AIを活用した金融サービスにおけるデータガバナンスのシンプル化
データが急速に増加し、金融機関がAI や生成AIモデルにデータを活用することへの圧力が高まる中、データガバナンスの重要性はますます高まっています。 欧州連合(EU)議会が包括的なAI規制を可決し、米国連邦政府がAI利用を規制する措置を講じるなど、規制当局がAIの応用に関心を寄せています。 これは、AI規制の重要性の高まりを浮き彫りにしています。(詳しくは、Databricksのブログ「 展開中のAI規制への対応をデータインテリジェンスプラットフォームが支援 」にまとめられています) データガバナンスは基礎であり、生成AIの使用に先立つものです。 データガバナンスがなければ、金融機関は規制上の要求を満たすことも、AIの結果を説明することも、アルゴリズムやデータ中心のバイアスを制御することもできません。 AIモデルがより複雑になるにつれ、それらをどのように管理し、社内外のデータ資産とどのように相互作用させるかを検討することが極めて重要になります。 データガバナンスは生成AIよりも前に考えるべき重要な基盤 データとテクノ
KXとDatabricksの統合:資本市場などにおける時系列データ分析の進歩
KXとDatabricksは、資本市場分野向けの時系列分析ソリューションの開発で提携し、クオンツ調査や一時的な取引データ分析など、多くのユースケースをサポートしています。 これまで、SQL、Python、Rなどのデータサイエンスや分析のプログラミング言語では、時系列分析が煩雑で時間がかかっていました。 SQLはその人気と強力なクエリ言語にもかかわらず、時系列データの順序(例えば、時間ベースの結合)や以前の状態に関する質問には限界があります。 PythonやR、そしてSparkでさえ、時間分析を実行するには何ページものコードが必要です。 これらの限界は、時系列分析に伴う高次元データの課題によってさらに複雑になっています。 特にヘッジファンドや機関投資家にとって、このコラボレーションは、KXの専門的な時系列データ処理能力と、Databricksで利用可能な包括的な計算および機械学習フレームワークを組み合わせたものです。 このパートナーシップは、時系列データに焦点を当てることで、金融業界向けの定量的・データサイエンス研
Coastal Community Bank、Databricksのデータインテリジェンスプラットフォームを用いて充実した金融エコシステムを構築
Coastal Community Bank(Coastal)のSVP、Head of Technology Operations and ImplementationのBarb MacLean氏とCavallo TechnologiesのRob Cavallo社長に感謝します。 ゴリアテのコミュニティ・バンクとして繁栄 ある意味で、コミュニティ・バンクであることがこれほど厳しくなったことはありません。 米国では現在、上位15行が業界の預金と資産の大半を支配しており、大手5行で 総資産の56 % を管理しています。 さらに、中小銀行に対する規制上の要求も高まっており、大手の競争相手と同じような厳しい資本、報告、マネーロンダリング防止基準に従うことが求められています。 Coastal Community Bank(Coastal)のSVP、テクノロジー・オペレーションおよびインプリメンテーションの責任者であるBarb MacLean氏にとって、その解決策はサービスとしての銀行(BaaS)です。 CoastalがDe
Generative AI is Everything Everywhere, All at Once
Original: Generative AI is Everything Everywhere, All at Once 翻訳: saki.kitaoka Data and AI Summit on "Generation AI "に直接またはバーチャルで参加し、詳細をご確認ください。 変化の激しい金融の世界では、企業は自 動化の促進、製品イノベーションの加速、業務効率の改善を通じて競争力を維持する方法を常に模索しています。金融サービス機関(FSI)の自動化、合理化、効率化を支援する上で、Generative AIが重要な役割を果たすとエグゼクティブは考えています。FSIは、膨大な量のデータを分析し、人間の知性を補強する洞察を提供するために、AI機能への投資を開始しています。例えば、ブルームバーグは最近、金融業界向けに特別に構築された500億パラメータの大規模言語モデル(LLM)「 Bloomberg-GPT 」を発表し、JPモルガンはChat-GPTベースの言語AIモデルを使用して、...
サイバーセキュリティアプリケーション向けDatabricks Lakehouseプラットフォーム
翻訳: Masahiko Kitamura 具体的なコードはIOCマッチングのソリューションアクセラレータの GitHub reo を参照ください。また、本ソリューションのPOC・トライアルについては [email protected] までご連絡ください。 金融機関、医療機関、政府機関がデータをクラウドに移行し、IoTセンサーや相互接続されたデバイスが増加しているため、サイバーセキュリティは依然として重要なデータ課題となっています。地政学的な脅威が続く中、企業は、大量のデータの処理、複雑なデータ処理タスク(人工知能や機械学習などの高度な分析機能を含む)のサポート、費用対効果の高い拡張が可能なDatabricks Lakehouseプラットフォームをサイバー業務に採用しています。Databricks Lakehouseプラットフォームは、データ、アナリティクス、AIを単一のプラットフォームで統合した、サイバーセキュリティ業界の隠れた標準基盤になっています。 企業やサイバーセキュリティベンダー
レイクハウスが保険業界のカスタマーサービス分析にNLPを活用した理由
Original : How Lakehouse powers NLP for Customer Service Analytics in Insurance 翻訳: junichi.maruyama Download the Databricks Insurance NLP Solution Accelerator はじめに 現在の経済・社会情勢は、お客様の期待や嗜好を再定義しています。社会はデジタル化を余儀なくされ、それは保険会社における顧客サービスにも及んでいます。...