メインコンテンツへジャンプ
ページ 1

Aimpoint Digital: AIで旅のプラン作りがもっとスマートに!

インスピレーション 休暇を楽しむことは楽しい経験ですが、旅行の計画を立てるのはほとんどの人にとって時間と労力がかかります。訪れる場所は無数にあり、食事をするレストランは数え切れないほどあり、レビューを見て決定を下すことは終わりがありません。 Expediaによる最近の調査結果によれば 、旅行者は旅行の調査と計画に5時間以上を費やしています。人々は旅行のアクティビティを最終決定する前に最大で約270のウェブページを訪れ、このプロセスは旅行の45日前から始まることもあります。選択肢が多すぎるため、旅行の計画は一部の人々にとって圧倒的なものになることがあります。GenAIを活用してこのプロセスを効率化し、30秒以内に行程を作成することは可能でしょうか?旅行者が自分の行程に活動をカスタマイズして調整するパーソナルエージェントを持つことができたらどうでしょうか?このブログでは、旅行の行程を作成するためにDatabricks Data Intelligence Platformと共に開発したAIエージェントシステムの詳細につ

Aimpoint Digital:Databricksにおける安全で効率的なマルチリージョンモデル提供のためのDelta Sharingの活用

機械学習モデルを提供する際、 遅延 は、予測をリクエストしてからレスポンスを受け取るまでの時間であり、エンドユーザーにとって最も重要な指標の一つです。遅延は、リクエストがエンドポイントに到達する時間、モデルによって処理される時間、そしてユーザーに戻る時間を含みます。異なる地域に基づくユーザーにモデルを提供すると、リクエストとレスポンスの両方の時間が大幅に増加する可能性があります。顧客が基づいている地域とは異なる地域でモデルをホスティングし、提供している企業を想像してみてください。この地理的な分散は、データがクラウドストレージから移動する際の高いエグレスコストを発生させ、2つの仮想ネットワーク間のピアリング接続と比較してセキュリティが低下します。 地域間の遅延の影響を示すために、ヨーロッパから米国にデプロイされたモデルエンドポイントへのリクエストは、ネットワーク遅延として100-150ミリ秒を追加することができます。対照的に、米国内のリクエストは、この Azureネットワークの往復遅延統計 ブログから抽出した情報に