MLflow AI GatewayとLlama 2を使ってジェネレーティブAIアプリを構築する
翻訳:Junichi Maruyama. - Original Blog Link 顧客サポートボット、社内ナレッジグラフ、またはQ&Aシステムを構築するために、顧客は多くの場合、事前に訓練されたモデルを独自のデータと一緒に活用するRAG(Retrieval Augmented Generation)アプリケーションを使用します。しかし、安全なクレデンシャル管理と不正使用防止のためのガードレールがないため、お客様はこれらのアプリケーションへのアクセスと開発を民主化することができません。私たちは最近、 MLflow AI Gateway を発表しました。これは拡張性の高いエンタープライズグレードのAPIゲートウェイで、組織がLLMを管理し、実験や生産に利用できるようにします。本日、AI Gatewayを拡張し、RAGアプリケーションをより良くサポートすることを発表できることを嬉しく思います。組織は、プライベートホスティングモデルAPI( Databricks Model Serving 経由)、プロプライエ
MLflow AI Gatewayの発表
翻訳:Junichi Maruyama. - Original Blog Link 大規模言語モデル(LLM)は、SQLウェアハウスに保存されたテキストデータのセンチメント分析から、製品に関するニュアンスの異なる質問に回答するリアルタイムのチャットボットの導入まで、ビジネス価値を提供する幅広い潜在的なユースケースを解き放ちます。 しかし、これらのアプリケーションのために強力なSaaSやオープンソースのLLMへのアクセスを民主化するには、セキュリティ、コスト、データ関連のさまざまな課題が伴います。 例えば、企業全体で SaaS LLM API トークンを効果的に管理するという具体的な課題を考えてみよう: チームがAPIトークンをプレーンテキストとして通信に貼り付けることによるセキュリティの問題 共有キーがアプリケーションのクラッシュやレート制限の乱用によるコストのピークにつながるというコストの問題 各チームがガードレールなしで独自のAPIトークンを管理することによるガバナンスの問題 これらの課題は、組織がイノベーシ