メインコンテンツへジャンプ
ページ 1

Lakehouse Monitoring 一般提供開始:インテリジェントなデータ品質のプロファイリング、診断、実施

Data and AI Summitで、我々は Databricks Lakehouse Monitoring の一般提供開始を発表しました。データとAIの監視に対する統一的なアプローチにより、 Databricks Data Intelligence Platform 内で直接プロファイルを作成し、診断し、品質を強制することが容易になります。これは直接 Unity Catalog 上に構築されており、Lakehouse Monitoring ( AWS | Azure )は追加のツールや複雑さを必要としません。ダウンストリームプロセスが影響を受ける前に品質問題を発見することで、組織はデータへのアクセスを民主化し、データへの信頼を回復することができます。 なぜデータとモデルの品質が重要なのか...

Data + AI Summit 2024:Databricks Unity Catalogの最新情報

Translation Review by saki.kitaoka 急速に進化する人工知能とデータやジェネレーティブAIツールの爆発的な増加が特徴の時代において、企業はデータとAIのガバナンスの断片化に直面しており、データとAIの民主化の努力が妨げられています。この時代に成功するためには、企業はデータとAIのガバナンスにおいてオープンで統一されたアプローチを採用する必要があります。これには次のことが含まれます: オープンな接続性: データの出所や形式に関係なく、すべてのデータの信頼できる単一の情報源を作成する。 統一されたガバナンス: すべてのデータ(ファイル、テーブル)およびAI資産(MLモデル、AIツール、ノートブック)が中央システムで発見され、安全に管理され、監視され、追跡されるように包括的な監督を実施する。 オープンなアクセシビリティ: データとAIリソースにどのツール、コンピュートエンジン、プラットフォームからでもアクセスできる柔軟性を提供し、ロックインを回避するためにオープンスタンダードとインターフ

Databricksでの安全かつ責任ある生成AIデプロイのためのLLMガードレールの実装

イントロダクション よくあるシナリオを考えてみましょう。あなたのチームは、オープンソースのLLMを活用して、カスタマーサポート用のチャットボットを構築したいと考えています。 このモデルは、本番環境で顧客からの問い合わせを処理するため、いくつかの入力や出力が不適切または安全でない可能性があることに気づかない可能性があります。 そして、内部監査の最中になって初めて(運良く このデータを追跡 していた場合)、ユーザーが不適切なリクエストを送信し、チャットボットがそのユーザーとやりとりしていることに気づくのです! さらに深く掘り下げると、チャットボットが顧客を不快にさせている可能性があり、事態の深刻さはあなたが準備できる範囲を超えていることがわかります。 チームが本番環境でAIイニシアチブを保護するために、DatabricksはLLMをラップして適切な動作を強制するガードレールをサポートしています。 ガードレールに加えて、Databricksはモデルのリクエストとレスポンスをログに記録する推論テーブル( AWS | Az

レイクハウス・モニタリング: データとAIの品質監視のための統合ソリューション

はじめに Databricks Lakehouse Monitoring (レイクハウス・モニタリング)を使用すると、データからフィーチャー、MLモデルまで、すべてのデータパイプラインを追加のツールや複雑な操作なしに監視できます。 Unity Catalog に組み込まれているため、ガバナンスと並行して品質を追跡し、データとAI資産のパフォーマンスについて深い洞察を得ることができます。Lakehouse Monitoringは完全にサーバーレスなので、インフラストラクチャやコンピュート構成のチューニングを心配する必要はありません。 Lakehouseのモニタリングに対する統一されたアプローチにより、 Databricks Data Intelligence Platform で直接、品質の追跡、エラーの診断、ソリューションの検索が簡単に行えます。Lakehouse Monitoringを最大限に活用する方法を本記事ではご紹介します。 なぜレイクハウス・モニタリングなのか? データパイプラインは順調に動いているよう