Apache Spark from Notebook to Cloud Native Application - Databricks

Apache Spark from Notebook to Cloud Native Application

Download Slides

Data engineering teams love Apache Spark because it’s powerful and easy to manage, but managing a shared resource for experimental analyses and queries is very different from developing production applications in contemporary cloud environments: the gap between understanding Spark and being able to deploy and manage it in production can be vast.

This session will cover a developer’s journey learning Spark and using it to develop a containerized, cloud native application with analysis and visualization components. More specifically, these topics will be covered:

• Exploratory analysis in a Jupyter notebook running against an ephemeral Spark cluster
• Using PySpark for loading and analyzing data from external data sources like PostgreSQL
• Transforming your notebook into a cloud-native application deploying your application in containers on Kubernetes
• PySpark API functionality that you didn’t know you needed.

So, whether you’re an application developer or a Spark expert this session is for you. If you’re a developer wanting to deploy a spark cluster into production, this session will help guide you through techniques to make this transition easier and quicker. However, if you’re an expert, then this talk should give you some insight into how application developers work and help you to coordinate with the development team.

Session hashtag: #Py2SAIS

About Rebecca Simmonds

Rebecca Simmonds is a senior software engineer at Red Hat. Here she is part of an emerging technology group, which comprises of both data scientists and developers. She completed a PhD at Newcastle University, in which she developed a platform for scalable, geospatial and temporal analysis of the Twitter data. After this she moved to a small startup company as a Java developer creating solutions to improve performance for a CV analyser. She has a keen interest in architecture design and data analysis, which she is furthering at Red Hat with OpenShift and ML research.