What to Expect for Big Data and Apache Spark in 2017 - Databricks

What to Expect for Big Data and Apache Spark in 2017

Download Slides

Big data remains a rapidly evolving field with new applications and infrastructure appearing every year. In this talk, I’ll cover new trends in 2016 / 2017 and how Apache Spark is moving to meet them. In particular, I’ll talk about work Databricks is doing to make Apache Spark interact better with native code (e.g. deep learning libraries), support heterogeneous hardware, and simplify production data pipelines in both streaming and batch settings through Structured Streaming.



« back
About Matei Zaharia

Matei Zaharia is an Assistant Professor of Computer Science at Stanford University and Chief Technologist at Databricks. He started the Apache Spark project during his PhD at UC Berkeley in 2009, and has worked broadly in datacenter systems, co-starting the Apache Mesos project and contributing as a committer on Apache Hadoop. Today, Matei tech-leads the MLflow development effort at Databricks. Matei’s research work was recognized through the 2014 ACM Doctoral Dissertation Award for the best PhD dissertation in computer science, an NSF CAREER Award and several best paper awards.