ゲーム業界向け『AI パワード BI』のご紹介
「よくダッシュボードの作成を依頼されるのですが、依頼内容がはっきりしていないことが多く、たとえ依頼者と会話をしても完全に理解できない場合があります。そのため、こちらで何かを作成しても、期待に合わずに最初からやり直したり、修正を重ねる必要が出てくることがあります。ここで興味深いのは、1) 依頼者自身で解答を見つけられる可能性があること、そして2) さらに重要かもしれないのは、依頼者が自分の探しているものに近いものを見つけることで、それを元に私たちのチームへの依頼内容を具体化できるという点です。」 - AAAスタジオのデータリーダー はじめに 2023年11月にDatabricksの次の進化「The Data Intelligence Platform」を発表した際、機械学習や生成AI(GenAI)などの機能をプラットフォームに統合する計画を共有しました。これにより、皆さんの生産性を向上させ、データから生み出せる価値をさらに高めることができます。本ブログでは、データインサイトの生成を民主化することを目指した機能の一つ
ゲームのためのLLMアシストセグメンテーション
セグメンテーションプロジェクトは、ゲームにおけるパーソナライゼーションの土台です。プレイヤー体験のパーソナライゼーションは、プレイヤーのエンゲージメントを最大化し、離脱を緩和し、プレイヤーの支出を増加させるのに役立ちます。パーソナライゼーションのメカニズムは、ネクストベストオファー、ゲーム内ストアの注文、難易度設定、マッチメイキング、サインポスト、マーケティング、再エンゲージメントな ど、さまざまな形で存在します。理想的には、各プレイヤーの経験がユニークであることが望ましいですが、これは実現可能ではありません。代わりに、私たちはプレイヤーを一連のデータポイントでグループ化し、そのグループの体験をパーソナライズします。 このソリューションアクセラレータでは、まずLLMを活用して、特定のデータセットに対する適切なクラスタ数を決定します。まず、標準的で説明可能な機械学習技術、例えばK-meansクラスタリングを使用します。説明可能性は重要であり、クラスターへの信頼を築き、特定のプレイヤーに対してなぜその決定が下されたのか
大規模なプレイヤーフィードバックを管理し、理解しよう
ライブタイトル、本番運用前/運用後、進行中のメンテナンス、将来のリリース、ゲームの別バージョン、または市場向けのまったく新しいタイトルのいずれに取り組んでい る場合でも、常にコミュニティからのフィードバックを求めています。 世の中には不足はありませんが、圧倒され、ふるいにかけるのが難しい場合があります。 PC で出荷され、Valve の Steam ストアを通じて販売されるゲームの場合、タイトルに対するプレイヤーからのフィードバックの優れたソースは、Steam のゲームレビューで見つけることができます。 私たちは 、自然言語と機械学習技術 を組み合わせた、プレイヤーレビュー分析用の新しいソリューションアクセラレータを構築しました。これにより、ゲーム開発者はプレイヤーをより深く理解し、ゲームデザイン、バックエンドオペレーション、ライブオペレーション、マーケティング、そして実際にはすべての事業ラインを通じて対応できるようになります。 Steamのゲームレビューでは、次のことを見ることができます。 生のフィードバック: