メインコンテンツへジャンプ
ページ 1

Databricksレイクハウスモニタリングで高品質な予測を確保する

予測モデルは、多くの企業が将来のトレンドを予測するために重要ですが、その精度は入力データの品質に大きく依存します。 データの品質が低いと、予測が不正確になり、最適な意思決定ができなくなる可能性があります。 ここで、 Databricksレイクハウスモニタリングが登場します。これは、予測モデルに流入するデータの品質とモデルのパフォーマンス自体の両方を監視するための統合ソリューションを提供します。 モニタリングは、予測モデルにとって特に重要です。 予測は時系列データを扱うため、データの時間的コンポーネントとシーケンシャルな性質により、複雑さが増します。 入力データの統計的プロパティが時間の経過とともに変化するデータ ドリフトなどの問題は、迅速に検出および対処しないと、予測精度を大幅に低下させる可能性があります。 さらに、予測モデルのパフォーマンスは、予測値と実際の値を比較する平均絶対パーセント誤差 (MAPE) などのメトリクスによって測定されることがよくあります。 ただし、グラウンド トゥルース値はすぐには利用でき