メインコンテンツへジャンプ
ページ 1

Databricksワークフローで反復的なタスクを合理化

Databricksワークフローのタスクループ化に For Each を使用したループが一般に利用可能になったことをお知らせします!この新しいタスクタイプは、ランタイムで定義された動的なパラメーターセットをループすることにより、反復的なタスクを自動化することがこれまで以上に簡単になります。これは、 Databricksワークフロー の 強化された制御フロー機能 への我々の継続的な投資の一部です。 For Each を使用すると、ワークフローの効率とスケーラビリティを向上させ、複雑なロジックではなく洞察に集中する時間を確保できます。 ループ処理は繰り返しタスクの処理を劇的に改善します 複雑なワークフローの管理は、しばしば複数のデータセットの処理や複数の操作の実行を必要とする反復的なタスクを扱うことを含みます。ループのサポートがないデータオーケストレーションツールは、いくつかの課題を提示します。 複雑なロジックの簡略化 以前は、ユーザーは反復的なタスクを管理するために手動で、保守が難しいロジックに頼ることが多かったで

Databricksワークフローにおけるコントロールフロー強化のお知らせ!

多段階のデータやAIプロセス、パイプラインをオーケストレーションする上で重要な要素は、制御フローの管理です。 このため、 Databricks Workflowsの コントロールフロー機能に投資を続けています。この機能により、お客様は複雑なワークフローをより適切に制御し、高度なオーケストレーションシナリオを実装することができます。 数ヶ月前、私たちは ワークフローにモジュール式のオーケストレーションを 定義する機能を導入しました。これにより、お客様は複雑なDAGを分解して、より良いワークフロー管理、再利用性、チーム間でのパイプラインの連鎖を実現することができます。 本日、Lakehouseのオーケストレーションにおける次のイノベーションを発表できることを嬉しく思います。 タスクの条件付き実行 条件実行は、"If/else 条件タスクタイプ" と、"Run if dependencies" の2つの機能に分けることができます。これらを組み合わせることで、ユーザーはワークフローで分岐ロジックを作成し、パイプライン内の