Azure 環境でのモダン IIoT 分析 - Part 3
モダン IIoT(産業用 IoT)アプリケーションのための Azure データ分析に関するブログを 3 部構成でお届けしています。前回の Part 2 では、フィールドデバイスからリアルタイムの IIoT データを Azure に 取り込み、データレイク上で直接実行する複雑な時系列処理について解説しました。Part 3 となる今回は、機械学習を活用した予測メンテナンスで風力タービンの収益を最大にすると同時に、ダウンタイムによる機会コストを最小限に抑え、利益を最大化する手法を解説します。 モデルのトレーニングによって得られた結果とそれを視覚化したものは、以下のような Power BI レポートに表示されます。 下の図は、エンドツーエンドのアーキテクチャを示したものです。 機械学習:出力と残存耐用年数の最適化 風力タービンのような産業用資産のユーティリティ、耐用期間、運用効率における最適化は、収益とコストに多くのメリットをもたらします。このブログでは、風力タービンの収益を最大にすると同時に、ダウンタイムによる機会コスト