メインコンテンツへジャンプ
ページ 1

Databricksワークフローによるデータ分析のオーケストレーション

October 18, 2023 Matthew Kuehn による投稿 in
翻訳:Saki Kitaoka. - Original Blog Link データドリブンな企業にとって、データアナリストはデータから洞察を引き出し、それを意味のある形で提示する上で重要な役割を担っています。しかし、多くのアナリストは、本番用のワークロードを自動化するために必要なデータオーケストレーションに精通していない可能性があります。アドホックなクエリをいくつか実行すれば、直前のレポート用に適切なデータを迅速に作成できますが、データチームは、さまざまな処理、変換、検証タスクを適切な順序で確実に実行する必要があります。適切なオーケストレーションが行われないと、データチームはパイプラインの監視、障害のトラブルシューティング、依存関係の管理ができなくなります。その結果、当初は即効性のある価値をビジネスにもたらしたアドホックなクエリセットが、それらを構築したアナリストにとって長期的な頭痛の種になってしまいます。 パイプラインの自動化とオーケストレーションは、データの規模が大きくなり、パイプラインの複雑さが増すにつれて