「箱の中」を考える:RayとDatabricksで解くビンパッキング問題
序章 ビンパッキング問題は、業界を問わず企業組織に広範な影響を及ぼす古典的な最適化の課題です。この問題の核心は、有限の数のコンテナや「ビン」に一連のオブジェクトを最も効率的に詰め込む方法を見つけることで、目標は無駄なスペースを最小限に抑えることです。 この課題は、実世界のアプリケーションで広く見られます。例えば、出荷や物流の最適化、データセンターやクラウドコンピューティング環境でのリソースの効率的な割り当てなどです。組織はしばしば大量のアイテムやコンテナを扱うため、最適なパッキングソリューションを見つけることで、大幅なコスト削減と運用効率の向上を実現できます。 10Bドル規模の先進的な産業機器メーカーにとって、ビンパッキングは供給チェーンの重要な一部です。この会社では、購入した部品を詰めてもらうために、コンテナをベンダーに送ることが一般的です。これらの部品は、重機や車両の製造プロセスで使用されます。供給チェーンの複雑さが増し、生産目標が変動する中で、パッケージングエンジニアリングチームは、組み立てラインに適切な数