What to Expect for Big Data and Apache Spark in 2017

Download Slides

Big data remains a rapidly evolving field with new applications and infrastructure appearing every year. In this talk, I’ll cover new trends in 2016 / 2017 and how Apache Spark is moving to meet them. In particular, I’ll talk about work Databricks is doing to make Apache Spark interact better with native code (e.g. deep learning libraries), support heterogeneous hardware, and simplify production data pipelines in both streaming and batch settings through Structured Streaming.

About Matei Zaharia

Matei Zaharia is an assistant professor of computer science at Stanford University and Chief Technologist at Databricks. He started the Spark project during his PhD at UC Berkeley in 2009. Before that, Matei worked broadly in datacenter systems, co-starting the Apache Mesos project and contributing as a committer on Apache Hadoop. Matei’s research was recognized through the 2014 ACM Doctoral Dissertation Award for the best PhD dissertation in computer science.