Ray on Databricksの一般提供開始のお知らせ
昨年、Rayサポートの パブリックプレビュー をリリースして以来、何百ものDatabricksのお客様が、マルチモデル階層予測やLLMファインチューニング、強化学習など、様々なユースケースに使用してきました 。 本日、DatabricksにおけるRayサポートの一般提供を発表できることを嬉しく思います。 Rayは、バージョン15.0以降、機械学習ランタイムの一部として含まれるようになり、Databricksでファーストクラスとして提供されるようになりました。 お客様は、追加インストールなしで Rayクラスターを開始することができ、Databricksが提供する統合された製品群(Unity Catalog、Delta Lake、MLflow、Apache Sparkなど)の中で、この強力なフレームワークの使用を開始することができます。 調和のとれた統合:Databricks上のRayとSpark Ray on Databricksの一般提供により、Databricks上で分散ML AIワークロードを実行する選択肢が
DatabricksとAzure DevOpsでスケーラブルなAIをエッジにもたらす
翻訳:Junichi Maruyama. - Original Blog Link 製造業における機械学習とAIの機会は、 計り知れません 。 消費者の需要 と生産のより良い整合性から、 工程管理、歩留まり予測、欠陥検出 の改善まで、 予知保全 、 出荷最適化 、 もっともっと 、ML/AIはメーカーがビジネスを運営する方法を変革する用意があり、これらのテクノロジーは インダストリー4.0構想における主要な注力分野 となっている しかし、この可能性を実現することに課題がないわけではありません。機械学習と AI...