Databricks SQL (DB SQL) allows customers to operate a multi-cloud lakehouse architecture that provides up to 6x better price/performance than traditional cloud data warehouses. Using open source standards to avoid data lock-in, it provides the reliability, quality and performance capabilities that data lakes natively lack.

Reliable, lightning-fast analytics on data lake data

Gain a competitive edge by running SQL queries on your lakehouse with data warehousing performance at data lake economics. DB SQL lets you bring reliability, quality, scale, security and performance to your data lake to support traditional analytics workloads using your most recent and complete data.

Simplified administration and fine-grained governance

Quickly enable data analysts with serverless SQL compute. DB SQL automatically manages instance types, configuration, and provides you with the best price/performance. Granular logging provides visibility into how data is being accessed and queried across your lakehouse so you can maintain data compliance and security, triage errors and troubleshoot execution when needed.

Analytics on all your data with your tools of choice

Connect your preferred BI tools to analyze your most recent and complete data without moving any data to a data warehouse. DB SQL also lets you easily query and transform your data lake data using a built-in SQL editor, build visualizations, and share interactive dashboards that stay up to date.

How does it work?

Up to 6x better price/performance for query execution

Databricks SQL is packed with thousands of optimizations to provide you with the best performance for all query types and real-world applications. This includes Photon — the next-generation query engine — which provides up to 6x better price/performance compared to other cloud data warehouses.


Simplified administration and governance for your lakehouse

Databricks SQL makes it easy to set up and manage SQL compute resources thanks to a central log that records usage across virtual clusters, users and time. This makes it easier to observe workloads across DB SQL, third-party BI tools and any other SQL clients in one place, which in turn helps triage errors and performance issues. Administrators can then drill down into the phases of each query’s execution to troubleshoot problems and support audits.


Connect with your existing tools

Connect your preferred BI tools and benefit from fast performance, low latency and high user concurrency to your data lake data. Setting up reliable connections to your Delta Lake tables is simple, and you can integrate your existing authentication solution. Re-engineered ODBC/JDBC drivers provide lower latency and less overhead to reduce round trips by 0.25 seconds. Data transfer rate is improved 50%, and metadata retrieval operations execute up to 10x faster.


First-class SQL development experience

Databricks SQL allows data analysts to quickly discover and find data sets, write queries in a familiar SQL syntax and easily explore Delta Lake table schemas for ad hoc analysis. Regularly used SQL code can be saved as snippets for quick reuse, and query results can be cached to keep run times short.


Quickly discover and share new insights

Analysts can easily make sense of query results through a wide variety of rich visualizations, and quickly build dashboards with an intuitive drag-and-drop interface. To keep everyone current, dashboards can be shared and configured to automatically refresh, as well as to alert the team to meaningful changes in the data.


Enable your lakehouse

Operate a multi-cloud lakehouse architecture that provides data warehousing performance at data lake economics. Databricks SQL enables analysts and data scientists to reliably perform SQL queries and BI directly on the freshest and most complete data using their tools of choice – directly on your data lake – while greatly simplifying architectures by reducing the need for more disparate systems.

Connect your BI tools to one source of truth for all your data

Maximize existing investments by connecting your preferred BI tools to your data lake with DB SQL endpoints. Re-engineered and optimized connectors ensure fast performance, low latency and high user concurrency to your data lake. Now analysts can use the best tool for the job on one single source of truth for your data while minimizing more ETL and data silos.

Collaboratively explore the latest
and freshest data

Respond to business needs faster with a self-served experience designed for every analyst in your organization. DB SQL provides simple and secure access to data, the ability to create or reuse SQL queries to analyze the data that sits directly on your data lake and quickly mock-up and iterate on visualizations and dashboards that best fit the business.

Build data-enhanced

Build rich and custom data-enhanced applications for your own organization or your customers. Benefit from the ease of connectivity, management and better price/performance of DB SQL to simplify development of data-enhanced applications at scale, all served from your data lake.


Databricks SQL provides support for all your existing BI applications. Setting up reliable connections to your Delta Lake tables is simple, and you can integrate your existing authentication solution.
Databricks SQL の統合
+ Apache SparkTM 互換クライアント

「高速性と俊敏性を兼ね備えたデータ戦略が、これまで以上に重要になっています。多くの組織がデータのクラウド移行を急速に進めるなか、データレイク上でアナリティクスを行うことへの関心が高まっています。Databricks SQL の優れた性能、信頼性、スケーラビリティは、膨大なデータから知見を得るための一連のエクスペリエンスを変革します。Databricks とのパートナーシップを通じて新しいデータ戦略を実行できることをうれしく思います。」

Tableau CPO フランソワ・アジェンスタッド(Francois Ajenstat)氏


DATA+AI Summit

Building the Lakehouse at Atlassian


Building omnichannel loyalty and engagement for retailers



Driving Transformation With Scalable, Open Lakehouse Architecture

Comcast Databricks Customer Story

DATA+AI Summit

Powering telemetry analysis at Comcast with Databricks SQL

DATA+AI Summit

Delivering insights from 20M+ smart homes with 500M+ devices


「 プラットフォームの基盤要素の 1 つとしてデータブリックスを選択しました。私たちは、よりクリーンなエネルギーソリューションを提供するという目標の一環として、デジタル変革を進めており、データレイクアーキテクチャに対して積極的に投資してきました。膨大なデータセットに対するクエリを、シンプルな方法で迅速に実行できるようにする必要がありました。ペタバイト規模のデータセットに対して、標準的な BI ツールを使用して迅速なクエリを実行できることは、私たちにとってのゲームチェンジャーとなります。


Shell 社: データサイエンス担当GM、ダン・ジーボンズ氏

“At Atlassian, we need to ensure teams can collaborate well across functions to achieve constantly evolving goals. A simplified lakehouse architecture would empower us to ingest high volumes of user data and run the analytics necessary to better predict customer needs and improve the experience of our customers.

A single, easy-to-use cloud analytics platform allows us to rapidly improve and build new collaboration tools based on actionable insights.”

Atlassian 社:

「Wejo では、5,000 万台以上のアクセス可能なコネクテッドカーからデータを収集し、より良いドライビングエクスペリエンスを構築しています。

データブリックスと堅牢なレイクハウス・アーキテクチャにより、顧客に自動分析を提供することが可能になり、毎月 5 兆点近くのデータポイントについて洞察を得ることができるようになります。」

Wejo 社: データ部門責任者、ダニエル・ティブル氏

「データ駆動型のリサーチを顧客に提供することに注力している企業として、データレイク内の膨大なデータは私たちの生命線です。データブリックスと Delta Lake を活用することで、すでに拡張性を維持したままデータを民主化することができており、本番のワークロードを実行するコストを 60% 削減し、数百万ドルのコスト削減を実現しています。


Yipitdata 社: チーフテクノロジーオフィサー、スティーブ・ピュレック氏


eBook シリーズ




Get Started Guides

AWS | Azure