メインコンテンツへジャンプ
ページ 1

Patronus AI x Databricks: 幻覚(ハルシネーション)検出のためのトレーニングモデル

大規模言語モデル (LLM) における幻覚は、モデルが実際の現実や提供されたコンテキストと一致しない応答を生成するときに発生します。 この問題は、LLM 出力がユーザー提供のドキュメントにアクセスできる RAG アプリケーションを開発する LLM 実践者にとって課題となります。 たとえば、金融に関する質問への回答や医療診断に使用されている LLM がソース ドキュメントから逸脱した応答を生成すると、ユーザーは誤った情報にさらされ、重大な悪影響が生じます。 LLM-as-a-judge パラダイムは、その柔軟性と使いやすさにより、生成 AI アプリケーションの応答における不正確さを検出するために人気が高まっています。 しかし、GPT-4 のようなトップクラスのパフォーマンスを誇るモデルを使用している場合でも、LLM をジャッジとして使用すると、複雑な推論タスクに対する応答を正確に評価できないことがよくあります。 さらに、クローズドソースの LLM の品質、透明性、コストについても懸念があります。...