Revenir au contenu principal

Mlflow administré

Créez de meilleurs modèles et applications d’IA générative

Qu'est-ce que Managed MLflow ?

Managed MLflow étend les fonctionnalités de MLflow, une plateforme open source développée par Databricks pour créer de meilleurs modèles et applications d’IA générative, en mettant l’accent sur la fiabilité, la sécurité et l’évolutivité de l’entreprise. La dernière mise à jour de MLflow introduit des fonctionnalités innovantes GenAI et LLMOps qui améliorent sa capacité à gérer et à déployer des modèles de langage volumineux (LLM). Cette LLM prise en charge étendue est obtenue grâce à de nouvelles intégrations avec les outils de standard de Secteurs d’activité,LLM OpenAI et Hugging Face Transformers, ainsi qu’avec le MLflow serveur de déploiements . De plus, l’intégration de MLflow avec les frameworks LLM (par exemple, LangChain) permet un développement simplifié de modèles pour la création d’applications d’IA générative pour une variété de cas d’utilisation, notamment les chatbots, le résumé de documents, la classification de texte, l’analyse des sentiments et bien plus encore.

Avantages

model development

Développement de modèles

Améliorez et accélérez la gestion du cycle de vie du machine learning grâce à un cadre standardisé pour les modèles prêts pour la production. Les recettes de MLflow gérées permettent un démarrage de projet ML transparent, une itération rapide et un déploiement de modèle Monter en charge à grande échelle. Créez des applications telles que des chatbots, des résumés de documents, l’analyse des sentiments et la classification sans effort. Développez facilement des applications d’IA générative (par exemple, des chatbots, des résumés de documents) avec les offres LLM de MLflow, qui s’intègrent de manière transparente à LangChain, Hugging Face et OpenAI.

Deploy a model for a batch interface

Suivi des tests

Exécutez l’expérimentation avec n’importe quelle bibliothèque, infrastructure ou langage ML , et gardez automatiquement une trace des paramètres, des métriques, du code et des modèles de chaque expérimentation. En utilisant MLflow sur Databricks, vous pouvez partager, gérer et comparer en toute sécurité les résultats de l’expérimentation ainsi que les artefacts et les versions de code correspondants, grâce aux intégrations intégrées avec l' Databricks Espace de travail et Notebook. Vous serez également en mesure d’évaluer les résultats de l’expérimentation GenAI et d’améliorer la qualité grâce à MLflow fonctionnalité d’évaluation.

model development

Gestion de modèles

Au sein d'un même emplacement centralisé, vous allez pouvoir partager des modèles ML, collaborer pour les faire passer de l'expérimentation aux tests et à la production, intégrer des workflows d'approbation et de gouvernance et assurer le suivi des déploiements ML et de leurs performances. Le Registre de modèles MLflow facilite le partage d'expertise et de connaissances et vous aide à garder le contrôle.

model development

Déploiement de modèles

Déployez rapidement des modèles en production pour les inférences par batch sur Apache Spark™ ou sous forme d'API REST grâce aux intégrations natives avec les conteneurs Docker, Azure ML ou Amazon SageMaker. Avec Managed MLflow sur Databricks, vous pouvez mettre en service et surveiller les modèles de production à l'aide de l'ordonnanceur Databricks et des clusters auto-gérés en fonction de vos besoins métier.

Les dernières mises à niveau de MLflow package de manière transparente les applications GenAI pour le déploiement. Vous pouvez désormais déployer vos chatbots et d’autres applications GenAI telles que le résumé de documents, l’analyse des sentiments et la classification chez Monter en charge, en utilisant Databricks Model Serving.

Features

MLflow Tracking

MLFLOW TRACKING: Automatically log parameters, code versions, metrics, and artifacts for each run using Python, REST, R API, and Java API

GENERATIVE AI DEVELOPMENT: Simplify model development to build GenAI applications for a variety of use cases such as chatbots, document summarization, sentiment analysis and classification with MLflow’s Deployments Server and Evaluation UI, supported by native integration with LangChain, and seamless UI for fast prototyping and iteration.

MLFLOW TRACKING SERVER: Get started quickly with a built-in tracking server to log all runs and experiments in one place. No configuration needed on Databricks.

EXPERIMENT MANAGEMENT: Create, secure, organize, search and visualize experiments from within the workspace with access control and search queries.

MLFLOW RUN SIDEBAR: Automatically track runs from within notebooks and capture a snapshot of your notebook for each run so that you can always go back to previous versions of your code.

LOGGING DATA WITH RUNS: Log parameters, datasets, metrics, artifacts and more as runs to local files, to a SQLAlchemy compatible database, or remotely to a tracking server.

DELTA LAKE INTEGRATION: Track large-scale datasets that fed your models with Delta Lake snapshots.

ARTIFACT STORE: Store large files such as S3 buckets, shared NFS file system, and models in Amazon S3, Azure Blob Storage, Google Cloud Storage, SFTP server, NFS, and local file paths.

MLflow Models

MLFLOW MODELS: A standard format for packaging machine learning models that can be used in a variety of downstream tools — for example, real-time serving through a REST API or batch inference on Apache Spark.

MODEL CUSTOMIZATION: Use Custom Python Models and Custom Flavors for models from an ML library that is not explicitly supported by MLflow’s built-in flavors.

BUILT-IN MODEL FLAVORS: MLflow provides several standard flavors that might be useful in your applications, like Python and R functions, Hugging Face, OpenAI and LangChain, PyTorch, Spark MLlib, TensorFlow and ONNX.

BUILT-IN DEPLOYMENT TOOLS: Quickly deploy on Databricks via Apache Spark UDF for a local machine, or several other production environments such as Microsoft Azure ML, Amazon SageMaker, and building Docker Images for Deployment.

MLflow Model Registry

CENTRAL REPOSITORY: Register MLflow models with the MLflow Model Registry. A registered model has a unique name, version, stage and other metadata.

MODEL VERSIONING: Automatically keep track of versions for registered models when updated.

MODEL STAGE: Assign preset or custom stages to each model version, like “Staging” and “Production” to represent the lifecycle of a model.

CI/CD WORKFLOW INTEGRATION: Record stage transitions, request, review and approve changes as part of CI/CD pipelines for better control and governance.

MODEL STAGE TRANSITIONS: Record new registration events or changes as activities that automatically log users, changes, and additional metadata such as comments.

MLflow Deployments Server

GOVERN ACCESS TO LLMS: Manage SaaS LLM credentials.

CONTROL COSTS: Set up rate limits.

STANDARDIZE LLM INTERACTIONS: Experiment with different OSS/SaaS LLMs with standard input/output interfaces for different tasks: completions, chat, embeddings.

MLflow Projects

MLFLOW PROJECTS: MLflow projects allow you to specify the software environment that is used to execute your code. MLflow currently supports the following project environments: Conda environment, Docker container environment, and system environment. Any Git repo or local directory can be treated as an MLflow project.

REMOTE EXECUTION MODE: Run MLflow Projects from Git or local sources remotely on Databricks clusters using the Databricks CLI to quickly scale your code.

MLflow Recipes

SIMPLIFIED PROJECT STARTUP: MLflow Recipes provides out-of-box connected components for building and deploying ML models.

ACCELERATED MODEL ITERATION: MLflow Recipes creates standardized, reusable steps for model iteration — making the process faster and less expensive.

AUTOMATED TEAM HANDOFFS: Opinionated structure provides modularized production-ready code, enabling automatic handoff from experimentation to production.

Consultez les actus sur nos produits publiées sur Azure Databricks et AWS pour découvrir nos dernières fonctionnalités.

Comparaison des offres MLflow

Open Source MLflow

Managed MLflow on Databricks

Suivi des tests

API de suivi MLflow

Serveur de suivi MLflow

Auto-hébergé

Entièrement géré

Intégration des notebooks

Intégration des workflows

Projets reproductibles

MLflow Projects

Intégration Git et Conda

Cloud/clusters évolutifs pour l'exécution des projets

Gestion de modèles

MLflow Model Registry

Contrôle de versions des modèles

Transition d'étape ACL

Intégrations de workflows CI/CD

Déploiements flexibles

Inférence par batch intégrée

MLflow Models

Analyses en streaming intégrées

Sécurité et gestion

Haute disponibilité

Mises à jour automatiques

Contrôle d'accès basé sur les rôles

Comment ça marche

MLflow est un ensemble d'interfaces utilisateur et d'API légères utilisables avec n'importe quelle infrastructure ML sur l'ensemble du workflow de machine learning. Il regroupe quatre composants : MLflow Tracking, MLflow Projects, MLflow Models et MLflow Model Registry

En savoir plus sur MLflow

managed mlflow
MLFLOW TRACKING

Enregistrement et interrogation Expérimentation : code, données, config et résultats.

En savoir plus
managed mlflow
MLflow Projects

Un format de package pour des cycles reproductibles sur n'importe quelle plateforme.

En savoir plus
managed mlflow
MLflow Models

Un format général pour envoyer des modèles vers différents outils de déploiement.

En savoir plus
managed mlflow
MLflow Model Registry

Un dépôt centralisé permettant de gérer les modèles MLflow de manière collaborative, tout au long de leur cycle de vie.

En savoir plus

MLflow managé<br /> sur Databricks

Managed MLflow on Databricks est une version entièrement gérée de MLflow offrant aux praticiens une gestion de la reproductibilité et de l’expérimentation sur Databricks magasins de blocs, de tâches et de données, ainsi que la fiabilité, la sécurité et l’évolutivité de la plate-formeDatabricks Data Intelligence.

Lire la documentation

Log Your First Run as an Experiment MLflow

Ressources