Spline: Data Lineage For Spark Structure Streaming

Data lineage tracking is one of the significant problems that companies in highly regulated industries face. These companies are forced to have a good understanding of how data flows through their systems to comply with strict regulatory frameworks. Many of these organizations also utilize big and fast data technologies such as Hadoop, Apache Spark and Kafka. Spark has become one of the most popular engines for big data computing. In recent releases, Spark also provides the Structured Streaming component, which allows for real-time analysis and processing of streamed data from many sources. Spline is a data lineage tracking and visualization tool for Apache Spark. Spline captures and stores lineage information from internal Spark execution plans in a lightweight, unobtrusive and easy to use manner.

Additionally, Spline offers a modern user interface that allows non-technical users to understand the logic of Apache Spark applications. In this presentation we cover the support of Spline for Structured Streaming and we demonstrate how data lineage can be captured for streaming applications.

Session hashtag: #SAISExp18

« back
About Vaclav Kosar

Vaclav is a programming and analytics enthusiast. He currently forges big data software for ABSA R&D focusing on cruicial data lineage project Spline. He studied electronics, physics and mathematics.

About Marek Novotny

Marek obtained bachelor and master degree in computer science at Charles University in Prague. His master studies were mainly focused on development of distributed and dependable systems. In 2013, Marek joined ABSA Capital in Prague to develop a scalable data integration platform and a framework for calculating regulatory reports. During the work on those two projects, he gained experience with many NoSQL and distributed technologies (e.g. Kafka, Zookeper, Spark). Nowadays, he is a member of Big Data Engineering team and primarily focused on development of the Spline project.