メインコンテンツへジャンプ
ページ 1

RAGの精度向上へ:Databricks VenturesがVoyage AIに出資

私たちが顧客から頻繁に聞くのは、生成AIアプリケーションをパイロットから本番環境に移行する際の課題の1つが、既製の大規模言語モデル(LLM)が生成する結果の正確性であるということです。この正確性のギャップを埋めるために、企業が取り組んでいる方法の1つが、Retrieval Augmented Generation(RAG)アーキテクチャを含む「 複合AIシステム 」を構築することです。RAGアーキテクチャや複合AIシステムでは、企業や特定分野のデータをプロンプトや応答の一部として取り入れることで、既製のLLMの応答の質を向上させます。Databricksでは、これをLLMの「一般知能」から「データ知能」へのシフトと捉えており、わずかなリトリーバルの質や効率の向上でも、ユーザー体験に大きな影響を与えることができると考えています。 高品質な埋め込みモデルは、正確なRAGシステムの礎です。今年、DatabricksのMosaic AI上で開発されたRAGアプリケーションが急増している中、Databricksが業界トップ

Mistral AI社へ出資し、「Mistral AI」モデルを「データ・インテリジェンス・プラットフォーム」に統合しました

Databricksは、オープンソースソリューションがジェネレーティブAI開発におけるイノベーションと透明性を促進するという信念を共有し、ヨーロッパ有数のジェネレーティブAIソリューションプロバイダーであるMistral AIのシリーズA資金調達への参加とパートナーシップを発表しました。このパートナー関係の深化により、DatabricksとMistral AIは現在、Mistral AIのオープンモデルをDatabricks データ・インテリジェンス・プラットフォームにネイティブに統合して提供しています。Databricksのユーザーは、Databricks MarketplaceでMistral AIのモデルにアクセスし、Mosaic AI Playgroundでこれらのモデルと対話し、Mosaic AI Model Servingを通じて最適化されたモデルのエンドポイントとして使用し、アダプテーションを通じて独自のデータを使用してカスタマイズすることができます。 今年に入ってから、すでに1000社近くの企業が