03



14The Delta Lake Series — Streaming   

03
Tilting Point is a new-generation games partner that provides top 
development studios with expert resources, services and operational support 
to optimize high-quality live games for success. Through its user acquisition 
fund and its world-class technology platform, Tilting Point funds and runs 
performance marketing management and live games operations to help 
developers achieve profitable scale.

By leveraging Delta Lake, Tilting Point is able to leverage quality data and make it 
readily available for analytics to improve the business. Diego Link, VP of Engineering 
at Tilting Point, provided insights for this use case.

The team at Tilting Point was running daily and hourly batch jobs for reporting on 
game analytics. They wanted to make their reporting near real-time, getting insights 
within 5–10 minutes. 

They also wanted to make their in-game LiveOps decisions based on real-time player 
behavior for giving real-time data to a bundles-and-offer system, provide up-to-the-
minute alerting on LiveOPs changes that actually might have unforeseen detrimental 
effects and even alert on service interruptions in game operations. The goal was to 
ensure that the game experience was as robust as possible for their players. 

Additionally, they had to store encrypted Personally Identifiable Information (PII) data 
separately in order to maintain GDPR compliance.

U S E  C A S E  # 2

How Tilting Point Does Streaming 
Ingestion Into Delta Lake
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How data flows and associated challenges
Tilting Point has a proprietary software development kit that developers integrate 
with to send data from game servers to an ingest server hosted in AWS. This service 
removes all PII data and then sends the raw data to an Amazon Firehose endpoint. 
Firehose then dumps the data in JSON format continuously to S3.

To clean up the raw data and make it available quickly for analytics, the team 
considered pushing the continuous data from Firehose to a message bus (e.g., 
Kafka, Kinesis) and then using Apache Spark’s Structured Streaming to continuously 
process data and write to Delta Lake tables. 

While that architecture sounds ideal for low latency requirements of processing 
data in seconds, Tilting Point didn’t have such low latency needs for their ingestion 
pipeline. They wanted to make the data available for analytics in a few minutes, not 
seconds. Hence they decided to simplify our architecture by eliminating a message 
bus and instead use S3 as a continuous source for their structured streaming job.
But the key challenge in using S3 as a continuous source is identifying files that 
changed recently.

Listing all files every few minutes has two major issues:
• Higher latency: Listing all files in a directory with a large number of files has high 

overhead and increases processing time.
• Higher cost: Listing lots of files every few minutes can quickly add to the S3 cost.

Leveraging Structured Streaming with blob store as 
source and Delta Lake tables as sink
To continuously stream data from cloud blob storage like S3, Tilting Point uses 
Databricks’ S3-SQS source. The S3-SQS source provides an easy way to incrementally 
stream data from S3 without the need to write any state management code on what 
files were recently processed. 

https://spark.apache.org/docs/latest/structured-streaming-programming-guide.html
https://docs.databricks.com/spark/latest/structured-streaming/sqs.html#optimized-s3-file-source-with-sqs
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This is how Tilting Point’s ingestion pipeline looks:
• Configure Amazon S3 event notifications to send new file arrival information to 

SQS via SNS.
• Tilting Point uses the S3-SQS source to read the new data arriving in S3. The S3-

SQS source reads the new file names that arrived in S3 from SQS and uses that 
information to read the actual file contents in S3. An example code below:

spark.readStream \

  .format(“s3-sqs”) \

  .option(“fileFormat”, “json”) \

  .option(“queueUrl”, ...) \

  .schema(...) \

  .load()

• Tilting Point’s structured streaming job then cleans up and transforms the data. 
Based on the game data, the streaming job uses the foreachBatch API of Spark 
streaming and writes to 30 different Delta Lake tables.

• The streaming job produces lots of small files. This affects performance of 
downstream consumers. So, an optimize job runs daily to compact small files in 
the table and store them as right file sizes so that consumers of the data have good 
performance while reading the data from Delta Lake tables. Tilting Point also runs 
a weekly optimize job for a second round of compaction. Architecture showing continuous data ingest into Delta Lake tables

https://docs.aws.amazon.com/AmazonS3/latest/dev/NotificationHowTo.html


17The Delta Lake Series — Streaming   

The above Delta Lake ingestion architecture helps in the following ways:
• Incremental loading: The S3-SQS source incrementally loads the new files in S3. 

This helps quickly process the new files without too much overhead in listing files.
• No explicit file state management: There is no explicit file state management 

needed to look for recent files.
• Lower operational burden: Since we use S3 as a checkpoint between Firehose 

and Structured Streaming jobs, the operational burden to stop streams and re-
process data is relatively low.

• Reliable ingestion: Delta Lake uses optimistic concurrency control to offer ACID 
transactional guarantees. This helps with reliable data ingestion.

• File compaction: One of the major problems with streaming ingestion is tables 
ending up with a large number of small files that can affect read performance. 
Before Delta Lake, we had to set up a different table to write the compacted data. 
With Delta Lake, thanks to ACID transactions, we can compact the files and rewrite 
the data back to the same table safely.

• Snapshot isolation: Delta Lake’s snapshot isolation allows us to expose the 
ingestion tables to downstream consumers while data is being appended by a 
streaming job and modified during compaction.

• Rollbacks: In case of bad writes, Delta Lake’s Time Travel helps us roll back to a 
previous version of the table.

In this section, we walked through Tilting Point’s use cases and how they do 
streaming ingestion using Databricks’ S3-SQS source into Delta Lake tables 
efficiently without too much operational overhead to make good quality data 
readily available for analytics.

https://docs.databricks.com/delta/optimizations/isolation-level.html
https://databricks.com/blog/2019/02/04/introducing-delta-time-travel-for-large-scale-data-lakes.html


How to Build a Quality of Service Analytics 
Solution for Streaming Video Services

U S E  C A S E  # 3

CHAPTER 04
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04
As traditional pay TV continues to stagnate, content owners have embraced direct-
to-consumer (D2C) subscription and ad-supported streaming for monetizing their 
libraries of content. For companies whose entire business model revolved around 
producing great content, which they then licensed to distributors, the shift to now 
owning the entire glass-to-glass experience has required new capabilities, such as 
building media supply chains for content delivery to consumers, supporting apps for 
a myriad of devices and operating systems, and performing customer relationship 
functions like billing and customer service.

With most services renewing on a monthly basis, subscription service operators need 
to prove value to their subscribers at all times. General quality of streaming video 
issues (encompassing buffering, latency, pixelation, jitter, packet loss and the blank 
screen) have significant business impacts, whether it’s increased subscriber churn or 
decreased video engagement.

When you start streaming, you realize there are so many places where breaks can 
happen and the viewer experience can suffer. There may be an issue at the source in 
the servers on-premises or in the cloud; in transit at either the CDN level or ISP level 
or the viewer’s home network; or at the playout level with player/client issues. What 
breaks at n x 104 concurrent streamers is different from what breaks at n x 105 or n 
x 106. There is no pre-release testing that can quite replicate real-world users and 
their ability to push even the most redundant systems to their breaking point as they 

U S E  C A S E  # 3

How to Build a Quality of Service 
Analytics Solution for Streaming 
Video Services

https://nscreenmedia.com/us-tv-market-svod-exceed-pay-tv-2020/
https://www.streamingmedia.com/Articles/ReadArticle.aspx?ArticleID=112209
https://www.tvtechnology.com/opinions/why-buffering-remains-every-video-providers-worst-nightmare
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channel surf, click in and out of the app, sign on from different devices simultaneously 
and so on. And because of the nature of TV, things will go wrong during the most 
important, high-profile events drawing the largest audiences. If you start receiving 
complaints on social media, how can you tell if they are unique to that one user or 
rather regional or a national issue? If national, is it across all devices or only certain 
types (e.g., possibly the OEM updated the OS on an older device type, which ended up 
causing compatibility issues with the client)?

Identifying, remediating and preventing viewer quality of experience issues becomes 
a big data problem when you consider the number of users, the number of actions 
they are taking and the number of handoffs in the experience (servers to CDN to ISP to 
home network to client). Quality of Service (QoS) helps make sense of these streams 
of data so you can understand what is going wrong, where and why. Eventually you 
can get into predictive analytics around what could go wrong and how to remediate 
it before anything breaks.

Databricks Quality of Service solution overview
The aim of this solution is to provide the core for any streaming video platform that 
wants to improve their QoS system. It is based on the AWS Streaming Media Analytics 
Solution provided by AWS Labs, which we then built on top of to add Databricks as 
a Unified Data Analytics Platform for both the real-time insights and the advanced 
analytics capabilities.

By using Databricks, streaming platforms can get faster insights by always 
leveraging the most complete and recent data sets powered by robust and reliable 
data pipelines. This decreases time to market for new features by accelerating 
data science using a collaborative environment. It provides support for managing 
the end-to-end machine learning lifecycle and reduces operational costs across 
all cycles of software development by having a unified platform for both data 
engineering and data science.

https://downdetector.com/
https://downdetector.com/
https://github.com/awslabs/aws-streaming-media-analytics
https://github.com/awslabs/aws-streaming-media-analytics
https://databricks.com/customers
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Video QoS solution architecture
With complexities like low-latency monitoring alerts and highly scalable infrastructure 
required for peak video traffic hours, the straightforward architectural choice was 
the Delta Architecture — both standard big data architectures like Lambda and Kappa 
Architectures have disadvantages around the operational effort required to maintain 
multiple types of pipelines (streaming and batch) and lack support for a unified data 
engineering and data science approach.

The Delta Architecture is the next-generation paradigm that enables all the data 
personas in your organization to be more productive:
• Data engineers can develop data pipelines in a cost-efficient manner continuously 

without having to choose between batch and streaming
• Data analysts can get near real-time insights and faster answers to their BI queries
• Data scientists can develop better machine learning models using more reliable data 

sets with support for time travel that facilitates reproducible experiments and reports Delta Architecture using the “multi-hop” approach for data pipelines
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Writing data pipelines using the Delta Architecture follows the best practices of 
having a multi-layer “multi-hop” approach where we progressively add structure to 
data: “Bronze” tables or Ingestion tables are usually raw data sets in the native format 
(JSON, CSV or txt), “Silver” tables represent cleaned/transformed data sets ready for 
reporting or data science, and “Gold” tables are the final presentation layer.

For the pure streaming use cases, the option of materializing the DataFrames in 
intermediate Delta Lake tables is basically just a trade-off between latency/SLAs and 
cost (an example being real-time monitoring alerts vs. updates of the recommender 
system based on new content).

A streaming architecture can still be achieved while materializing DataFrames in Delta Lake tables

The number of “hops” in this approach is directly impacted by the number of consumers 
downstream, complexity of the aggregations (e.g., Structured Streaming enforces 
certain limitations around chaining multiple aggregations) and the maximization of 
operational efficiency.

The QoS solution architecture is focused around best practices for data processing 
and is not a full video-on-demand (VoD) solution — with some standard components 
like the “front door” service Amazon API Gateway being avoided from the high-level 
architecture in order to keep the focus on data and analytics.
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Making your data ready for analytics
Both sources of data included in the QoS solution (application events and CDN logs) 
are using the JSON format, great for data exchange — allowing you to represent 
complex nested structures, but not scalable and difficult to maintain as a storage 
format for your data lake / analytics system.

In order to make the data directly queryable across the entire organization, the 
Bronze to Silver pipeline (the “make your data available to everyone” pipeline) should 
transform any raw formats into Delta Lake and include all the quality checks or data 
masking required by any regulatory agencies.

High-level architecture for the QoS platform
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Video applications events
Based on the architecture, the video application events are pushed directly to 
Kinesis Streams and then just ingested to a Delta Lake append-only table without 
any changes to the schema.

Using this pattern allows a high number of consumers downstream to process the 
data in a streaming paradigm without having to scale the throughput of the Kinesis 
stream. As a side effect of using a Delta Lake table as a sink (which supports optimize!), 
we don’t have to worry about the way the size of the processing window will impact the 
number of files in your target table — known as the “small files” issue in the big data world.

Both the timestamp and the type of message are being extracted from the JSON 
event in order to be able to partition the data and allow consumers to choose the 
type of events they want to process. Again combining a single Kinesis stream for 
the events with a Delta Lake “Events” table reduces the operational complexity while 
making things easier for scaling during peak hours.

Raw format of the app events

All the details are extracted from JSON for the Silver table

https://docs.databricks.com/spark/latest/spark-sql/language-manual/delta-optimize.html
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CDN logs
The CDN logs are delivered to S3, so the easiest way to process them is the Databricks 
Auto Loader, which incrementally and efficiently processes new data files as they 
arrive in S3 without any additional setup.
 
   auto_loader_df = spark.readStream.format(“cloudFiles”) \

        .option(“cloudFiles.format”, “json”) \

        .option(“cloudFiles.region”, region) \

        .load(input_location)

    

    anonymized_df = auto_loader_df.select(‘*’, ip_

anonymizer(‘requestip’).alias(‘ip’))\

        .drop(‘requestip’)\

        .withColumn(“origin”, map_ip_to_location(col(‘ip’)))

    

    

    anonymized_df.writeStream \

        .option(‘checkpointLocation’, checkpoint_location)\

        .format(‘delta’) \

        .table(silver_database + ‘.cdn_logs’)

As the logs contain IPs — considered personal data under the GDPR regulations — the 
“make your data available to everyone” pipeline has to include an anonymization step. 
Different techniques can be used, but we decided to just strip the last octet from IPv4 
and the last 80 bits from IPv6. On top, the data set is also enriched with information 
around the origin country and the ISP provider, which will be used later in the Network 
Operation Centers for localization.
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Creating the Dashboard / 
Virtual Network Operation Centers
Streaming companies need to monitor network performance and the user experience 
as near real-time as possible, tracking down to the individual level with the ability to 
abstract at the segment level, easily defining new segments such as those defined by 
geos, devices, networks and/or current and historical viewing behavior. 

For streaming companies that has meant adopting the concept of Network Operation 
Centers (NOC) from telco networks for monitoring the health of the streaming 
experience for their users at a macro level, flagging and responding to any issues 
early on. At their most basic, NOCs should have dashboards that compare the current 
experience for users against a performance baseline so that the product teams can 
quickly and easily identify and attend to any service anomalies.

In the QoS solution we have incorporated a Databricks dashboard. BI tools can also 
be effortlessly connected in order to build more complex visualizations, but based 
on customer feedback, built-in dashboards are, most of the time, the fastest way to 
present the insights to business users.

The aggregated tables for the NOC will basically be the Gold layer of our Delta 
Architecture — a combination of CDN logs and the application events. Example of Network Operations Center dashboard

https://docs.databricks.com/notebooks/dashboards.html
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The dashboard is just a way to visually package the results of SQL queries or Python 
/ R transformation — each notebook supports multiple dashboards so in case of 
multiple end users with different requirements we don’t have to duplicate the code — 
as a bonus the refresh can also be scheduled as a Databricks job.

Visualization of the results of a SQL query

Loading time for videos (time to first frame) allows better understanding of the 
performance for individual locations of your CDN — in this case the AWS CloudFront 
Edge nodes — which has a direct impact in your strategy for improving this KPI —
either by spreading the user traffic over multi-CDNs or maybe just implementing a 
dynamic origin selection in case of AWS CloudFront using Lambda@Edge. resulttype

 MISS 
 HIT
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Failure to understand the reasons for high levels of buffering — and the poor video 
quality experience that it brings — has a significant impact on subscriber churn rate. 
On top of that, advertisers are not willing to spend money on ads responsible for 
reducing the viewer engagement — as they add extra buffering on top, so the profits 
on the advertising business usually are impacted too. In this context, collecting as 
much information as possible from the application side is crucial to allow the analysis 
to be done not only at video level but also browser or even type / version of application.

On the content side, events for the application can provide useful information about 
user behavior and overall quality of experience. How many people that paused a video 
have actually finished watching that episode / video? What caused the stoppage: The 
quality of the content or delivery issues? Of course, further analyses can be done by 
linking all the sources together (user behavior, performance of CDNs /ISPs) to not only 
create a user profile but also to forecast churn.
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 Creating (near) real-time alerts
When dealing with the velocity, volume and variety of data generated in video 
streaming from millions of concurrent users, dashboard complexity can make it 
harder for human operators in the NOC to focus on the most important data at the 
moment and zero-in on root cause issues. With this solution, you can easily set up 
automated alerts when performance crosses certain thresholds that can help the 
human operators of the network as well as set off automatic remediation protocols 
via a Lambda function. For example:
• If a CDN is having latency much higher than baseline (e.g., if it’s more than 10% 

latency vs. baseline average), initiate automatic CDN traffic shifts.
• If more than [some threshold, e.g., 5%] of clients report playback errors, alert the 

product team that there is likely a client issue for a specific device.
• If viewers on a certain ISP are having higher-than-average buffering and pixelation 

issues, alert frontline customer representatives on responses and ways to decrease 
issues (e.g., set stream quality lower).

From a technical perspective, generating real-time alerts requires a streaming 
engine capable of processing data real time and publish-subscribe service to push 
notifications.

Integrating microservices using Amazon SNS and Amazon SQS

The QoS solution implements the AWS best practices for integrating microservices 
by using Amazon SNS and its integrations with Amazon Lambda (see below for the 

updates of web applications) or Amazon SQS for other consumers. The custom for 
each writer option makes the writing of a pipeline to send email notifications based 
on a rule-based engine (e.g., validating the percentage of errors for each individual 
type of app over a period of time) really straightforward.

   def send_error_notification(row):

        

        sns_client = boto3.client(‘sns’, region)

        

        error_message = ‘Number of errors for the App has exceeded the 

threshold {}’.format(row[‘percentage’])

        

        response = sns_client.publish(

            TopicArn=,

            Message= error_message,

            Subject=,

            MessageStructure=‘string’)

                    

        # Structured Streaming Job

        

        getKinesisStream(“player_events”)\

            .selectExpr(“type”, “app_type”)\

            .groupBy(“app_type”)\

            .apply(calculate_error_percentage)\

            .where(“percentage > {}”.format(threshold)) \

            .writeStream\

            .foreach(send_error_notification)\

            .start()

Sending email notifications using AWS SNS

https://docs.aws.amazon.com/whitepapers/latest/microservices-on-aws/introduction.html
https://docs.databricks.com/spark/latest/structured-streaming/foreach.html
https://docs.databricks.com/spark/latest/structured-streaming/foreach.html
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On top of the basic email use case, the Demo Player includes three widgets updated 
in real time using AWS AppSync: the number of active users, the most popular videos 
and the number of users concurrently watching a video.

Updating the application with the results of real-time aggregations

The QoS solution is applying a similar approach — Structured Streaming and Amazon 
SNS — to update all the values allowing for extra consumers to be plugged in using AWS 
SQS. This is a common pattern when huge volumes of events have to be enhanced and 
analyzed; pre-aggregate data once and allow each service (consumer) to make their 
own decision downstream.

Next steps: machine learning
Manually making sense of the historical data is important but is also very slow. If 
we want to be able to make automated decisions in the future, we have to integrate 
machine learning algorithms.

As a Unified Data Platform, Databricks empowers data scientists to build better data 
science products using features like Runtime for Machine Learning with built-in 
support for Hyperopt / Horvod / AutoML or the integration with MLflow, the end-to-
end machine learning lifecycle management tool.

https://docs.databricks.com/applications/machine-learning/automl-hyperparam-tuning/index.html#hyperopt-overview
https://docs.databricks.com/applications/machine-learning/train-model/distributed-training/horovod-runner.html
https://databricks.com/product/automl-on-databricks


31The Delta Lake Series — Streaming   

We have already explored a few important use cases across our customer base while 
focusing on the possible extensions to the QoS solution.

Point-of-failure prediction and remediation
As D2C streamers reach more users, the costs of even momentary loss of service 
increases. ML can help operators move from reporting to prevention by forecasting 
where issues could come up and remediating before anything goes wrong (e.g., 
a spike in concurrent viewers leads to switching CDNs to one with more capacity 
automatically).

Customer churn
Critical to growing subscription services is keeping the subscribers you have. By 
understanding the quality of service at the individual level, you can add QoS as a 
variable in churn and customer lifetime value models. Additionally, you can create 
customer cohorts for those who have had video quality issues in order to test 
proactive messaging and save offers.

Getting started with the Databricks streaming video 
QoS solution
Providing consistent quality in the streaming video experience is table stakes at this 
point to keep fickle audiences with ample entertainment options on your platform. 
With this solution we have sought to create a quick start for most streaming video 
platform environments to embed this QoS real-time streaming analytics solution in 
a way that:
• Scales to any audience size
• Quickly flags quality performance issues at key parts of the distribution workflow
• Is flexible and modular enough to easily customize for your audience and your 

needs, such as creating new automated alerts or enabling data scientists to test 
and roll out predictive analytics and machine learning

To get started, download the notebooks for the Databricks streaming video QoS 
solution. For more guidance on how to unify batch and streaming data into a single 
system, view the Delta Architecture webinar.

https://databricks.com/notebooks/QoS/index.html#00.config.html
https://databricks.com/notebooks/QoS/index.html#00.config.html
https://pages.databricks.com/201908-WB-Delta-Architecture-A-Step-Beyond-Lambda-Architecture_Reg.html
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Now that you understand Delta Lake and how its features can improve 
performance, it may be time to take a look at some additional resources. 

Explore subsequent eBooks in the collection >
• The Delta Lake Series — Fundamentals and Performance
• The Delta Lake Series — Features
• The Delta Lake Series — Lakehouse
• The Delta Lake Series — Customer Use Cases

Do a deep dive into Delta Lake >
• Getting Started With Delta Lake Tech Talk Series
• Diving Into Delta Lake Tech Talk Series
• Visit the site for additional resources

Try Databricks for free >
Learn more >

https://databricks.com/discover/getting-started-with-delta-lake-tech-talks
https://databricks.com/discover/diving-into-delta-lake-talks
https://databricks.com/product/delta-lake-on-databricks
https://databricks.com/try-databricks
https://pages.databricks.com/delta-lake-open-source-reliability-for-data-lakes-reg.html

