Understanding Query Plans and Spark UIs - Databricks

Understanding Query Plans and Spark UIs

Download Slides

The common use cases of Spark SQL include ad hoc analysis, logical warehouse, query federation, and ETL processing. Spark SQL also powers the other Spark libraries, including structured streaming for stream processing, MLlib for machine learning, and GraphFrame for graph-parallel computation. For boosting the speed of your Spark applications, you can perform the optimization efforts on the queries prior employing to the production systems. Spark query plans and Spark UIs provide you insight on the performance of your queries. This talk discloses how to read and tune the query plans for enhanced performance. It will also cover the major related features in the recent and upcoming releases of Apache Spark.



« back
About Xiao Li

Xiao Li is a software engineer, Apache Spark Committer, and PMC member at Databricks. His main interests are on Spark SQL, data replication and data integration. Previously, he was an IBM master inventor and an expert on asynchronous database replication and consistency verification. He received his Ph.D. from University of Florida in 2011.