How DNV GL is Breaking Down Analytical and Computational Barriers Across the Energy Industry Using Databricks

Download Slides

Smart meter sensor data presents tremendous opportunities for the energy industry to better understand their customers and anticipate their needs. With smart meter data, energy industry data analysts and utilities are able to use hourly readouts to gain high resolution insights into energy consumption patterns across structures and customer types, and in addition gain near real time insights into grid operations. Join Jonathan Farland, a technical consultant at DNV GL Energy, to learn how this globally renowned energy company is processing data at scale and mining deeper insights by leveraging statistical learning techniques. In this talk, Jon will share how DNV GL is using Apache Spark and Databricks to turn smart meter data into insights to better serve their customers.



« back
About Jonathan Farland

Jonathan Farland is a technical consultant for DNV GL Energy in the Policy, Advisory and Research group and serves as the lead data scientist on both quantitative and qualitative energy studies. Mr. Farland’s primary focus is on the development of electricity demand forecasting systems that are capable of predicting demand while accounting for emerging or disruptive technologies such as smart grids, storage, photovoltaic cells, and electric vehicles. Developing these predictive models often requires the collection of large amounts of data and information on electricity usage, as well as climatological and economic conditions. Mr. Farland uses R and Python while leveraging the Spark distributed computing framework to effectively deploy model estimation and statistical learning algorithms.